Immunotoxicity Study of Cucurbit[n]urils (n = 6, 7, 8) and Modeling of Interaction with Some Monocyte Receptors by a Molecular Docking Method
Abstract
:1. Introduction
2. Results and Discussion
2.1. Cytotoxicity Study of the Samples
№ | Sample | Concentration, mol/L | Designation |
---|---|---|---|
1 | CB[6] | 1 × 10−5 | CB[6]-5 |
2 | CB[7] | 1 × 10−5 | CB[7]-5 |
3 | CB[8] | 1 × 10−5 | CB[8]-5 |
2.2. Analysis of Pro-Inflammatory Cytokine Secretion by Monocytes in Response to Sample Effects
2.3. Analysis of the Affinity of CB[6], CB[7], and CB[8] with Some Toll-Like Receptors of Monocytes (TLR1, TLR3, TLR4, TLR5, and TLR8) by Molecular Docking Method
3. Materials and Methods
3.1. Study of Cytotoxicity of Samples
3.2. Evaluation of Pro-Inflammatory Properties of Samples and Their Influence on Monocyte Activation
3.3. Molecular Modeling of the Interaction of Cucurbit[n]urils with Monocyte Receptors
3.4. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdelhamid, M.S.; Wadan, A.-H.S.; Saad, H.A.; El-Dakroury, W.A.; Hageen, A.W.; Mohammed, D.H.; Mourad, S.; Mohammed, O.A.; Abdel-Reheim, M.A.; Doghish, A.S. Nanoparticle Innovations in Targeted Cancer Therapy: Advancements in Antibody-Drug Conjugates. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2025, 398. [Google Scholar] [CrossRef]
- Famta, P.; Shah, S.; Vambhurkar, G.; Pandey, G.; Bagasariya, D.; Kumar, K.C.; Prasad, S.B.; Shinde, A.; Wagh, S.; Srinivasarao, D.A.; et al. Amelioration of Breast Cancer Therapies through Normalization of Tumor Vessels and Microenvironment: Paradigm Shift to Improve Drug Perfusion and Nanocarrier Permeation. Drug Deliv. Transl. Res. 2025, 15, 389–406. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Assaf, K.I.; Nau, W.M. Applications of Cucurbiturils in Medicinal Chemistry and Chemical Biology. Front. Chem. 2019, 7, 619. [Google Scholar] [CrossRef]
- Corda, E.; Hernandez, M.; Sanchez-Cortes, S.; Sevilla, P. Cucurbit[n]urils (n = 6–8) Used as Host Molecules on Supramolecular Complexes Formed with Two Different Drugs: Emodin and Indomethacin. Colloids Surf. A Physicochem. Eng. Asp. 2018, 557, 66–75. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, Y.-M.; Liu, Y. Nanosupramolecular Assembly of Amphiphilic Guest Mediated by Cucurbituril for Doxorubicin Delivery. RSC Adv. 2016, 6, 99729–99734. [Google Scholar] [CrossRef]
- Marchenko, E.; Luchsheva, V.; Baigonakova, G.; Bakibaev, A.; Vorozhtsov, A. Functionalization of the Surface of Porous Nickel–Titanium Alloy with Macrocyclic Compounds. Materials 2023, 16, 66. [Google Scholar] [CrossRef]
- Yin, H.; Cheng, Q.; Bardelang, D.; Wang, R. Challenges and Opportunities of Functionalized Cucurbiturils for Biomedical Applications. JACS Au 2023, 3, 2356–2377. [Google Scholar] [CrossRef] [PubMed]
- Hennig, A.; Nau, W.M. Interaction of Cucurbit[7]uril with Protease Substrates: Application to Nanosecond Time-Resolved Fluorescence Assays. Front. Chem. 2020, 8, 806. [Google Scholar] [CrossRef]
