Immobilized Copper Complexes on Coal-Bearing Kaolin for Catalyzing Allylic Ester Synthesis via C(sp3)–H Bond Activation
Abstract
:1. Introduction
2. Results and Discussion
- Path 1: Oxidation of the cyclohexyl radical via single-electron transfer, yielding a carbocation intermediate, followed by deprotonation.
- Path 2: HAT-driven direct dehydrogenation by tert-butyl radicals to form cyclohexene.
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shulpin, G.B. C–H Functionalization: Thoroughly Tuning Ligands at a Metal ion, a Chemist can Greatly. Enhance Catalyst’s Activity and Selectivity. Dalton Trans. 2013, 42, 12794–12818. [Google Scholar] [CrossRef]
- Nakamura, A.; Nakada, M. Allylic oxidations in natural product synthesis. Synthesis 2013, 45, 1421–1451. [Google Scholar]
- Uyeda, C.; Rötheli, A.R.; Jacobsen, E.N. Catalytic enantioselective Claisen rearrangements of O-allyl β-ketoesters. Angew. Chem. Intl. Ed. 2010, 49, 9753. [Google Scholar] [CrossRef] [PubMed]
- Kirsch, S.F.; Overman, L.E. Catalytic asymmetric synthesis of chiral allylic esters. J. Am. Chem. Soc. 2005, 127, 2866–2867. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, M.C.; Purser, S.; Gouverneur, V. The chemistry of propargylic and allylic fluorides. Chem. Rev. 2008, 108, 1943–1981. [Google Scholar] [CrossRef]
- Atmaca, U.; Kaya, R.; Karaman, H.S. Synthesis of oxazolidinone from enantiomerically enriched allylic alcohols and determination of their molecular docking and biologic activities. Bioorg. Chem. 2019, 88, 102980. [Google Scholar] [CrossRef]
- Ren, T.L.; Xu, B.H.; Mahmood, S. Cobalt-catalyzed oxidative esterification of allylic/benzylic C (sp3)-H bonds. Tetrahedron 2017, 73, 2943–2948. [Google Scholar] [CrossRef]
- Ankisetty, S.; ElSohly, H.N.; Li, X.C. Aromatic Constituents of Uvaria Grandiflora. J. Nat. Prod. 2006, 69, 692–694. [Google Scholar] [CrossRef]
- Guengerich, F.P.; Yoshimoto, F.K. Formation and Cleavage of C–C Bonds by Enzymatic Oxidation–Reduction Reactions. Chem. Rev. 2018, 118, 6573–6655. [Google Scholar] [CrossRef]
- Xiong, M.F.; Ali, A.; Akram, W. Copper porphyrin as efficient catalysts for esterification of allyl sp3 C–H bond with carboxylic acid. Catal. Commun. 2019, 125, 93–97. [Google Scholar] [CrossRef]
- Krylov, I.B.; Vil, V.A.; Terent’ev, A.O. Cross-dehydrogenative coupling for the intermolecular C–O bond formation. Beilstein J. Org. Chem. 2015, 11, 92–146. [Google Scholar] [CrossRef] [PubMed]
- Shan, Z.W.; Chen, X.Y.; Zhang, H. Copper Porphyrin Catalyzed C (sp3)–H Activation via Cross-Dehydrogenative Coupling: Facile Transformation of Aldehydes to Esters. Synlett 2022, 33, 1075–1082. [Google Scholar]
- Tran, B.L.; Driess, M.; Hartwig, J.F. Copper-catalyzed oxidative dehydrogenative carboxylation of unactivated alkanes to allylic esters via alkenes. J. Am. Chem. Soc. 2014, 136, 17292–17301. [Google Scholar] [CrossRef]
