Combined Potential of Orlistat with Natural Sources and Their Bioactive Compounds Against Obesity: A Review
Abstract
1. Introduction
2. Lipid Uptake: A Therapeutic Target in the Management of Obesity
3. Orlistat: A Pancreatic Lipase Inhibitor Drug
4. Natural Sources and Their Bioactive Compounds as a Proposal Against Postprandial Hypertriglyceridemia
5. Interactions Between Orlistat and Bioactive Compounds
6. Natural Sources and Their Anti-Obesity Effects in Combination with Orlistat
7. Bioactive Compounds from Natural Sources and Their Anti-Obesity Effects in Combination with Orlistat
8. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACC | Acetyl-CoA carboxylase |
AI | Atherogenic index |
ALP | Alkaline phosphatase |
AMPK | Adenosine monophosphate-activated protein kinase |
AUC | Area under the curve |
BP | Blood pressure |
BMI | Body mass index |
BW | Body weight |
C/EBPα | CCAAT/enhancer binding protein α |
CAT | Catalase |
CI | Combination index |
CRR | Cardiac risk ratio |
DBP | Diastolic blood pressure |
DGAT-1 | Diacylglycerol O-acyltransferase-1 |
FAS | Fatty acid synthase |
FER | Food efficiency ratio |
GOT | Glutamate oxaloacetate transaminase |
GPT | Glutamate pyruvate transaminase |
GPx | Glutathione peroxidase |
GSH | Reduced glutathione |
HC | Hip circumference |
HDL | High-density lipoprotein |
HPLC | High-performance liquid chromatography |
HOMA-IR | Homeostasis model assessment of insulin resistance |
HW | Heart weight |
IC50 | Mean inhibitory concentration |
LDH | Lactate dehydrogenase |
LDL | Low-density lipoprotein |
LOI | Lee obesity index |
LPO | Lipid peroxidation |
MBP | Mean blood pressure |
NA | Not applicable |
NF-κB | Nuclear factor κB |
NS | Not specified |
PP | Pulse pressure |
PPAR | Peroxisome proliferator-activated receptor |
PRDM16 | PR domain-containing 16 |
RLW | Relative liver weight |
SBP | Systolic blood pressure |
SOD | Superoxide dismutase |
SREBP-1 | Sterol regulatory element-binding protein-1 |
TBARS | Thiobarbituric acid-reactive substances |
TBF | Total body fat |
TC | Total cholesterol |
TG | Triglycerides |
UCP-1 | Uncoupling protein-1 |
VAI | Visceral adiposity index |
VLDL | Very low-density lipoprotein |
WC | Waist circumference |
WHO | World Health Organization |
References
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 15 March 2025).
- Guria, S.; Hoory, A.; Das, S.; Chattopadhyay, D.; Mukherjee, S. Adipose tissue macrophages and their role in obesity-associated insulin resistance: An overview of the complex dynamics at play. Biosci. Rep. 2023, 43, BSR20220200. [Google Scholar] [CrossRef] [PubMed]
- Battineni, G.; Sagaro, G.G.; Chintalapudi, N.; Amenta, F.; Tomassoni, D.; Tayebati, S.K. Impact of obesity-induced inflammation on cardiovascular diseases (Cvd). Int. J. Mol. Sci. 2021, 22, 4798. [Google Scholar] [CrossRef] [PubMed]
- Jamai, K.; Daoudi, N.E.; Elrherabi, A.; Bnouham, M. Medicinal plants and natural products to treat obesity through inhibiting pancreatic lipase: A review (2020–2022). Lett. Drug Des. Discov. 2023, 21, 1936–1955. [Google Scholar] [CrossRef]
- Quan, S.; Wen, M.; Xu, P.; Chu, C.; Zhang, H.; Yang, K.; Tong, S. Efficient screening of pancreatic lipase inhibitors from Rheum palmatum by affinity ultrafiltration–high-performance liquid chromatography combined with high-resolution inhibition profiling. Phytochem. Anal. 2024, 35, 540–551. [Google Scholar] [CrossRef]
- Híreš, M.; Rapavá, N.; Šimkovič, M.; Varečka, Ľ.; Berkeš, D.; Kryštofová, S. Development and optimization of a high-throughput screening assay for rapid evaluation of lipstatin production by Streptomyces strains. Curr. Microbiol. 2018, 75, 580–587. [Google Scholar] [CrossRef]