- Burkhanbayeva, T.; Ukhov, A.; Fedorishin, D.; Gubankov, A.; Kurzina, I.; Bakibaev, A.; Yerkassov, R.; Mashan, T.; Suyundikova, F.; Nurmukhanbetova, N.; et al. Development of New Composite Materials by Modifying the Surface of Porous Hydroxyapatite Using Cucurbit[n]urils. Materials 2024, 17, 2041. [Google Scholar] [CrossRef]
- Su, L.; Wang, Y.; Wang, J.; Mifune, Y.; Morin, M.D.; Jones, B.T.; Moresco, E.M.; Boger, D.L.; Beutler, B.; Zhang, H. Structural Basis of TLR2/TLR1 Activation by the Synthetic Agonist Diprovocim. J. Med. Chem. 2019, 62, 2938–2949. [Google Scholar] [CrossRef]
- Choe, J.; Kelker, M.S.; Wilson, I.A. Crystal Structure of Human Toll-Like Receptor 3 (TLR3) Ectodomain. Science 2005, 309, 581–585. [Google Scholar] [CrossRef] [PubMed]
- Mineev, K.S.; Goncharuk, S.A.; Goncharuk, M.V.; Volynsky, P.E.; Novikova, E.V.; Aresinev, A.S. Spatial Structure of TLR4 Transmembrane Domain in Bicelles Provides the Insight into the Receptor Activation Mechanism. Sci. Rep. 2017, 7, 6864. [Google Scholar] [CrossRef] [PubMed]
- Kornilov, F.D.; Shabalkina, A.V.; Lin, C.; Volynsky, P.E.; Kot, E.F.; Kayushin, A.L.; Lushpa, V.A.; Goncharuk, M.V.; Arseniev, A.S.; Goncharuk, S.A.; et al. The Architecture of Transmembrane and Cytoplasmic Juxtamembrane Regions of Toll-Like Receptors. Nat. Commun. 2023, 14, 1503. [Google Scholar] [CrossRef]
- Tanji, H.; Ohto, U.; Shibata, T.; Miyake, K.; Shimizu, T. Structural Reorganization of the Toll-Like Receptor 8 Dimer Induced by Agonistic Ligands. Science 2013, 339, 1426–1429. [Google Scholar] [CrossRef]
- Serbina, N.V.; Jia, T.; Hohl, T.M.; Pamer, E.G. Monocyte-Mediated Defense Against Microbial Pathogens. Annu. Rev. Immunol. 2008, 26, 421–452. [Google Scholar] [CrossRef]
- van Furth, R.; Cohn, Z.A. The Origin and Kinetics of Mononuclear Phagocytes. J. Exp. Med. 1968, 128, 415–435. [Google Scholar] [CrossRef] [PubMed]
- Jakubzick, C.; Gautier, E.L.; Gibbings, S.L.; Sojka, D.K.; Schlitzer, A.; Johnson, T.E.; Ivanov, S.; Duan, Q.; Bala, S.; Condon, T.; et al. Minimal Differentiation of Classical Monocytes as They Survey Steady-State Tissues and Transport Antigen to Lymph Nodes. Immunity 2013, 39, 599–610. [Google Scholar] [CrossRef]
- Ovchinnikov, D.A. Macrophages in the Embryo and Beyond: Much More than Just Giant Phagocytes. Genesis 2008, 46, 447–462. [Google Scholar] [CrossRef]
- Mosser, D.M.; Edwards, J.P. Exploring the Full Spectrum of Macrophage Activation. Nat. Rev. Immunol. 2008, 8, 958–969. [Google Scholar] [CrossRef]
- Mantovani, A.; Sozzani, S.; Locati, M.; Allavena, P.; Sica, A. Macrophage Polarization: Tumor-Associated Macrophages as a Paradigm for Polarized M2 Mononuclear Phagocytes. Trends Immunol. 2002, 23, 549–555. [Google Scholar] [CrossRef]
- Paletta-Silva, R.; Meyer-Fernandes, J.R. Macrophage Plasticity and Polarization: Cell Signaling Mechanisms and Roles in Immunity. In Handbook of Macrophages: Life Cycle, Functions and Diseases; Nova Science Publishers: Hauppauge, NY, USA, 2012; pp. 147–174. [Google Scholar]
- Gordon, S.; Taylor, P.R. Monocyte and Macrophage Heterogeneity. Nat. Rev. Immunol. 2006, 5, 953–964. [Google Scholar] [CrossRef] [PubMed]
