The Impact of Perfluoroalkyl Groups on Phosphane Basicity
Abstract
:1. Introduction
2. Results and Discussion
3. Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Whitehurst, W.G.; Kim, J.; Koenig, S.G.; Chirik, P.J. Three-Component Coupling of Arenes, Ethylene, and Alkynes Catalyzed by a Cationic Bis(Phosphine) Cobalt Complex: Intercepting Metallacyclopentenes for C–H Functionalization. J. Am. Chem. Soc. 2022, 144, 4530–4540. [Google Scholar] [CrossRef] [PubMed]
- Fujita, S.; Yuzawa, K.; Bhanage, B.M.; Ikushima, Y.; Arai, M. Palladium-Catalyzed Heck Coupling Reactions Using Different Fluorinated Phosphine Ligands in Compressed Carbon Dioxide and Conventional Organic Solvents. J. Mol. Catal. A Chem. 2002, 180, 35–42. [Google Scholar] [CrossRef]
- Murai, M.; Takeshima, H.; Morita, H.; Kuninobu, Y.; Takai, K. Acceleration Effects of Phosphine Ligands on the Rhodium-Catalyzed Dehydrogenative Silylation and Germylation of Unactivated C(Sp3)–H Bonds. J. Org. Chem. 2015, 80, 5407–5414. [Google Scholar] [CrossRef]
- Pikma, M.-L.; Ilisson, M.; Zalite, R.; Lavogina, D.; Haljasorg, T.; Mäeorg, U. The Effect of Substituents on Carbon–Carbon Double Bond Isomerization in Heterocyclic Hydrazine Derivatives. Chem. Heterocycl. Compd. 2022, 58, 206–216. [Google Scholar] [CrossRef]
- Brisdon, A.K.; Herbert, C.J. Fluoroalkyl-Containing Phosphines. Coord. Chem. Rev. 2013, 257, 880–901. [Google Scholar] [CrossRef]
- Brisdon, A.K.; Herbert, C.J. A Generic Route to Fluoroalkyl-Containing Phosphanes. Chem. Commun. 2009, 6658–6660. [Google Scholar] [CrossRef]
- Choate, M.M.; Baughman, R.G.; Phelps, J.E.; Peters, R.G. Synthesis, Characterization, and Coordination Chemistry of Several Novel Electroneutral Phosphane Ligands. J. Organomet. Chem 2011, 696, 956–962. [Google Scholar] [CrossRef]
- Murphy-Jolly, M.B.; Lewis, L.C.; Caffyn, A.J.M. The Synthesis of Tris(Perfluoroalkyl)Phosphines. Chem. Commun. 2005, 4479–4480. [Google Scholar] [CrossRef]
- Zhang, S.; Fan, W.; Li, S. Synthesis and Applications of Trifluoromethylphosphines. Eur. J. Org. Chem. 2024, 27, e202301169. [Google Scholar] [CrossRef]
- Hayes, S.A.; Berger, R.J.F.; Neumann, B.; Mitzel, N.W.; Bader, J.; Hoge, B. Molecular Structure of Tris(Pentafluoroethyl)Phosphane P(C2F5)3. Dalton Trans. 2010, 39, 5630–5636. [Google Scholar] [CrossRef]
- Beg, M.A.A.; Clark, H.C. Chemistry of the Trifluoromethyl Group: Part i. Complex Formation by Phosphines Containing the Trifluoromethyl Group. Can. J. Chem. 1960, 38, 119–124. [Google Scholar] [CrossRef]
- Kawaguchi, S.; Saga, Y.; Sato, Y.; Minamida, Y.; Nomoto, A.; Ogawa, A. P-Fluorous Phosphines as Electron-Poor/Fluorous Hybrid Functional Ligands for Precious Metal Catalysts: Synthesis of Rh(I), Ir(I), Pt(II), and Au(I) Complexes Bearing P-Fluorous Phosphine Ligands. Inorganics 2017, 5, 5. [Google Scholar] [CrossRef]
- Hope, E.G.; Simayi, R.; Stuart, A.M. Fluorous Organometallic Chemistry. In Organometallic Fluorine Chemistry; Braun, T., Hughes, R.P., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 217–240. ISBN 978-3-319-22096-3. [Google Scholar]
- Bader, J.; Maier, A.F.G.; Paradies, J.; Hoge, B. Perfluoroalkylated Main-Group Element Lewis Acids as Catalysts in Transfer Hydrogenation. Eur. J. Inorg. Chem. 2017, 2017, 3053–3056. [Google Scholar] [CrossRef]
- Altinel, H.; Avsar, G.; Guzel, B. Fluorinated Rhodium-Phosphine Complexes as Efficient Homogeneous Catalysts for the Hydrogenation of Styrene in Supercritical Carbon Dioxide. Transit. Met. Chem. 2009, 34, 331–335. [Google Scholar] [CrossRef]
- Horváth, I.T.; Kiss, G.; Cook, R.A.; Bond, J.E.; Stevens, P.A.; Rábai, J.; Mozeleski, E.J. Molecular Engineering in Homogeneous Catalysis: One-Phase Catalysis Coupled with Biphase Catalyst Separation. The Fluorous-Soluble HRh(CO){P[CH2CH2(CF2)5CF3]3}3 Hydroformylation System. J. Am. Chem. Soc. 1998, 120, 3133–3143. [Google Scholar] [CrossRef]