- Vulichi, S.R.; Runthala, A.; Rachamreddy, S.K.; Yaramanedi, R.S.P.; Sahoo, P.S.; Burra, P.V.L.S.; Kaur, N.; Akkiraju, S.; Kanala, S.R.; Chippada, A.R.; et al. Appraisal of pancreatic lipase inhibitory potential of Ziziphus oenoplia (L.) Mill. leaves by in vitro and in silico approaches. ACS Omega 2023, 8, 16630–16646. [Google Scholar] [CrossRef]
- Bülbül, M.; Çokdinleyen, S. Natural lipase inhibitors in recent years: A review. ChemistrySelect 2024, 9, e202401091. [Google Scholar] [CrossRef]
- Zhang, B.; Dong, Y.; Yu, N.; Sun, Y.; Xing, Y.; Yang, F.; Yu, X.; Sun, W.; Sun, J.; Li, X.; et al. Intestinal metabolism of baicalein after oral administration in mice: Pharmacokinetics and mechanisms. J. Funct. Foods 2019, 54, 53–63. [Google Scholar] [CrossRef]
- Teng, H.; Chen, L. Polyphenols and bioavailability: An update. Crit. Rev. Food Sci. Nutr. 2019, 59, 2040–2051. [Google Scholar] [CrossRef]
- Li, S.; Pan, J.; Hu, X.; Zhang, Y.; Gong, D.; Zhang, G. Kaempferol inhibits the activity of pancreatic lipase and its synergistic effect with orlistat. J. Funct. Foods 2020, 72, 104041. [Google Scholar] [CrossRef]
- George, G.; SNC, S.; Paul, A.T. Investigation of synergistic potential of green tea polyphenols and orlistat combinations using pancreatic lipase assay-based synergy directed fractionation strategy. S. Afr. J. Bot. 2020, 135, 50–57. [Google Scholar] [CrossRef]
- Uuh Narvaez, J.J.; Segura Campos, M.R. Combination therapy of bioactive compounds with acarbose: A proposal to control hyperglycemia in type 2 diabetes. J. Food Biochem. 2022, 46, e14268. [Google Scholar] [CrossRef] [PubMed]
- Huggins, C.E.; Bonham, M.P.; Lee, S.D.; James, A.P.; Clark, K.M. Postprandial lipemia and the relationship to health. Adv. Diet. Lipids Hum. Health 2022, 2022, 193–209. [Google Scholar] [CrossRef]
- Liu, T.T.; Liu, X.T.; Chen, Q.X.; Shi, Y. Lipase inhibitors for obesity: A review. Biomed. Pharmacother. 2020, 128, 110314. [Google Scholar] [CrossRef]
- Omer, E.; Chiodi, C. Fat digestion and absorption: Normal physiology and pathophysiology of malabsorption, including diagnostic testing. Nutr. Clin. Pract. 2024, 39, S6–S16. [Google Scholar] [CrossRef]
- Hontsariuk, D.O.; Hrushelevskii, M.A. Features of nutrition in exocrine pancreatic insufficiency and metabolic syndrome. Herald. Pancreat. Club 2023, 60, 31–36. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, L.; Yang, S.; Liu, G.; Pan, L.; Gu, C.; Wang, Y.; Li, D.; Zhao, R.; Wu, M. Mechanisms of atherosclerosis induced by postprandial lipemia. Front. Cardiovasc. Med. 2021, 8, 636947. [Google Scholar] [CrossRef]
- Li, W.; Jin, K.; Luo, J.; Xu, W.; Wu, Y.; Zhou, J.; Wang, Y.; Xu, R.; Jiao, L.; Wang, T.; et al. NF-κB and its crosstalk with endoplasmic reticulum stress in atherosclerosis. Front. Cardiovasc. Med. 2022, 9, 988266. [Google Scholar] [CrossRef]
- Zhang, B.; Tian, M.; Zhu, J.; Zhu, A. Global research trends in atherosclerosis-related NF-κB: A bibliometric analysis from 2000 to 2021 and suggestions for future research. Ann. Transl. Med. 2023, 11, 57. [Google Scholar] [CrossRef]
- Werner, C.; Groenewold, S.; Fritsch, M.; Filmer, A.; Bohm, M.; Laufs, U. Abstract 16791: Elevated post-prandial triglyceride concentrations are associated with an unfavorable cardiometabolic risk factor profile in patients with coronary artery disease. Circulation 2011, 124, A16791. [Google Scholar] [CrossRef]
- Keirns, B.H.; Sciarrillo, C.M.; Koemel, N.A.; Emerson, S.R. Fasting, non-fasting and postprandial triglycerides for screening cardiometabolic risk. J. Nutr. Sci. 2021, 10, e75. [Google Scholar] [CrossRef] [PubMed]
