Assessing Diazinon Exposure: A GC-MS/MS Validation Study of BChE Measurement by Point-of-Care Testing and Enzyme Multiplied Immunoassay Technique
Abstract
:1. Introduction
2. Results
2.1. Method Development and Validation for Diazinon Detection
2.2. Comparison of Butyrylcholinesterase (BChE) Measurement Methods
2.3. Diazinon Levels and Correlation with BChE Inhibition
3. Discussion
4. Materials and Methods
4.1. Patient Samples
4.2. Instruments and Apparatus
4.2.1. Butyrylcholinesterase Assays
4.2.2. GC-MS/MS Diazinon Quantification
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
OP | Organophosphate insecticide |
BChE | Whole blood butyrylcholinesterase activity |
PsChE | Plasma butyrylcholinesterase activity |
EMIT | Enzyme-multiplied immunoassay technique |
POCT | Point-of-care testing |
GC-MS/MS | Gas chromatography–tandem mass spectrometry |
SWGTOX | Scientific Working Group for Forensic Toxicology |
References
- Balali-Mood, M.; Abdollahi, M. Basic and Clinical Toxicology of Organophosphorus Compounds; Springer: London, UK, 2014; pp. 67–151. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Balali-Mood, K.; Moodi, M.; Balali-Mood, B. Health Aspects of Organophosphorous Pesticides in Asian Countries. Iran. J. Public Health 2012, 41, 1–14. [Google Scholar] [PubMed]
- Jokanović, M.; Ristić, D.; Kovač, B.; Stojiljković, M. Biotransformation of warfare nerve agents. In Handbook of Toxicology of Chemical Warfare Agents; Elsevier: Amsterdam, The Netherlands, 2020; pp. 953–966. [Google Scholar] [CrossRef]
- Pohanka, M. Determination of acetylcholinesterase and butyrylcholinesterase activity without dilution of biological samples. Chem. Pap. 2015, 69, 1044–1049. [Google Scholar] [CrossRef]
- Bazire, A.; Gillon, E.; Lockridge, O.; Vallet, V.; Nachon, F. The kinetic study of the inhibition of human cholinesterases by demeton-S-methyl shows that cholinesterase-based titration methods are not suitable for this organophosphate. Toxicol. Vitr. 2011, 25, 754–759. [Google Scholar] [CrossRef] [PubMed]
- Pohanka, M. Voltammetric assay of butyrylcholinesterase in plasma samples and its comparison to the standard spectrophotometric test. Talanta 2014, 119, 412–416. [Google Scholar] [CrossRef]
- Khaled, E.; Hassan, H.; Mohamed, G.; Ragab, F.; Seleim, A. Disposable potentiometric sensors for monitoring cholinesterase activity. Talanta 2010, 83, 357–363. [Google Scholar] [CrossRef]
- Pohanka, M. Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds. Chem. Pap. 2015, 69, 4–16. [Google Scholar] [CrossRef]
- Ellman, G.; Courtney, K.; Featherstone, R. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–90. [Google Scholar] [CrossRef]
- Sinko, G.; Calić, M.; Bosak, A.; Kovarik, Z. Limitation of the Ellman method: Cholinesterase activity measurement in the presence of oximes. Anal. Biochem. 2007, 370, 223–227. [Google Scholar] [CrossRef]
- Komersová, A.; Komers, K.; Cegan, A. New findings about Ellman’s method to determine cholinesterase activity. Z. Naturforsch. C. 2007, 62, 150–154. [Google Scholar] [CrossRef]
- Dingova, D.; Leroy, J.; Check, A.; Garaj, V.; Krejci, E.; Hrabovska, A. Optimal detection of cholinesterase activity in biological samples: Modifications to the standard Ellman’s assay. Anal. Biochem. 2014, 462, 67–75. [Google Scholar] [CrossRef]