- Friesen, C.M.; Montgomery, C.D.; Temple, S.A.J.U. The First Fluorous Biphase Hydrogenation Catalyst Incorporating a Perfluoropolyalkylether: [RhCl(PPh2(C6H4C(O)OCH2CF(CF3)(OCF2CF(CF3))nF))3] with n = 4–9. J. Fluor. Chem. 2012, 144, 24–32. [Google Scholar] [CrossRef]
- Altinel, H.; Avsar, G.; Yilmaz, M.K.; Guzel, B. New Perfluorinated Rhodium–BINAP Catalysts and Hydrogenation of Styrene in Supercritical CO2. J. Supercrit. Fluids. 2009, 51, 202–208. [Google Scholar] [CrossRef]
- Begum, F.; Ikram, M.; Twamley, B.; Baker, R.J. Perfluorinated Phosphine and Hybrid P–O Ligands for Pd Catalysed C–C Bond Forming Reactions in Solution and on Teflon Supports. RSC Adv. 2019, 9, 28936–28945. [Google Scholar] [CrossRef]
- Matsubara, K.; Fujii, T.; Hosokawa, R.; Inatomi, T.; Yamada, Y.; Koga, Y. Fluorine-Substituted Arylphosphine for an NHC-Ni(I) System, Air-Stable in a Solid State but Catalytically Active in Solution. Molecules 2019, 24, 3222. [Google Scholar] [CrossRef]
- Ferguson, D.M.; Bour, J.R.; Canty, A.J.; Kampf, J.W.; Sanford, M.S. Stoichiometric and Catalytic Aryl–Perfluoroalkyl Coupling at Tri-Tert-Butylphosphine Palladium(II) Complexes. J. Am. Chem. Soc. 2017, 139, 11662–11665. [Google Scholar] [CrossRef]
- Burton, D.J.; Lu, L. Fluorinated Organometallic Compounds. In Organofluorine Chemistry: Techniques and Synthons; Chambers, R.D., Ed.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 45–89. ISBN 978-3-540-69197-6. [Google Scholar]
- Duan, L.; Nesterov, V.; Runyon, J.W.; Schnakenburg, G.; Iii, A.J.A.; Streubel, R. Synthesis of Stabilized Phosphinidenoid Complexes Using Weakly Coordinating Cations1. Aust. J. Chem. 2011, 64, 1583–1586. [Google Scholar] [CrossRef]
- Bennett, J.A.; Hope, E.G.; Singh, K.; Stuart, A.M. Synthesis and Coordination Chemistry of Fluorinated Phosphonic Acids. J. Fluor. Chem. 2009, 130, 615–620. [Google Scholar] [CrossRef]
- Wehbi, M.; Mehdi, A.; Negrell, C.; David, G.; Alaaeddine, A.; Améduri, B. Phosphorus-Containing Fluoropolymers: State of the Art and Applications. ACS Appl. Mater. Interfaces 2020, 12, 38–59. [Google Scholar] [CrossRef] [PubMed]
- Pikma, M.-L.; Tshepelevitsh, S.; Selberg, S.; Kaljurand, I.; Leito, I.; Kütt, A. PKaH Values and θ H Angles of Phosphanes to Predict Their Electronic and Steric Parameters. Dalton Trans. 2024, 53, 14226–14236. [Google Scholar] [CrossRef]
- Klamt, A. The COSMO and COSMO-RS Solvation Models. Comput. Mol. Sci. 2018, 8, e1338. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar] [CrossRef]
- Barone, V.; Cossi, M. Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J. Phys. Chem. A 1998, 102, 1995–2001. [Google Scholar] [CrossRef]
- Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model. J. Comput. Chem. 2003, 24, 669–681. [Google Scholar] [CrossRef]
- Foresman, J.B.; Keith, T.A.; Wiberg, K.B.; Snoonian, J.; Frisch, M.J. Solvent Effects. 5. Influence of Cavity Shape, Truncation of Electrostatics, and Electron Correlation on Ab Initio Reaction Field Calculations. J. Phys. Chem. 1996, 100, 16098–16104. [Google Scholar] [CrossRef]
- Cancès, E.; Mennucci, B.; Tomasi, J. A New Integral Equation Formalism for the Polarizable Continuum Model: Theoretical Background and Applications to Isotropic and Anisotropic Dielectrics. J. Chem. Phys. 1997, 107, 3032–3041. [Google Scholar] [CrossRef]
- Mennucci, B.; Tomasi, J. Continuum Solvation Models: A New Approach to the Problem of Solute’s Charge Distribution and Cavity Boundaries. J. Chem. Phys. 1997, 106, 5151–5158. [Google Scholar] [CrossRef]