- Rotunda, W.; Rains, C.; Jacobs, S.R.; Ng, V.; Lee, R.; Rutledge, S.; Jackson, M.C.; Myers, K. weight loss in short-term interventions for physical activity and nutrition among adults with overweight or obesity: A systematic review and meta-analysis. Prev. Chronic Dis. 2024, 21, 230347. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.M.H.; Draime, J.A.; Berman, S.; Gardner, J.; Krauss, Z.; Martinez, J. Food as medicine? Exploring the impact of providing healthy foods on adherence and clinical and economic outcomes. Explor. Res. Clin. Soc. Pharm. 2022, 5, 100129. [Google Scholar] [CrossRef] [PubMed]
- Khatiwada, N.; Hong, Z. Potential benefits and risks associated with the use of statins. Pharmaceutics 2024, 16, 214. [Google Scholar] [CrossRef]
- Montaigne, D.; Butruille, L.; Staels, B. PPAR control of metabolism and cardiovascular functions. Nat. Rev. Cardiol. 2021, 18, 809–823. [Google Scholar] [CrossRef]
- Zhang, B.; Kuipers, F.; De Boer, J.F.; Kuivenhoven, J.A. Modulation of bile acid metabolism to improve plasma lipid and lipoprotein profiles. J. Clin. Med. 2022, 11, 4. [Google Scholar] [CrossRef]
- Hao, X.; Zhu, X.; Tian, H.; Lai, G.; Zhang, W.; Zhou, H.; Liu, S. Pharmacological effect and mechanism of orlistat in anti-tumor therapy: A review. Medicine 2023, 102, e34671. [Google Scholar] [CrossRef]
- Henderson Lewis, K.; Sloan, C.E.; Bessesen, D.H.; Arterburn, D. Effectiveness and safety of drugs for obesity. BMJ 2024, 384, e072686. [Google Scholar] [CrossRef]
- Kang, J.G.; Park, C.Y. Anti-Obesity drugs: A review about their effects and safety. Diabetes Metab. J. 2012, 36, 13–25. [Google Scholar] [CrossRef]
- Khushboo; Pinki; Kumar, P.; Tripathi, A.; Luthra, U.; Dubey, K.K. Enhanced production of lipstatin from mutant of Streptomyces toxytricini and fed-batch strategies under submerged fermentation. 3 Biotech 2020, 10, 151. [Google Scholar] [CrossRef]
- Guerciolini, R. Mode of action of orlistat. Int. J. Obes. Relat. Metab. Disord. 1997, 21, S12–S23. [Google Scholar] [PubMed]
- McClendon, K.S.; Riche, D.M.; Uwaifo, G.I. Orlistat: Current status in clinical therapeutics. Expert. Opin. Drug Saf. 2009, 8, 727–744. [Google Scholar] [CrossRef] [PubMed]
- Alsunbul, M.; El-Masry, T.A.; El Zahaby, E.I.; Gaballa, M.M.S.; El-Nagar, M.M.F. Potential protective effect of orlistat: A formulation of nanocrystals targeting inflammation, oxidative stress, and apoptosis in an experimental model of doxorubicin-induced cardiotoxicity. Pharmaceutics 2024, 16, 1356. [Google Scholar] [CrossRef] [PubMed]
- Tran, T.H.; Mai, T.T.; Ho, T.T.T.; Le, T.N.D.; Cao, T.C.N.; Thai, K.M.; Tran, T.S. Inhibition of pancreatic lipase by flavonoid derivatives: In vitro and in silico investigations. Adv. Pharmacol. Pharm. Sci. 2024, 2024, 6655996. [Google Scholar] [CrossRef]
- Gabriel, F.S.; Samson, C.E.; Abejuela, Z.R.; Sicat-Gabriel, P.R.; Sumpio, J.P.; Zacarias, M.B.; Mercado-Asis, L.B. Postprandial effect of orlistat on the peaking of lipid level after sequential high fat meals. Int. J. Endocrinol. Metab. 2012, 10, 458–463. [Google Scholar] [CrossRef]
- Van Gaal, L.F.; Broom, J.I.; Enzi, G.; Toplak, H. Efficacy and tolerability of orlistat in the treatment of obesity: A 6-month dose-ranging study. Eur. J. Clin. Pharmacol. 1998, 54, 125–132. [Google Scholar] [CrossRef]
- Mannucci, E.; Dicembrini, I.; Rotella, F.; Rotella, C.M. Orlistat and sibutramine beyond weight loss. Nutr. Metab. Cardiovasc. Dis. 2008, 18, 342–348. [Google Scholar] [CrossRef]
- Jeon, W.S.; Park, C.Y. Antiobesity pharmacotherapy for patients with type 2 diabetes: Focus on long-term management. Endocrinol. Metab. 2014, 29, 410–417. [Google Scholar] [CrossRef]
