A Novel Recyclable Strategy for Extraction of Naproxen Sodium from Environmental Water by Amino-Functionalized Immobilized Ionic Liquid Polymers
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization of NH2-IL-PS
2.2. Adsorption Performance of Material
2.2.1. Effects of pH Value
2.2.2. Effects of Temperature
2.2.3. Influence of the Equilibrium Time and Analysis of Adsorption Kinetics
2.2.4. Adsorption Capacity
2.3. Optimization of Experimental Conditions
2.4. Enrichment Efficiency of the NH2-IL-PS Adsorbent Material
2.5. Effect of Coexisting Substances
2.6. Sustainability of Naproxen Sodium Wastewater Pretreatment by NH2-IL-PS
2.7. The Applications of Actual Water Samples
2.8. Comparison with Other Literature Reports and Commercially Available Adsorbents
2.9. Analysis of Adsorption Mechanism
3. Experimental Section
3.1. Reagents and Materials
3.2. Preparation of the Amin- Functional Ionic Liquid Polymer
3.3. Apparatus
3.4. Adsorption and Determination of Naproxen Sodium
3.5. Pre-Treatment of Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shin, J.; Kwak, J.; Lee, Y.G.; Kim, S.; Choi, M.; Bae, S.; Lee, S.H.; Park, Y.; Chon, K. Competitive adsorption of pharmaceuticals in lake water and wastewater effluent by pristine and NaOH-activated biochars from spent coffee wastes: Contribution of hydrophobic and pi-pi interactions. Environ. Pollut. 2021, 270, 116244. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zheng, X.; Tu, G.; Zhang, S.; Zhang, P. Novel aqueous biphasic system based on ionic liquid for the simultaneous extraction of seven active pharmaceutical ingredients in aquatic environment. Environ. Sci. Pollut. Res. 2021, 28, 17853–17864. [Google Scholar] [CrossRef] [PubMed]
- He, X.Q.; Cui, Y.Y.; Lin, X.H.; Yang, C.X. Fabrication of polyethyleneimine modified magnetic microporous organic network nanosphere for efficient enrichment of non-steroidal anti-inflammatory drugs from wastewater samples prior to HPLC-UV analysis. Talanta 2021, 233, 122471. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, S.; Zhang, N.; Xu, X.; Bao, T. Novel solid-phase extraction filter based on a zirconium meta-organic framework for determination of non-steroidal anti-inflammatory drugs residues. J. Chromatogr. A 2021, 1652, 462349. [Google Scholar] [CrossRef] [PubMed]
- Saji, R.S.; Prasana, J.C.; Muthu, S.; George, J.; Kuruvilla, T.K.; Raajaraman, B.R. Spectroscopic and quantum computational study on naproxen sodium. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 226, 117614. [Google Scholar] [CrossRef]
- Di, X.; Zhao, X.; Guo, X. Dispersive micro-solid phase extraction combined with switchable hydrophilicity solvent-based homogeneous liquid-liquid microextraction for enrichment of non-steroidal anti-inflammatory drugs in environmental water samples. J. Chromatogr. A 2020, 1634, 461677. [Google Scholar] [CrossRef]
- Zhang, N.; Gao, Y.; Xu, X.; Bao, T.; Wang, S. Hydrophilic carboxyl supported immobilization of UiO-66 for novel bar sorptive extraction of non-steroidal anti-inflammatory drugs in food samples. Food Chem. 2021, 355, 129623. [Google Scholar] [CrossRef]