- Chen, X.Y.; Yang, S.; Ren, B.P. Copper porphyrin-catalyzed cross dehydrogenative coupling of alkanes with carboxylic acids: Esterification and decarboxylation dual pathway. Tetrahedron 2021, 96, 132377. [Google Scholar] [CrossRef]
- Detellier, C. Functional Kaolinite. Chem. Rec. 2018, 18, 868–877. [Google Scholar] [CrossRef] [PubMed]
- Bao, U.; Muschin, T.; Bao, A. FeNP-loaded coal-bearing kaolin catalysts for the direct esterification of benzoic acid with cyclic ether via C (sp3)-H bond activation. Green Chem. Lett. Rev. 2021, 14, 565–577. [Google Scholar] [CrossRef]
- Niu, S.; Xie, X.; Wang, Z. Enhanced removal performance for Congo red by coal-series kaolin with acid treatment. Environ. Technol. 2021, 42, 1472–1481. [Google Scholar] [CrossRef]
- Yang, P.; Bao, Y.S. Palladium Nanoparticles Supported on Organofunctionalized Kaolin as an Efficient Heterogeneous Catalyst for Directed C–H Functionalization of Arylpyrazoles. RSC Adv. 2017, 7, 53878–53886. [Google Scholar] [CrossRef]
- Muschin, T.; Duo, X.; Bao, U.; Zulchin, H.; Agula, B. Environmentally Friendly Treatment of Coal-Bearing Kaolin by Polyhydroxy-Iron for Anionic Dye Removal. ChemistrySelect 2019, 4, 13810–13816. [Google Scholar] [CrossRef]
- Muschin, T.; Zulchin, H.; Jia, M. Adsorption Behavior of Polyhydroxy-Iron-Modified Coal-Bearing Kaolin for Fluoride Removal. ChemistrySelect 2021, 6, 3075–3083. [Google Scholar] [CrossRef]
- Su, D.; Muschin, T.; Wu, Y. Direct esterification of allylic C (sp3)–H via iron nanoparticle–loaded kaolin-catalyzed cross dehydrogenative coupling. Green Chem. Lett. Rev. 2024, 17, 2315130. [Google Scholar] [CrossRef]
- Wang, C.Y.; Song, R.J.; Wei, W.T. Copper-catalyzed oxidative coupling of acids with alkanes involving dehydrogenation: Facile access to allylic esters and alkylalkenes. Chem. Commun. 2015, 51, 2361–2363. [Google Scholar] [CrossRef] [PubMed]
- Mondal, R.; Chakraborty, G.; van Vliet, K.M. Copper-catalyzed oxidative dehydrogenative functionalization of alkanes to allylic esters. Inorg. Chim. Acta. 2020, 500, 119190. [Google Scholar] [CrossRef]
- Kunchur, H.S.; Sonawane, S.C.; Saini, P. Copper (I) Complexes of Amide Functionalized Bisphosphine: Proximity Enhanced Metal–Ligand Cooperativity and Its Catalytic Advantage in C (sp3)–H Bond Activation of Unactivated Cycloalkanes in Dehydrogenative Carboxylation Reactions. Inorg. Chem. 2023, 62, 19856–19870. [Google Scholar] [CrossRef]
- Wan, Q.T.; Meng, Y.L.; Shuang, Y. Copper Corrole as an Efficient Catalyst for Esterification of Allylic C (sp3)–H Bonds with Carboxylic Acids. Chin. J. Org. Chem. 2021, 41, 2875. [Google Scholar]
Entry | Sample | Cu (wt%) | SBET (m2/g) |
---|---|---|---|
1 | CK | 0 | 16 |
2 | NH2-Ph@CK | 0 | 11 |
3 | 3%Cu/NH2-Ph@CK | 2.9 | 15 |
4 | Recycle once 3%Cu/NH2-Ph@CK | 2.7 | 25 |
5 | Recycle five 3%Cu/NH2-Ph@CK | 2.5 | 30 |