- Heck, A.M.; Yanovski, J.A.; Calis, K.A. Orlistat, a new lipase inhibitor for the management of obesity. Pharmacotherapy 2000, 20, 270–279. [Google Scholar] [CrossRef]
- Câmara, J.S.; Albuquerque, B.R.; Aguiar, J.; Corrêa, R.C.G.; Gonçalves, J.L.; Granato, D.; Pereira, J.A.M.; Barros, L.; Ferreira, I.C.F.R. Food bioactive compounds and emerging techniques for their extraction: Polyphenols as a case study. Foods 2021, 10, 37. [Google Scholar] [CrossRef]
- Subramaniyan, V.; Hanim, Y.U. Role of pancreatic lipase inhibition in obesity treatment: Mechanisms and challenges towards current insights and future directions. Int. J. Obes. 2025, 49, 492–506. [Google Scholar] [CrossRef] [PubMed]
- Oladimeji, B.M.; Adebo, O.A. Antiobesity effect of healthy food crops and functional foods: A systematic review of their mechanisms. Food Sci. Nutr. 2024, 12, 1380–1398. [Google Scholar] [CrossRef] [PubMed]
- Poulios, E.; Koukounari, S.; Psara, E.; Vasios, G.K.; Sakarikou, C.; Giaginis, C. Anti-obesity properties of phytochemicals: Highlighting their molecular mechanisms against obesity. Curr. Med. Chem. 2023, 31, 25–61. [Google Scholar] [CrossRef] [PubMed]
- Tian, S.; Zhao, H.; Song, H. Shared signaling pathways and targeted therapy by natural bioactive compounds for obesity and type 2 diabetes. Crit. Rev. Food Sci. Nutr. 2024, 64, 5039–5056. [Google Scholar] [CrossRef]
- Chen, L.; Sun, J.; Pan, Z.; Lu, Y.; Wang, Z.; Yang, L.; Sun, G. Analysis of chemical constituents of Chrysanthemum morifolium extract and its effect on postprandial lipid metabolism in healthy adults. Molecules 2023, 28, 579. [Google Scholar] [CrossRef]
- Petersen, K.S.; Rogers, C.J.; West, S.G.; Proctor, D.N.; Kris-Etherton, P.M. The effect of culinary doses of spices in a high-saturated fat, high-carbohydrate meal on postprandial lipemia and endothelial function: A randomized, controlled, crossover pilot trial. Food Funct. 2020, 11, 3191–3200. [Google Scholar] [CrossRef]
- Kiyimba, T.; Yiga, P.; Bamuwamye, M.; Ogwok, P.; Van der Schueren, B.; Matthys, C. Efficacy of dietary polyphenols from whole foods and purified food polyphenol extracts in optimizing cardiometabolic health: A meta-analysis of randomized controlled trials. Adv. Nutr. 2023, 14, 270–282. [Google Scholar] [CrossRef]
- Song, J.; Lu, X.; Liu, D.; Zhang, Y.; Zhai, X.; Zhou, L.; Gao, J. Fucogalactan sulfate (FS) from Laminaria japonica regulates lipid metabolism in diet-induced humanized dyslipidemia mice via an intestinal FXR-FGF19-CYP7A1/CYP8B1 pathway. J. Agric. Food Chem. 2023, 71, 14027–14037. [Google Scholar] [CrossRef]
- Du, L.; Lü, H.; Chen, Y.; Yu, X.; Jian, T.; Zhao, H.; Wu, W.; Ding, X.; Chen, J.; Li, W. Blueberry and blackberry anthocyanins ameliorate metabolic syndrome by modulating gut microbiota and short-chain fatty acids metabolism in high-fat diet-fed C57BL/6J mice. J. Agric. Food Chem. 2023, 71, 14649–14665. [Google Scholar] [CrossRef]
- Redondo-Castillejo, R.; Garcimartín, A.; Hernández-Martín, M.; López-Oliva, M.E.; Bocanegra, A.; Macho-González, A.; Bastida, S.; Benedí, J.; Sánchez-Muniz, F.J. Proanthocyanidins: Impact on gut microbiota and intestinal action mechanisms in the prevention and treatment of metabolic syndrome. Int. J. Mol. Sci. 2023, 24, 5369. [Google Scholar] [CrossRef]
- Dima, C.; Assadpour, E.; Nechifor, A.; Dima, S.; Li, Y.; Jafari, S.M. Oral bioavailability of bioactive compounds; modulating factors, in vitro analysis methods, and enhancing strategies. Crit. Rev. Food Sci. Nutr. 2023, 64, 8501–8539. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Guo, Y.; Pu, F.; Yang, C.; Xiao, X.; Du, H.; He, J.; Lu, S. Opportunities and challenges in enhancing the bioavailability and bioactivity of dietary flavonoids: A novel delivery system perspective. Food Chem. 2024, 430, 137115. [Google Scholar] [CrossRef] [PubMed]