- Guo, S.; Gao, M.; Shen, T. Dipyridyl-based organo-silica nanosheets for three emerging micropollutants efficient removal: Adsorption performance and mechanisms. J. Clean. Prod. 2020, 260, 121149. [Google Scholar] [CrossRef]
- González-García, P.; Gamboa-González, S.; Andrade Martínez, I.; Hernández-Quiroz, T. Preparation of activated carbon from water hyacinth stems by chemical activation with K2CO3 and its performance as adsorbent of sodium naproxen. Environ. Prog. Sustain. Energy 2019, 39, e13366. [Google Scholar] [CrossRef]
- Rosenfeld, N.; Quinn, E.; Malinski, T.J.; Bergbreiter, D.E. Sequestration of Phenols from Water into Poly(α-olefins) Facilitated by Hydrogen Bonding Polyisobutylene Additives. ACS Environ. Sci. Technol. Water 2022, 2, 1391–1401. [Google Scholar] [CrossRef]
- Meng, P.; DeStefano, N.J.; Knappe, D.R.U. Extraction and Matrix Cleanup Method for Analyzing Novel Per- and Polyfluoroalkyl Ether Acids and Other Per- and Polyfluoroalkyl Substances in Fruits and Vegetables. J. Agric. Food Chem. 2022, 70, 4792–4804. [Google Scholar] [CrossRef] [PubMed]
- Onal, Y.; Akmil-Basar, C.; Sarici-Ozdemir, C. Elucidation of the naproxen sodium adsorption onto activated carbon prepared from waste apricot: Kinetic, equilibrium and thermodynamic characterization. J. Hazard. Mater. 2007, 148, 727–734. [Google Scholar] [CrossRef]
- Beil, S.; Markiewicz, M.; Pereira, C.S.; Stepnowski, P.; Thoming, J.; Stolte, S. Toward the Proactive Design of Sustainable Chemicals: Ionic Liquids as a Prime Example. Chem. Rev. 2021, 121, 13132–13173. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Wang, C.; Zhu, W.; Zhang, X.; Li, T.; Jing Fan, J. A Sustainable Strategy for Solid-Phase Extraction of Antiviral Drug from Environmental Waters by Immobilized Hydrogen Bond Acceptor. Nanomaterials 2022, 12, 1287. [Google Scholar] [CrossRef] [PubMed]
- Fontanals, N.; Borrull, F.; Marcé, R.M. Ionic liquids in solid-phase extraction. TrAC Trends Anal. Chem. 2012, 41, 15–26. [Google Scholar] [CrossRef]
- Dong, Z.; Zhao, L. Covalently bonded ionic liquid onto cellulose for fast adsorption and efficient separation of Cr(VI): Batch, column and mechanism investigation. Carbohydr. Polym. 2018, 189, 190–197. [Google Scholar] [CrossRef]
- Huang, T.-Y.; Ho, J.S.; Goh, S.; Chong, T.H. Ethanol recovery from dilute aqueous solution by perstraction using supported ionic liquid membrane (SILM). J. Clean. Prod. 2021, 298, 126811. [Google Scholar] [CrossRef]
- Zhu, G.; Cheng, G.; Lu, T.; Cao, Z.; Wang, L.; Li, Q.; Fan, J. An ionic liquid functionalized polymer for simultaneous removal of four phenolic pollutants in real environmental samples. J. Hazard. Mater. 2019, 373, 347–358. [Google Scholar] [CrossRef]
- Cheng, M.; Zhang, X.; Shi, Y.; Shi, D.; Zhu, G.; Fan, J. Highly efficient removal of ceftiofur sodium using a superior hydroxyl group functionalized ionic liquid-modified polymer. Sci. Total Environ. 2019, 662, 324–331. [Google Scholar] [CrossRef]
- Cheng, M.; Song, G.; Zhu, G.; Shi, D.; Fan, J. Reusable ionic liquid-functionalized polystyrene for the highly efficient removal of sulfadiazine sodium. J. Appl. Polym. Sci. 2019, 136, 47981–47988. [Google Scholar] [CrossRef]