- Mennucci, B.; Cancès, E.; Tomasi, J. Evaluation of Solvent Effects in Isotropic and Anisotropic Dielectrics and in Ionic Solutions with a Unified Integral Equation Method: Theoretical Bases, Computational Implementation, and Numerical Applications. J. Phys. Chem. B 1997, 101, 10506–10517. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cancès, E. The IEF Version of the PCM Solvation Method: An Overview of a New Method Addressed to Study Molecular Solutes at the QM Ab Initio Level. J. Mol. Struct. THEOCHEM. 1999, 464, 211–226. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Marenich, A.V.; Olson, R.M.; Kelly, C.P.; Cramer, C.J.; Truhlar, D.G. Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges. J. Chem. Theory Comput. 2007, 3, 2011–2033. [Google Scholar] [CrossRef]
- Chipman, D.M. Charge Penetration in Dielectric Models of Solvation. J. Chem. Phys. 1997, 106, 10194–10206. [Google Scholar] [CrossRef]
- Zhan, C.-G.; Bentley, J.; Chipman, D.M. Volume Polarization in Reaction Field Theory. J. Chem. Phys. 1998, 108, 177–192. [Google Scholar] [CrossRef]
- Chipman, D.M. New Formulation and Implementation for Volume Polarization in Dielectric Continuum Theory. J. Chem. Phys. 2006, 124, 224111. [Google Scholar] [CrossRef]
- Kaupmees, K.; Trummal, A.; Leito, I. Basicities of Strong Bases in Water: A Computational Study. Croat. Chem. Acta 2014, 87, 385–395. [Google Scholar] [CrossRef]
- Li, J.-N.; Fu, Y.; Liu, L.; Guo, Q.-X. First-Principle Predictions of Basicity of Organic Amines and Phosphines in Acetonitrile. Tetrahedron 2006, 62, 11801–11813. [Google Scholar] [CrossRef]
- Ding, F.; Smith, J.M.; Wang, H. First-Principles Calculation of pKa Values for Organic Acids in Nonaqueous Solution. J. Org. Chem. 2009, 74, 2679–2691. [Google Scholar] [CrossRef] [PubMed]
- Pliego, J.R.; Riveros, J.M. Theoretical Calculation of pKa Using the Cluster−Continuum Model. J. Phys. Chem. A 2002, 106, 7434–7439. [Google Scholar] [CrossRef]
- Tolman, C.A. Steric Effects of Phosphorus Ligands in Organometallic Chemistry and Homogeneous Catalysis. Chem. Rev. 1977, 77, 313–348. [Google Scholar] [CrossRef]
- Gusev, D.G. Donor Properties of a Series of Two-Electron Ligands. Organometallics 2009, 28, 763–770. [Google Scholar] [CrossRef]
- Haav, K.; Saame, J.; Kütt, A.; Leito, I. Basicity of Phosphanes and Diphosphanes in Acetonitrile. Eur. J. Org. Chem. 2012, 2012, 2167–2172. [Google Scholar] [CrossRef]
- Tshepelevitsh, S.; Kütt, A.; Lõkov, M.; Kaljurand, I.; Saame, J.; Heering, A.; Plieger, P.G.; Vianello, R.; Leito, I. On the Basicity of Organic Bases in Different Media. Eur. J. Org. Chem. 2019, 2019, 6735–6748. [Google Scholar] [CrossRef]
- Greb, L.; Tussing, S.; Schirmer, B.; Oña-Burgos, P.; Kaupmees, K.; Lõkov, M.; Leito, I.; Grimme, S.; Paradies, J. Electronic Effects of Triarylphosphines in Metal-Free Hydrogen Activation: A Kinetic and Computational Study. Chem. Sci. 2013, 4, 2788–2796. [Google Scholar] [CrossRef]
- Mehlmann, P.; Mück-Lichtenfeld, C.; Tan, T.T.Y.; Dielmann, F. Tris(Imidazolin-2-Ylidenamino)Phosphine: A Crystalline Phosphorus(III) Superbase That Splits Carbon Dioxide. Chem. Eur. J. 2017, 23, 5929–5933. [Google Scholar] [CrossRef]
- Himmel, D.; Goll, S.K.; Leito, I.; Krossing, I. Anchor Points for the Unified Brønsted Acidity Scale: The rCCC Model for the Calculation of Standard Gibbs Energies of Proton Solvation in Eleven Representative Liquid Media. Chem. Eur. J. 2011, 17, 5808–5826. [Google Scholar] [CrossRef]
- Pikma, M.-L.; Lõkov, M.; Tshepelevitsh, S.; Saame, J.; Haljasorg, T.; Toom, L.; Selberg, S.; Leito, I.; Kütt, A. Tris(Benzophenoneimino)Phosphane and Related Compounds. Eur. J. Org. Chem. 2023, 26, e202300453. [Google Scholar] [CrossRef]
- Malloum, A.; Conradie, J. Solvation Free Energy of the Proton in Acetonitrile. J. Mol. Liq. 2021, 335, 116032. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Rev. C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- TURBOMOLE V7.8 2023, a Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, Since 2007. Available online: https://www.turbomole.org/turbomole/release-notes-turbomole-7-8/ (accessed on 16 May 2025).