- Daimei, M.; Ryutaro, A. Biosensors: Immunosensors. In Encyclopedia of Sensors and Biosensors, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 298–314. [Google Scholar] [CrossRef]
- Bertholf, R.; Reisfield, G. Chapter 18—Drug Testing in Pain Management. In Therapeutic Drug Monitoring; Academic Press: Cambridge, MA, USA, 2012; pp. 397–416. [Google Scholar] [CrossRef]
- Melanson, S. The Utility of Immunoassays for Urine Drug Testing. Clin. Lab. Med. 2012, 32, 429–447. [Google Scholar] [CrossRef] [PubMed]
- Luppa, P.B.; Junker, R.; Diamandis, E.P. The impact of point-of-care testing on clinical outcomes. Clin. Chem. Lab. Med. 2018, 56, 779–790. [Google Scholar]
- Nichols, J.H.; Savarino, R.V. Point-of-care testing. Clin. Chem. 2014, 60, 8–20. [Google Scholar]
- Plebani, M.; Lippi, G. Point-of-care testing in clinical practice: A critical overview. Clin. Biochem. Rev. 2018, 39, 65. [Google Scholar]
- Pohanka, M. Cholinesterases in biorecognition and biosensor construction: A review. Anal. Lett. 2013, 46, 1849–1868. [Google Scholar] [CrossRef]
- Eddleston, M.; Eyer, P.; Worek, F.; Sheriff, M.; Buckley, N. Predicting outcome using butyrylcholinesterase activity in organophosphorus pesticide self-poisoning. QJM 2008, 101, 467–474. [Google Scholar] [CrossRef]
- Pohanka, M. Cholinesterases, a target of pharmacology and toxicology. Biomed. Pap. Olomouc 2011, 155, 219–229. [Google Scholar] [CrossRef]
- Liu, S.; Pleil, J. Human blood and environmental media screening method for pesticides and polychlorinated biphenyl compounds using liquid extraction and gas chromatography-mass spectrometry analysis. J. Chromatogr. B 2002, 769, 155–167. [Google Scholar] [CrossRef]
- Huber, S.; Averina, M.; Brox, J. Automated sample preparation and GC-API-MS/MS as a powerful tool for analysis of legacy POPs in human serum and plasma. Anal. Methods 2020, 12, 912–929. [Google Scholar] [CrossRef]
- Fang, J.; Zhao, H.; Zhang, Y.; He, Y.; Sun, Q.; Xu, S.; Cai, Z. Performance of atmospheric pressure gas chromatography-tandem mass spectrometry for the analysis of organochlorine pesticides in human serum. Anal. Bioanal. Chem. 2019, 411, 4185–4191. [Google Scholar] [CrossRef]
- Sapahin, H.; Makahleh, A.; Saad, B. Determination of organophosphorus pesticide residues in vegetables using solid phase micro-extraction coupled with gas chromatography–flame photometric detector. Arab. J. Chem. 2019, 12, 1934–1944. [Google Scholar] [CrossRef]
- Cserhati, T.; Szogyi, M. Chromatographic determination of pesticides in foods and food products. J. Nutr. Food Sci. 2012, 2, 126. [Google Scholar] [CrossRef]
- Bhadekar, R.; Pote, S.; Tale, V.; Nirichan, B. Development in analytical methods for detection of pesticides in environmental samples. Am. J. Anal. Chem. 2011, 2, 1–15. [Google Scholar] [CrossRef]
- SWGTOX. Scientific Working Group for Forensic Toxicology (SWGTOX) Standard Practices for Method Validation in Forensic Toxicology. J. Anal. Toxicol. 2013, 37, 452–474. [Google Scholar] [CrossRef] [PubMed]
- 2002/657/EC: Commission Decision of 12 August 2002 Implementing Council Directive 96/23/EC Concerning the Performance of Analytical Methods and the Interpretation of Results (Text with EEA Relevance) (Notified Under Document Number C(2002) 3044). Official Journal 221. 2002. Available online: http://data.europa.eu/eli/dec/2002/657/oj (accessed on 4 November 2024).