Entry | Catalyst (mol%) | Yield (%) b |
---|---|---|
1 | – | trace |
2 | CK (10) | trace |
3 | NH2@CK (10) | trace |
4 | Ph@CK (10) | trace |
5 | NH2-Ph@CK (10) | trace |
6 | 3%Cu@CK (10) | 58 |
7 | 3%Cu/NH2@CK (10) | 58 |
8 | 3%Cu/Ph@CK (10) | 59 |
9 | 3%Cu/NH2-Ph@CK (1) | 56 |
10 | 3%Cu/NH2-Ph@CK (3) | 58 |
11 | 3%Cu/NH2-Ph@CK (5) | 58 |
12 | 3%Cu/NH2-Ph@CK (7) | 59 |
13 | 3%Cu/NH2-Ph@CK (10) | 65 |
14 | 1%Cu/NH2-Ph@CK (10) | 57 |
15 | 2%Cu/NH2-Ph@CK (10) | 59 |
16 | 5%Cu/NH2-Ph@CK (10) | 54 |
17 | 7%Cu/NH2-Ph@CK (10) | 53 |
18 | CuCl2 (10) | 48 |
19 | CuCl (10) | 55 |
20 | CuO (10) | 65 |
21 | CuI (10) | 62 |
Entry | Catalyst | Oxidant (Equiv.) | Yield (%) b |
---|---|---|---|
1 | 3%Cu/NH2-Ph@CK | – | N.D. |
2 | 3%Cu/NH2-Ph@CK | DTBP (1) | 8 |
3 | 3%Cu/NH2-Ph@CK | DTBP (3) | 29 |
4 | 3%Cu/NH2-Ph@CK | DTBP (5) | 65 |
5 c | 3%Cu/NH2-Ph@CK | DTBP (5) | 71 |
6 d | 3%Cu/NH2-Ph@CK | DTBP (5) | 52 |
7 | 3%Cu/NH2-Ph@CK | DTBP (10) | 67 |
8 | 3%Cu/NH2-Ph@CK | DTBP (15) | 67 |
9 | 3%Cu/NH2-Ph@CK | DTBP (20) | 68 |
10 | 3%Cu/NH2-Ph@CK | TBHP (in H2O) (5) | 14 |
11 | 3%Cu/NH2-Ph@CK | TBHP (in nonane) (5) | 16 |
12 | 3%Cu/NH2-Ph@CK | H2O2 (5) | N.D. |
13 | 3%Cu/NH2-Ph@CK | K2S2O8 (5) | N.D. |
14 | 3%Cu/NH2-Ph@CK | CH3COOOH (5) | N.D. |
15 | 3%Cu/NH2-Ph@CK | 1,4-Benzoquine (5) | N.D. |
Entry | Time/h | Yield/% b |
---|---|---|
1 | 4 | 30 |
2 | 8 | 31 |
1a, 71% | 2a, 50% | 3a, 60% | 4a, 65% |
5a, 54% | 6a, 60% | 7a, 64% | 8a, 47% |
9a, 63% | 10a, 48% | 11a, 58% | 12a, 56% |
13a, 54% | 14a, 61% | 15a, 66% | 16a, 58% |
17a, 61% | 18a, 64% | 19a, 50% | 20a, 64% |
21a, 36% | 22a, 54% | 23a, 50% | 24a, 43% |
25a, 65% | 26a, 20% | 27a, N.D. | 28a, N.D. |
29a, 20% | 30a, 42% | 31a, N.D. | 32a, N.D. |
1b, 46% | 1c, 51% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.-L.; Su, D.; Wang, H.; Muschin, T.; Wu, Y.; Bao, Y.-S.; Zhu, H.-Y. Immobilized Copper Complexes on Coal-Bearing Kaolin for Catalyzing Allylic Ester Synthesis via C(sp3)–H Bond Activation. Molecules 2025, 30, 2232. https://doi.org/10.3390/molecules30102232
Zhang C-L, Su D, Wang H, Muschin T, Wu Y, Bao Y-S, Zhu H-Y. Immobilized Copper Complexes on Coal-Bearing Kaolin for Catalyzing Allylic Ester Synthesis via C(sp3)–H Bond Activation. Molecules. 2025; 30(10):2232. https://doi.org/10.3390/molecules30102232
Chicago/Turabian StyleZhang, Chun-Ling, Dao Su, Habuer Wang, Tegshi Muschin, Yun Wu, Yong-Sheng Bao, and Huai-Yong Zhu. 2025. "Immobilized Copper Complexes on Coal-Bearing Kaolin for Catalyzing Allylic Ester Synthesis via C(sp3)–H Bond Activation" Molecules 30, no. 10: 2232. https://doi.org/10.3390/molecules30102232
APA StyleZhang, C.-L., Su, D., Wang, H., Muschin, T., Wu, Y., Bao, Y.-S., & Zhu, H.-Y. (2025). Immobilized Copper Complexes on Coal-Bearing Kaolin for Catalyzing Allylic Ester Synthesis via C(sp3)–H Bond Activation. Molecules, 30(10), 2232. https://doi.org/10.3390/molecules30102232