- BIOVIA. Dassault Systèmes, TmoleX 2024; BIOVIA: San Diego, CA, USA, 2024. [Google Scholar]
- BIOVIA. Dassault Systèmes, COSMOconfX 2024; BIOVIA: San Diego, CA, USA, 2024. [Google Scholar]
- BIOVIA. Dassault Systèmes, COSMOtherm 2025; BIOVIA: San Diego, CA, USA, 2025. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025. [Google Scholar]
- University of Tartu “UT Rocket”. Share.Neic.No. Available online: https://doi.org/10.23673/PH6N-0144 (accessed on 16 May 2025).
- Pikma, M.-L.; Trummal, A.; Leito, I.; Kütt, A. The Impact of Perfluoroalkyl Groups on Phosphane Basicity. 2025. Available online: https://doi.org/10.23673/re-508 (accessed on 16 May 2025).
No | Compound | pKaH(MeCN) | GB [kcal·mol−1] | TEP [cm−1] | θCPC [°] b | θH [°] b | θTolman [°] | ||
---|---|---|---|---|---|---|---|---|---|
Experimental | SMD | COSMO-RS a | |||||||
1 | PMe3 | 15.48 c | 18.5 | 15.6 f | 220.3 | 2064.1 | 110.4 | 163 | 118 |
2 | P(2-F-C6H4)Ph2 | 6.11 d | 6.3 | 5.9 f | 221.1 | 110.8 | 220 | ||
3 | P(2,6-F2-C6H3)Ph2 | 5.17 d | 5.17 e | 5.5 f | 220.7 | 111.4 | 221 | ||
4 | P(2-F-C6H4)2Ph | 4.56 d | 4.6 | 4.5 f | 219.4 | 110.5 | 226 | ||
5 | P(CF3)Me2 | 3.8 | 1.7 | 196.5 | 109.8 | 169 | 124 | ||
6 | P(C6F5)Ph2 | 2.54 d | 2.7 | 2.7 f | 212.7 | 2074.8 | 111.6 | 222 | 158 |
7 | P(2,6-F2-C6H3)2Ph | 2.5 d | 2.4 | 2.5 f | 217.0 | 111.7 | 232 | ||
8 | P(C6F5)3 | −8 | −7 f | 190.4 | 2090.9 | 112.6 g | 256 g | 184 | |
9 | P(CF3)2Me | −11 | −13 | 174.4 | 109.0 | 174 | |||
10 | PF3 | −24 | −23 | 146.2 | 2110.8 | 108.0 | 149 | 104 | |
11 | P(CF3)3 | −25 | −27 | 156.4 | 2104.4 | 109.0 g | 185 g | 137 | |
12 | P(C2F5)3 | −29 | −27 | 158.8 | 2102.9 | 109.0 | 217 | 171 | |
13 | P(C3F7)3 | −28 | −27 | 162.1 | 110.2 | 227 | |||
14 | P(C4F9)3 | −32 | −28 | 159.8 | 110.3 | 215 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pikma, M.-L.; Trummal, A.; Leito, I.; Kütt, A. The Impact of Perfluoroalkyl Groups on Phosphane Basicity. Molecules 2025, 30, 2220. https://doi.org/10.3390/molecules30102220
Pikma M-L, Trummal A, Leito I, Kütt A. The Impact of Perfluoroalkyl Groups on Phosphane Basicity. Molecules. 2025; 30(10):2220. https://doi.org/10.3390/molecules30102220
Chicago/Turabian StylePikma, Marta-Lisette, Aleksander Trummal, Ivo Leito, and Agnes Kütt. 2025. "The Impact of Perfluoroalkyl Groups on Phosphane Basicity" Molecules 30, no. 10: 2220. https://doi.org/10.3390/molecules30102220
APA StylePikma, M.-L., Trummal, A., Leito, I., & Kütt, A. (2025). The Impact of Perfluoroalkyl Groups on Phosphane Basicity. Molecules, 30(10), 2220. https://doi.org/10.3390/molecules30102220