- Luzardo, O.P.; Almeida-González, M.; Ruiz-Suárez, N.; Zumbado, M.; Henríquez-Hernández, L.A.; Meilán, M.J.; Camacho, M.; Boada, L.D. Validated analytical methodology for the simultaneous determination of a wide range of pesticides in human blood using GC–MS/MS and LC–ESI/MS/MS and its application in two poisoning cases. Sci. Justice 2015, 55, 307–315. [Google Scholar] [CrossRef]
- Adole, P.; Bora, S.; Chaudhari, V.A. Clinical utility of validated gas chromatography–ion trap mass spectrometry in patients with anticholinesterase pesticides poisoning. Anal. Biochem. 2021, 621, 114–158. [Google Scholar] [CrossRef]
- EURL for Cereals and Feeding Stuff; National Food Institute; Technical University of Denmark. Determination of Pesticide Residues in Wheat by GC-MS/MS. SweEt Method. Available online: https://www.eurl-pesticides.eu/userfiles/file/(11)%20Appendix%203%20Validation%202012%20cerealier%20FC-MSMS%20SweEt%20report%2011.pdf (accessed on 4 November 2024).
RT (min) | m/z → m/z | CE (V) | m/z → m/z | CE (V) | Reference |
---|---|---|---|---|---|
19.48 | 304 → 179 | 0.45, 30 ms | 137 → 84 | 0.45, 30 ms | [30] |
17.81 | 179.1 → 127.0 | 15 | 179.1 → 137.1 | 15 | [31] |
11.27 | 304 → 179 | 10 | 276 → 179 | 10 | [32] |
16.65 | 137 → 84 | 15 | 137 → 54 | 25 | This study |
Admission to the ICU | Externation from the ICU | ICU Hospitalization, Days | |||||
---|---|---|---|---|---|---|---|
Diazinon, µg/L | BchE * Activity, % | PschE ** Activity, % | Diazinon, µg/L | BchE * Activity, % | PschE ** Activity, % | ||
Case 1 | 125 | 18 | 22 | < LOD | 51 | 42 | 12 |
Case 2 | 156 | 8 | 10 | < LOD | 64 | 48 | 17 |
Case 3 | 251 | 3 | 1 | < LOD | 20 | 11 | 24 |
Case 4 | 141 | 17 | 17 | < LOD | 52 | 53 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hîrjău, A.-C.; Crăciun, M.E.; Marandiuc, I.-M.; Radu, G.-L. Assessing Diazinon Exposure: A GC-MS/MS Validation Study of BChE Measurement by Point-of-Care Testing and Enzyme Multiplied Immunoassay Technique. Molecules 2025, 30, 2382. https://doi.org/10.3390/molecules30112382
Hîrjău A-C, Crăciun ME, Marandiuc I-M, Radu G-L. Assessing Diazinon Exposure: A GC-MS/MS Validation Study of BChE Measurement by Point-of-Care Testing and Enzyme Multiplied Immunoassay Technique. Molecules. 2025; 30(11):2382. https://doi.org/10.3390/molecules30112382
Chicago/Turabian StyleHîrjău, Andreea-Camelia, Mihaela Emanuela Crăciun, Ilinca-Mihaela Marandiuc, and Gabriel-Lucian Radu. 2025. "Assessing Diazinon Exposure: A GC-MS/MS Validation Study of BChE Measurement by Point-of-Care Testing and Enzyme Multiplied Immunoassay Technique" Molecules 30, no. 11: 2382. https://doi.org/10.3390/molecules30112382
APA StyleHîrjău, A.-C., Crăciun, M. E., Marandiuc, I.-M., & Radu, G.-L. (2025). Assessing Diazinon Exposure: A GC-MS/MS Validation Study of BChE Measurement by Point-of-Care Testing and Enzyme Multiplied Immunoassay Technique. Molecules, 30(11), 2382. https://doi.org/10.3390/molecules30112382