- Sica, A.; Mantovani, A. Macrophage Plasticity and Polarization: In Vivo Veritas. J. Clin. Investig. 2012, 122, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Garlanda, C.; Dinarello, C.A.; Mantovani, A. The Interleukin-1 Family: Back to the Future. Immunity 2013, 39, 1003–1015. [Google Scholar] [CrossRef]
- Locksley, R.M.; Killeen, N.; Lenardo, M.J. The TNF and TNF Receptor Superfamilies: Integrating Mammalian Biology. Cell 2001, 104, 487–501. [Google Scholar] [CrossRef]
- Samson, M.; Dasgupta, B.; Sammel, A.M.; Salvarani, C.; Pagnoux, C.; Hajj-Ali, R.; Schmidt, W.A.; Cid, M.C. Targeting Interleukin-6 Pathways in Giant Cell Arteritis Management: A Narrative Review of Evidence. Autoimmun. Rev. 2025, 24, 103716. [Google Scholar] [CrossRef]
- Moore, K.W.; de Waal Malefyt, R.; Coffman, R.L.; O’Garra, A. Interleukin-10 and the Interleukin-10 Receptor. Annu. Rev. Immunol. 2001, 19, 683–765. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Huttenlocher, A. Advancing Chemokine Research: The Molecular Function of CXCL8. J. Clin. Investig. 2024, 134, e180984. [Google Scholar] [CrossRef]
- Kumar, V.; Stewart, J.H. Pattern-Recognition Receptors and Immunometabolic Reprogramming: What We Know and What to Explore. J. Innate Immun. 2024, 16, 295–323. [Google Scholar] [CrossRef]
- Chu, Y.-T.; Liao, M.-T.; Tsai, K.-W.; Lu, K.-C.; Hu, W.-C. Interplay of Chemokine Receptors, Toll-like Receptors, and Host Immunological Pathways. Biomedicines 2023, 11, 2384. [Google Scholar] [CrossRef]
- Lani, R.; Thariq, I.M.; Suhaimi, N.S.; Hassandarvish, P.; Abu Bakar, S. From Defense to Offense: Modulating Toll-Like Receptors to Combat Arbovirus Infections. Hum. Vaccines Immunother. 2024, 20, 2306675. [Google Scholar] [CrossRef]
- Kuehnast, T.; Kumpitsch, C.; Mohammadzadeh, R.; Weichhart, T.; Moissl-Eichinger, C.; Heine, H. Exploring the Human Archaeome: Its Relevance for Health and Disease, and Its Complex Interplay with the Human Immune System. FEBS J. 2024, 292, 1316–1329. [Google Scholar] [CrossRef]
- Uzunova, V.D.; Cullinane, C.; Brix, K.; Nau, W.M.; Day, A.I. Toxicity of Cucurbit[7]uril and Cucurbit[8]uril: An Exploratory In Vitro and In Vivo Study. Org. Biomol. Chem. 2010, 8, 2037. [Google Scholar] [CrossRef]
- Hettiarachchi, G.; Nguyen, D.; Wu, J.; Lucas, D.; Ma, D.; Isaacs, L.; Briken, V. Toxicology and Drug Delivery by Cucurbit[n]uril Type Molecular Containers. PLoS ONE 2010, 5, e10514. [Google Scholar] [CrossRef]
- Pashkina, E.; Aktanova, A.; Blinova, E.; Mirzaeva, I.; Kovalenko, E.; Knauer, N.; Ermakov, A.; Kozlov, V. Evaluation of the Immunosafety of Cucurbit[n]uril on Peripheral Blood Mononuclear Cells In Vitro. Molecules 2020, 25, 3388. [Google Scholar] [CrossRef]
- Popova, A.; Kzhyshkowska, J.; Nurgazieva, D.; Goerdt, S.; Gratchev, A. Pro- and Anti-Inflammatory Control of M-CSF-Mediated Macrophage Differentiation. Immunobiology 2011, 216, 164–172. [Google Scholar] [CrossRef]