- Fu, J.; Chen, Z.; Wang, M.; Liu, S.; Zhang, J.; Zhang, J.; Han, R.; Xu, Q. Adsorption of methylene blue by a high-efficiency adsorbent (polydopamine microspheres): Kinetics, isotherm, thermodynamics and mechanism analysis. Chem. Eng. J. 2015, 259, 53–61. [Google Scholar] [CrossRef]
- Nguyen, D.S.; Cho, J.K.; Shin, S.-H.; Mishra, D.K.; Kim, Y.J. Reusable Polystyrene-Functionalized Basic Ionic Liquids as Catalysts for Carboxylation of Amines to Disubstituted Ureas. ACS Sustain. Chem. Eng. 2016, 4, 451–460. [Google Scholar] [CrossRef]
- Wang, X.; Wan, H.; Han, M.; Gao, L.; Guan, G. Removal of Thiophene and Its Derivatives from Model Gasoline Using Polymer-Supported Metal Chlorides Ionic Liquid Moieties. Ind. Eng. Chem. Res. 2012, 51, 3418–3424. [Google Scholar] [CrossRef]
- Chen, S.M.; Shih, Y.F. Thermal stability and degradation behavior of hydroxyethyl methacrylate-poly(lactide) polymers. J. Macromol. Sci. Part A 2016, 53, 125–131. [Google Scholar] [CrossRef]
- Wang, L.; Li, L.; Fan, Q.; Chu, T.; Wang, Y.; Xu, Y. Thermal stability and flammability of several quaternary ammonium ionic liquids. J. Mol. Liq. 2023, 382, 121920. [Google Scholar] [CrossRef]
- Zheng, X.; He, L.; Duan, Y.; Jiang, X.; Xiang, G.; Zhao, W.; Zhang, S. Poly(ionic liquid) immobilized magnetic nanoparticles as new adsorbent for extraction and enrichment of organophosphorus pesticides from tea drinks. J. Chromatogr. A 2014, 1358, 39–45. [Google Scholar] [CrossRef]
- Pan, B.; Du, W.; Zhang, W.; Zhang, X.; Zhang, Q.; Pan, B.; Lv, L.; Zhang, Q.; Chen, J. Improved Adsorption of 4-Nitrophenol onto a Novel Hyper-Cross-Linked Polymer. Environ. Sci. Technol. 2007, 41, 5057–5062. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, J.; Lu, N.; Wu, X.; Zhang, Y.; Hou, X. Development and application of metal-organic framework@GA based on solid-phase extraction coupling with UPLC-MS/MS for the determination of five NSAIDs in water. Talanta 2021, 225, 121846. [Google Scholar] [CrossRef]
- Ramirez, A.A.C.; Garcia, E.R.; Medina, R.L.; Larios, J.L.C.; Parra, R.S.; Franco, A.M.M. Selective Adsorption of Aqueous Diclofenac Sodium, Naproxen Sodium, and Ibuprofen Using a Stable Fe3O4-FeBTC Metal-Organic Frameworka. Materials 2021, 14, 2293. [Google Scholar] [CrossRef]
- Husein, D.Z.; Hassanien, R.; Al-Hakkani, M.F. Green-synthesized copper nano-adsorbent for the removal of pharmaceutical pollutants from real wastewater samples. Heliyon 2019, 5, e02339. [Google Scholar] [CrossRef]
- Goyne, K.W.; Chorover, J.; Kubicki, J.D.; Zimmerman, A.R.; Brantley, S.L. Sorption of the antibiotic ofloxacin to mesoporous and nonporous alumina and silica. J. Colloid Interface Sci. 2005, 283, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Huang, W.; Chen, B.; Zhao, Y.; Liu, D.; Sun, Y.; Gong, B. Removal of tetracycline from aqueous solution by MCM-41-zeolite A loaded nano zero valent iron: Synthesis, characteristic, adsorption performance and mechanism. J. Hazard. Mater. 2017, 339, 22–32. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, Y.; Li, X.; Sun, B.; Wang, C. Synthesis of beta-Cyclodextrin-Based Electrospun Nanofiber Membranes for Highly Efficient Adsorption and Separation of Methylene Blue. ACS Appl. Mater. Interfaces 2015, 7, 26649–26657. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhong, H.; Yuan, X.; Wang, H.; Wang, L.; Chen, X.; Zeng, G.; Wu, Y. Adsorptive removal of methylene blue by rhamnolipid-functionalized graphene oxide from wastewater. Water Res. 2014, 67, 330–344. [Google Scholar] [CrossRef] [PubMed]