- Darwish, M.M.; Ibrahim, R.S.; Metwally, A.M.; Mahrous, R.S.R. In-depth in silico and in vitro screening of selected edible plants for identification of selective C-domain ACE-1 inhibitor and its synergistic effect with captopril. Food Biosci. 2024, 59, 104115. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L.; Liu, H.; Xie, J.; Yin, W.; Xu, Z.; Ma, H.; Wu, W.; Zheng, M.; Liu, M.; et al. Characterization of the synergistic inhibitory effect of cyanidin-3-O-glucoside and catechin on pancreatic lipase. Food Chem. 2023, 404, 134672. [Google Scholar] [CrossRef]
- Wagner, H.; Ulrich-Merzenich, G. Synergy research: Approaching a new generation of phytopharmaceuticals. Phytomedicine 2009, 16, 97–110. [Google Scholar] [CrossRef]
- Choudhury, A.; Singh, P.A.; Bajwa, N.; Dash, S.; Bisht, P. Pharmacovigilance of herbal medicines: Concerns and future prospects. J. Ethnopharmacol. 2023, 309, 116383. [Google Scholar] [CrossRef]
- Chaachouay, N. Synergy, additive effects, and antagonism of drugs with plant bioactive compounds. Drugs Drug Candidates 2025, 4, 4. [Google Scholar] [CrossRef]
- Babazadeh, N.; Pourrajab, F.; Goodarzvand Chegini, K. The combination of mannose with metformin and orlistat synergistically induces apoptosis and suppresses GFAT1 and PD-1 gene expression in a lymphoid cell line (NALM-6). J. Kermanshah Univ. Med. Sci. 2024, 28, e141312. [Google Scholar] [CrossRef]
- Wu, X.; He, W.; Yao, L.; Zhang, H.; Liu, Z.; Wang, W.; Ye, Y.; Cao, J. Characterization of binding interactions of (-)-epigallocatechin-3-gallate from green tea and lipase. J. Agric. Food Chem. 2013, 61, 8829–8835. [Google Scholar] [CrossRef]
- Seca, A.M.L.; Pinto, D.C.G.A. Overview on the antihypertensive and anti-obesity effects of secondary metabolites from seaweeds. Mar. Drugs 2018, 16, 237. [Google Scholar] [CrossRef]
- Shang, A.; Gan, R.Y.; Xu, X.Y.; Mao, Q.Q.; Zhang, P.Z.; Li, H.B. Effects and mechanisms of edible and medicinal plants on obesity: An updated review. Crit. Rev. Food Sci. Nutr. 2021, 61, 2061–2077. [Google Scholar] [CrossRef] [PubMed]
- Austin, C.; Stewart, D.; Allwood, J.W.; McDougall, G.J. Extracts from the edible seaweed, Ascophyllum nodosum, inhibit lipase activity in vitro: Contributions of phenolic and polysaccharide components. Food Funct. 2018, 9, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Al-Dalaeen, A.; Batarseh, N.; Abdelhadi, N.N.; Atawneh, S.; AbuKashef, R.; Al-Yasari, A.M.R. Protective and therapeutic effects of orlistat in combination with Elettaria cardamomum “cardamom” extract on learning, memory, anxiety, and neuroinflammation in obese mice. Medicina 2025, 61, 263. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Kim, K.J.; Koh, E.J.; Lee, B.Y. Gelidium elegans regulates the AMPK-PRDM16-UCP-1 pathway and has a synergistic effect with orlistat on obesity-associated features in mice fed a high-fat diet. Nutrients 2017, 9, 342. [Google Scholar] [CrossRef]
- Mohammed, S.K.; Mutlag, S.H. Potential anti-obesity effects of two-graded doses of Iraqi Hibiscus tiliaceus leaves extract, alone and in combination with orlistat, on high-fat diet-induced obesity in male rats. J. Med. Life 2023, 16, 1338–1342. [Google Scholar] [CrossRef]
- Caroline, O.B.; Ebuehi, O.A.T.; Cecilia, O.A.; Kayode, O.A. Effect of Allium sativum extract in combination -with orlistat on insulin resistance and disrupted metabolic hormones in high fat diet induced obese rats. Sci. Afr. 2021, 14, e00994. [Google Scholar] [CrossRef]