- Brandenburg, J.G.; Bannwarth, C.; Hansen, A.; Grimme, S. B97-3c: A Revised Low-Cost Variant of the B97-D Density Functional Method. J. Chem. Phys. 2018, 148, 064104. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA Quantum Chemistry Program Package. J. Chem. Phys. 2020, 152, 224108. [Google Scholar] [CrossRef]
- Thomsen, R.; Christensen, M.H. MolDock: A New Technique for High-Accuracy Molecular Docking. J. Med. Chem. 2006, 49, 3315–3321. [Google Scholar] [CrossRef]
Biotarget | Ligand | DS a | Amino Acid Residues That Form Hydrogen Bonds b |
---|---|---|---|
6NIH | CB[6] | −223.0 | Lys142B, Asn163B, Ser165B, Tyr275A |
CB[7] | −244.6 | Ser165A, Ser191A, Lys245B (2) | |
CB[8] | −266.0 | Ser165A, Lys245B, Ser247B, Tyr275B | |
1ZIW | CB[6] | −217.1 | His359 (2) |
CB[7] | −237.8 | His359 (2) | |
CB[8] | −250.8 | Asn229, Ser254, Ser256, Ser282, Tyr283, Tyr326 (2), Asn328 | |
5NAO | CB[6] | −189.4 | Ser15 |
CB[7] | −203.4 | Ala26 | |
CB[8] | −211.2 | Ser18 | |
8AR2 | CB[6] | −227.2 | Thr659 |
CB[7] | −230.1 | Thr656, Thr659 (2) | |
CB[8] | −235.2 | Thr656, Thr659 | |
3W3G (both protomers) | CB[6] | −231.4 | His593B, Arg619B, Arg650B (3) |
CB[7] | −241.8 | Arg619B (2), Arg650B (3) | |
CB[8] | −243.1 | Tyr563B, His593B, Asn595B, Arg650B (2) | |
3W3G (one protomer) | CB[6] | −242.0 | Asp462A, Ser465A, Arg472A |
CB[7] | −272.5 | Asn262A (2), Arg375A (2), Arg472A (3) | |
CB[8] | −277.7 | Asn262A, Asn262A, Arg375A (2), Arg472A (3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhautikova, S.B.; Abdykhanova, N.N.; Fedorishin, D.A.; Shapovalova, Y.G.; Khlebnikov, A.I.; Bakibaev, A.A.; Kurzina, I.A.; Kabieva, S.K.; Boranbay, N.; Zhumanazarova, G.M. Immunotoxicity Study of Cucurbit[n]urils (n = 6, 7, 8) and Modeling of Interaction with Some Monocyte Receptors by a Molecular Docking Method. Molecules 2025, 30, 2249. https://doi.org/10.3390/molecules30102249
Zhautikova SB, Abdykhanova NN, Fedorishin DA, Shapovalova YG, Khlebnikov AI, Bakibaev AA, Kurzina IA, Kabieva SK, Boranbay N, Zhumanazarova GM. Immunotoxicity Study of Cucurbit[n]urils (n = 6, 7, 8) and Modeling of Interaction with Some Monocyte Receptors by a Molecular Docking Method. Molecules. 2025; 30(10):2249. https://doi.org/10.3390/molecules30102249
Chicago/Turabian StyleZhautikova, Saule B., Nursipat N. Abdykhanova, Dmitry A. Fedorishin, Yelena G. Shapovalova, Andrei I. Khlebnikov, Abdigali A. Bakibaev, Irina A. Kurzina, Saule K. Kabieva, Nazerke Boranbay, and Gaziza M. Zhumanazarova. 2025. "Immunotoxicity Study of Cucurbit[n]urils (n = 6, 7, 8) and Modeling of Interaction with Some Monocyte Receptors by a Molecular Docking Method" Molecules 30, no. 10: 2249. https://doi.org/10.3390/molecules30102249
APA StyleZhautikova, S. B., Abdykhanova, N. N., Fedorishin, D. A., Shapovalova, Y. G., Khlebnikov, A. I., Bakibaev, A. A., Kurzina, I. A., Kabieva, S. K., Boranbay, N., & Zhumanazarova, G. M. (2025). Immunotoxicity Study of Cucurbit[n]urils (n = 6, 7, 8) and Modeling of Interaction with Some Monocyte Receptors by a Molecular Docking Method. Molecules, 30(10), 2249. https://doi.org/10.3390/molecules30102249