VNPS (mL) | Ci (μg/mL) | R (%) | Cf (μg/mL) | EF | RSD (%) |
---|---|---|---|---|---|
50.0 | 0.20 | 98.8 | 3.30 | 16.5 | 1.1 |
100.0 | 0.10 | 97.4 | 3.25 | 32.5 | 1.9 |
250.0 | 0.04 | 95.7 | 3.19 | 79.8 | 1.3 |
500.0 | 0.02 | 93.2 | 3.11 | 155.5 | 2.1 |
1000.0 | 0.01 | 91.2 | 3.04 | 304.0 | 1.5 |
2000.0 | 0.005 | 90.1 | 3.00 | 600.0 | 1.7 |
Coexisting Substances | Permit Ratio | Concentration (mol/L) | RSD (%) |
---|---|---|---|
K+ | 25,000 | 1.0 | 1.7 |
Na+ | 25,000 | 1.0 | 2.7 |
Mg2+ | 10,000 | 0.4 | 1.5 |
Ca2+ | 10,000 | 0.4 | 1.1 |
Cl− | 25,000 | 1.0 | 2.2 |
CO32− | 1500 | 6.0 × 10−2 | 1.3 |
SO42− | 1500 | 6.0 × 10−2 | 1.3 |
PO43− | 1000 | 4.0 × 10−2 | 1.6 |
starch | 1500 | 6.0 × 10−2 | 2.7 |
glucose | 25,000 | 1.0 | 2.5 |
Sucrose | 25,000 | 1.0 | 3.9 |
Humic acid | 2500 | 0.1 | 4.7 |
SDBS | 625 | 2.5 × 10−2 | 4.2 |
Sample | Detected (mg/L) | Added Values (mg/L) | R (%) | RSD (%) |
---|---|---|---|---|
Tap water | N D | 10.0 | 96.2 | 1.2 |
Rain water | N D | 10.0 | 95.3 | 2.1 |
River water | N D | 10.0 | 95.6 | 1.8 |
Lake water | N D | 10.0 | 95.5 | 1.7 |
The Yellow River water | N D | 10.0 | 95.2 | 1.9 |
Sewage effluents | N D | 10.0 | 91.8 | 2.2 |
Domestic sewage | N D | 10.0 | 90.9 | 1.5 |
Adsorbent | qe (mg/g) | teq (min) | RN (Times) | Ref. |
---|---|---|---|---|
Biochars | 48.5 | 720 | - | [1] |
MIL-101(Cr)@GA | 333.3 | 30 | 9 | [28] |
Dipyridyl-based organo-silica nanosheets | 260.6 | 20 | 3 | [8] |
Activated carbon from waste apricot | 106.4 | 30 | [12] | |
Fe3O4–FeBTC -MOF | 69.4 | 240 | 3 | [29] |
Copper nano-adsorbent | 33.9 | - | - | [30] |
Activated carbon from water hyacinth | 39.5 | 480 | - | [9] |
NH2-IL-PS | 456.6 | 20 | 16 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Maimaiti, A.; Liu, W.; Deng, W.; Fu, X.; Fan, J. A Novel Recyclable Strategy for Extraction of Naproxen Sodium from Environmental Water by Amino-Functionalized Immobilized Ionic Liquid Polymers. Molecules 2025, 30, 2404. https://doi.org/10.3390/molecules30112404
Yang H, Maimaiti A, Liu W, Deng W, Fu X, Fan J. A Novel Recyclable Strategy for Extraction of Naproxen Sodium from Environmental Water by Amino-Functionalized Immobilized Ionic Liquid Polymers. Molecules. 2025; 30(11):2404. https://doi.org/10.3390/molecules30112404
Chicago/Turabian StyleYang, Hongrui, Ayiguli Maimaiti, Wei Liu, Wenye Deng, Xiaoping Fu, and Jing Fan. 2025. "A Novel Recyclable Strategy for Extraction of Naproxen Sodium from Environmental Water by Amino-Functionalized Immobilized Ionic Liquid Polymers" Molecules 30, no. 11: 2404. https://doi.org/10.3390/molecules30112404
APA StyleYang, H., Maimaiti, A., Liu, W., Deng, W., Fu, X., & Fan, J. (2025). A Novel Recyclable Strategy for Extraction of Naproxen Sodium from Environmental Water by Amino-Functionalized Immobilized Ionic Liquid Polymers. Molecules, 30(11), 2404. https://doi.org/10.3390/molecules30112404