- Wasim, R.; Mahmood, T.; Shamim, A.; Ahsan, F.; Singh, A. Metaphorical investigation of aqueous distillate of Cichorium intybus, Foeniculum vulgare and Solanum nigrum along with atorvastatin and orlistat in experimental rodent models of dyslipidaemia and obesity. Intell. Pharm. 2024, 2, 1–11. [Google Scholar] [CrossRef]
- Al-kuraishy, H.M.; Al-Gareeb, A.I. Effect of orlistat alone or in combination with Garcinia cambogia on visceral adiposity index in obese patients. J. Intercult. Ethnopharmacol. 2016, 5, 408–414. [Google Scholar] [CrossRef]
- Cavaliere, H.; Floriano, I.; Medeiros-Neto, G. Gastrointestinal side effects of orlistat may be prevented by concomitant prescription of natural fibers (psyllium mucilloid). Int. J. Obes. 2001, 25, 1095–1099. [Google Scholar] [CrossRef]
- Bajes, H.R.; Almasri, I.; Bustanji, Y. Plant products and their inhibitory activity against pancreatic lipase. Rev. Bras. Farmacogn. 2020, 30, 321–330. [Google Scholar] [CrossRef]
- Yun, J.W. Possible anti-obesity therapeutics from nature—A review. Phytochemistry 2010, 71, 1625–1641. [Google Scholar] [CrossRef] [PubMed]
- Martins, T.; Ferreira, T.; Nascimento-Gonçalves, E.; Castro-Ribeiro, C.; Lemos, S.; Rosa, E.; Antunes, L.M.; Oliveira, P.A. Obesity rodent models applied to research with food products and natural compounds. Obesities 2022, 2, 171–204. [Google Scholar] [CrossRef]
- Wang, H.N.; Xiang, J.Z.; Qi, Z.; Du, M. Plant extracts in prevention of obesity. Crit. Rev. Food Sci. Nutr. 2022, 62, 2221–2234. [Google Scholar] [CrossRef] [PubMed]
- Payab, M.; Hasani-Ranjbar, S.; Shahbal, N.; Qorbani, M.; Aletaha, A.; Haghi-Aminjan, H.; Soltani, A.; Khatami, F.; Nikfar, S.; Hassani, S.; et al. Effect of the herbal medicines in obesity and metabolic syndrome: A systematic review and meta-analysis of clinical trials. Phytother. Res. 2020, 34, 526–545. [Google Scholar] [CrossRef]
- Li, S.; Hu, X.; Pan, J.; Gong, D.; Zhang, G. Mechanistic insights into the inhibition of pancreatic lipase by apigenin: Inhibitory interaction, conformational change and molecular docking studies. J. Mol. Liq. 2021, 335, 116505. [Google Scholar] [CrossRef]
- Gaur, P.; Khan, F.; Shanker, K. Potential lipase inhibitor from underutilized part of Andrographis paniculata: Targeted isolation and mechanism of inhibition. Ind. Crops Prod. 2023, 197, 116623. [Google Scholar] [CrossRef]
- Gaur, P.; Tiwari, N.; Shanker, K. Utilization of agro-waste of Piper longum for a potential pancreatic lipase inhibitor. ACS Agric. Sci. Technol. 2022, 2, 580–591. [Google Scholar] [CrossRef]
- Li, X.; Pu, Y.; Jiang, H.; Jiao, W.; Peng, W.; Tian, W.; Jiang, W.; Fang, X. Inhibitory effect of procyanidin B2 and tannin acid on cholesterol esterase and their synergistic effect with orlistat. Food Sci. Hum. Wellness 2024, 13, 360–369. [Google Scholar] [CrossRef]
- Mladenova, S.G.; Todorova, M.N.; Savova, M.S.; Georgiev, M.I.; Mihaylova, L.V. Maackiain mimics caloric restriction through Aak-2-mediated lipid reduction in Caenorhabditis elegans. Int. J. Mol. Sci. 2023, 24, 17442. [Google Scholar] [CrossRef]
- Annamalai, S.; Mohanam, L.; Raja, V.; Dev, A.; Prabhu, V. Antiobesity, antioxidant and hepatoprotective effects of diallyl trisulphide (DATS) alone or in combination with orlistat on hfd induced obese rats. Biomed. Pharmacother. 2017, 93, 81–87. [Google Scholar] [CrossRef]
- Win, K.M.; Latt, T.S.; Bwa, A.H.; Aye, K.M.; Tun, K.S.; Gandhi, H. Effects of a novel weight-loss combination product containing orlistat and resveratrol on obesity: A multicenter randomized controlled study (EC-FIT). Endocr. Metab. Sci. 2025, 17, 100218. [Google Scholar] [CrossRef]
- He, X.; Chen, L.; Pu, Y.; Wang, H.; Cao, J.; Jiang, W. Fruit and vegetable polyphenols as natural bioactive inhibitors of pancreatic lipase and cholesterol esterase: Inhibition mechanisms, polyphenol influences, application challenges. Food Biosci. 2023, 55, 103054. [Google Scholar] [CrossRef]
- Mladenova, S.G.; Savova, M.S.; Marchev, A.S.; Ferrante, C.; Orlando, G.; Wabitsch, M.; Georgiev, M.I. Anti-adipogenic activity of maackiain and ononin is mediated via inhibition of PPARγ in human adipocytes. Biomed. Pharmacother. 2022, 149, 112908. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Quintela, A.; Carpéné, C.; Fernández, M.; Aguirre, L.; Milton-Laskibar, I.; Contreras, J.; Portillo, M.P. Anti-obesity effects of resveratrol: Comparison between animal models and humans. J. Physiol. Biochem. 2016, 73, 417–429. [Google Scholar] [CrossRef]
- Bjerrum, O.J.; Gautam, Y.; Bjerrum, E.J.; Schmiegelow, M.; Boonen, H.C.M. Medicines combinations options and regulatory hurdles. Eur. J. Pharm. Sci. 2013, 49, 659–663. [Google Scholar] [CrossRef]
Natural Source | Biological Model | Effect | Combined Effect Interaction | Reference |
---|---|---|---|---|
Camellia sinensis L. Kuntze (extract of leaves and derived fractions) | Pancreatic lipase (in vitro) | Enzymatic inhibition (IC50 = 1.93–11.95 µg/mL) | Synergistic | [12] |
Ascophyllum nodosum (L.) Le Jolis (tannin-rich fraction) | Pancreatic lipase (in vitro) | NA | Antagonistic | [63] |
Elettaria cardamomum (extract of cardamom) | Mice with obesity (in vivo) | Decrease in BW, LOI, and blood glucose decrease in LDL (89 mg/dL), TC (83 mg/dL), TG (61.81 mg/dL), AI (0.33), and CRR (0.29) Positive effects on neuroinflammation and memory associated with obesity | Synergistic | [64] |
Gelidium elegans (extract of the edible seaweed) | Mice with obesity (in vivo) | Decrease in BW gain and percentage of BW (subcutaneous fat) Decrease in serum TG (<60 mg/dL), hepatic TG (<125 mg/g liver), serum insulin (<5 ng/mL), and blood glucose (116.7–156.0 mg/dL) Increase in HDL (109.6 mg/dL) White adipose tissue: decrease in protein expression of C/EBPα (<90%) and PPARγ (<90%) Hepatic tissue: increase in AMPK phosphorylation (>175%) and PRDM16 (>130%); decrease in protein expression of SREBP-1 (<80%), ACC (<40%), DGAT-1 (<60%), and FAS (<30%) Brown adipose tissue: increase in AMPK phosphorylation (>225%) and protein expression of PRDM16 (>150%) and UCP-1 (>130%) Decrease in hepatic lipogenesis (histopathological assays) and liver weights (1.4 g) | Synergistic | [65] |
Hibiscus tiliaceus L. (extract of leaves) | Rats with obesity (in vivo) | Decrease in BW (174.44 g), TG (166.92 mg/dL), and TC (188.33 mg/dL) Increase in HDL (67.84 mg/dL) | NS | [66] |
Allium sativum (extract of cloves) | Rats with obesity (in vivo) | Decrease in feed intake (<150 g), BW (<300 g), free fatty acids (<100 µmol/L), glucose (<125 mg/dL), insulin (<100 µIU/mL), HOMA-IR index (<20), and leptin (<4 ng/mL) Increase in ghrelin (>0.3 Pg/mL) and adiponectin (>20) | NS | [67] |
Cichorium intybus L., Foeniculum vulgare Mill., and Solanum nigrum L. (aqueous distillates of the plants) | Rats with obesity (in vivo) | Decrease in BW gain (<30 g), FER (<0.075), BMI (<0.75 gm/cm2), HW:BW ratio (<4), and RLW (<7.5) Decrease in TC (<110 mg/dL), TG (<110 mg/dL), LDL (<75 mg/dL), lipase (<200 U/L), glucose (<125 mg/dL), insulin (<1.25 µg/mL), leptin (<2.5 ng/mL), LDH (<125 IU/L), TBARS (<75 nmol/g tissue protein), and AI (<3) Increase in HDL (>30 mg/dL) and SOD (>8 Units/mg protein) Normal histology in liver and heart | NS | [68] |
Garcinia cambogia (capsules) | Obese patients (clinical study) | Decrease in BW (83.22 kg), BMI (30.45 kg/m2), WC (84.16 cm), HC (102.17 cm), VAI (2.17), SBP (133.10 mmHg), PP (52.97 mmHg), MBP (106.61 mmHg), TG (221.92 mg/dL), TC (187.31 mg/dL), VLDL (44.38 mg/dL), CRR (3.81), and postprandial blood glucose (131.17 mg/dL) Increase in HDL (49.11 mg/dL) | Additive | [69] |
Plantago ovata (psyllium) | Obese patients (clinical study) | Decrease in BW (94.96 kg) and BMI (37.40 kg/m2) Decrease in the number of gastrointestinal events (oily spotting = 42, fecal urgency = 41, and incontinence = 11) | NS | [70] |
Compound | Biological Model | Effect | Combined Effect Interaction | Reference |
---|---|---|---|---|
Flavonoids | ||||
Epicatechin gallate and/or epigallocatechin gallate | Pancreatic lipase (in vitro) | Enzymatic inhibition by epicatechin gallate (IC50 = 0.70–3.00 µg/mL), epigallocatechin gallate (IC50 = 0.32–0.99 µg/mL), and a mixture of the compounds (IC50 = 0.27–0.96 µg/mL) | Synergistic | [12] |
Kaempferol | Pancreatic lipase (in vitro) | Enzymatic inhibition (concentrations < 114.60 μM) | Synergistic | [11] |
Apigenin | Pancreatic lipase (in vitro) | Enzymatic inhibition (concentrations < 0.15 mM) | Synergistic | [76] |
7-O-methyl-dihydro wogonin | Pancreatic lipase (in vitro) | Enzymatic inhibition (concentrations < 14.86 μM) | Synergistic | [77] |
Pseudoalkaloid | ||||
Pellitorine | Pancreatic lipase (in vitro) | Enzymatic inhibition (concentrations < 15.70 μM) | Synergistic | [78] |
Tannins | ||||
Procyanidin B2 | Cholesterol esterase (in vitro) | Enzymatic inhibition | Synergistic | [79] |
Tannin acid | Cholesterol esterase (in vitro) | Enzymatic inhibition | Synergistic | [79] |
Pterocarpan | ||||
Maackiain | Nematodes (Caenorhabditis elegans) | Decrease in lipid accumulation Increase in mRNA expression of sbp-1 and miRNA expression of miR-60 | NA | [80] |
Allyl sulfide | ||||
Diallyl trisulfide | Rats with obesity (in vivo) | Decrease in BW (<300 g) Decrease in glucose (<150 mg/dL), TG (<150 mg/dL), TC (<200 mg/dL), LDL (<50 mg/dL), VLDL (<50 mg/dL), GOT (<75 IU/L), GPT (<60 IU/L), ALP (<160 IU/L), and LDH (<160 IU/L) Increase in HDL (>15 mg/dL) Liver and adipose tissue: decrease in LPO (<0.4 n moles of MDA formed/mg protein) Liver and adipose tissue: increase in CAT (>20 μmol H2O2 consumed/min/mg protein), GPx (>140 μmol glutathione oxidized/min/mg protein), GSH (>20 μg/mg protein), and SOD (>1.2 Units/mg protein) Decrease in alterations in liver and adipose tissue (histopathological assays) | NS | [81] |
Stilbenol | ||||
Resveratrol | Obese patients (clinical study) | Decrease in BW (−3.31 kg), TBF (−4.93%), and DBP (75.93 mmHg) Decrease in BW in patients with steatosis, fibrosis, and diabetes Steatorrhea as an adverse effect | Synergistic | [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uuh Narvaez, J.J.; Chan Zapata, I.; Segura Campos, M.R. Combined Potential of Orlistat with Natural Sources and Their Bioactive Compounds Against Obesity: A Review. Molecules 2025, 30, 2392. https://doi.org/10.3390/molecules30112392
Uuh Narvaez JJ, Chan Zapata I, Segura Campos MR. Combined Potential of Orlistat with Natural Sources and Their Bioactive Compounds Against Obesity: A Review. Molecules. 2025; 30(11):2392. https://doi.org/10.3390/molecules30112392
Chicago/Turabian StyleUuh Narvaez, Jonatan Jafet, Ivan Chan Zapata, and Maira Rubi Segura Campos. 2025. "Combined Potential of Orlistat with Natural Sources and Their Bioactive Compounds Against Obesity: A Review" Molecules 30, no. 11: 2392. https://doi.org/10.3390/molecules30112392
APA StyleUuh Narvaez, J. J., Chan Zapata, I., & Segura Campos, M. R. (2025). Combined Potential of Orlistat with Natural Sources and Their Bioactive Compounds Against Obesity: A Review. Molecules, 30(11), 2392. https://doi.org/10.3390/molecules30112392