First-Principles Study on the High Spin-Polarized Ferromagnetic Semiconductor of Vanadium-Nitride Monolayer and Its Heterostructures
Abstract
:1. Introduction
2. Results and Discussion
3. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klitzing, K.V. The quantized Hall effect. Rev. Mod. Phys. 1986, 58, 519. [Google Scholar] [CrossRef]
- Haldane, F.D.M. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 1988, 61, 2015–2018. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, A.; Das, K.; Sinha, S.; Adak, P.C.; Deshmukh, M.M.; Agarwal, A. Nonlinear anomalous Hall effects probe topological phase-transitions in twisted double bilayer graphene. 2D Mater. 2022, 9, 045020. [Google Scholar] [CrossRef]
- Ovchinnikov, D.; Huang, X.; Lin, Z.; Fei, Z.Y.; Cai, J.Q.; Song, T.C.; He, M.H.; Jiang, Q.N.; Wang, C.; Li, H.; et al. Intertwined topological and magnetic orders in atomically thin Chern insulator MnBi2Te4. Nano Lett. 2021, 21, 2544–2550. [Google Scholar] [CrossRef]
- Wu, M. Unveiling two-dimensional materials: Properties and applications. 2D Mater. 2017, 4, 021014. [Google Scholar] [CrossRef]
- Zhan, F.Y.; Ning, Z.; Gan, L.Y.; Zheng, B.B.; Fan, J.; Wang, R. Electronic and structural properties in low-dimensional systems. Phys. Rev. B 2022, 105, L081115. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, J.; Liu, J.F.; Xu, H. Magnetoelectric coupling in low-dimensional materials. Appl. Phys. Lett. 2021, 118, 222401. [Google Scholar] [CrossRef]
- Bao, H.; Zhao, B.; Zhang, J.; Yang, X.; Zhou, T.; Yang, Z. Quantum anomalous Hall effect with high Chern numbers in functionalized square-octagon Sb monolayers. 2D Mater. 2023, 10, 035004. [Google Scholar] [CrossRef]
- Chang, C.Z.; Zhang, J.S.; Feng, X.; Shen, J.; Zhang, Z.C.; Guo, M.H.; Li, K.; Ou, Y.B.; Wang, L.L.; Ji, Z.Q.; et al. Experimental observation of the quantum anomalous Hall effect. Science 2013, 340, 167–170. [Google Scholar] [CrossRef]
- Zhou, X.C.; Hang, Y.; Liu, L.R.; Zhang, Z.H.; Guo, W.L. Mechanism of two-dimensional material interactions at the nanoscale. J. Am. Chem. Soc. 2019, 141, 7899–7905. [Google Scholar] [CrossRef]
- Feng, X.; Feng, Y.; Wang, J.; Ou, Y.B.; Hao, Z.Q.; Liu, C.; Zhang, Z.C.; Zhang, L.G.; Lin, C.J.; Liao, J.; et al. Topological surface states in low-dimensional materials. Adv. Mater. 2016, 28, 6386–6390. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, R.; Yoshimi, R.; Kawamura, M.; Mogi, M.; Tsukazaki, A.; Yu, X.Z.; Nakajima, K.; Takahashi, K.S.; Kawasaki, M.; Tokura, Y. Magnetic anisotropy in quantum systems. Appl. Phys. Lett. 2019, 115, 102403. [Google Scholar] [CrossRef]
- Deng, Y.J.; Yu, Y.J.; Shi, M.Z.; Guo, Z.X.; Xu, Z.H.; Wang, J.; Chen, X.H.; Zhang, Y.B. Quantum anomalous Hall effect in intrinsic magnetic topological insulator. Science 2020, 367, 895–900. [Google Scholar] [CrossRef]
- Chen, G.R.; Sharpe, A.L.; Fox, E.J.; Zhang, Y.H.; Wang, S.X.; Jiang, L.L.; Li, B.; Li, H.Y.; Kenji, W.; Takashi, T.; et al. Tunable correlated Chern insulator and ferromagnetism in trilayer graphene. Nature 2020, 579, 56–61. [Google Scholar] [CrossRef]
- Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.S.; Liang, T.; Shi, M.M.; Chen, H.Z. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A.H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439. [Google Scholar] [CrossRef] [PubMed]
- Low, T.; Chaves, A.; Caldwell, J.D.; Kumar, A.; Fang, N.X.; Avouris, P.; Heinz, T.F.; Guinea, F.; Moreno, L.M.; Koppens, F. Polaritons in layered two-dimensional materials. Nat. Mater. 2017, 16, 182–194. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Neto, A.C.; Guinea, F.; Peres, N.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109. [Google Scholar] [CrossRef]
- Zhang, B.W.; Huang, Y.N.; Bao, W.C.; Wang, B.L.; Meng, Q.Q.; Fan, L.L.; Zhang, Q.F. Computational study on the properties of two-dimensional systems. Phys. Chem. Chem. Phys. 2018, 20, 25437–25445. [Google Scholar] [CrossRef]
- Gelhausen, J.; Eschrig, M. Theory of a weak-link superconductor-ferromagnet Josephson structure. Phy. Rev. B 2016, 94, 104502. [Google Scholar] [CrossRef]
- Pomorski, K.; Prokopow, P. Possible existence of field-induced Josephson junctions. Phys. Status Solidi B 2012, 249, 1802–1813. [Google Scholar] [CrossRef]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.R.; Geim, A.K. Fine structure constant defines graphene’s optical transparency. Science 2008, 320, 1308. [Google Scholar] [CrossRef]
- Dai, J.; Wu, X.J.; Yang, J.L.; Zeng, X.C. Two-dimensional silicene: Material properties and device applications. J. Phys. Chem. Lett. 2013, 4, 3484–3488. [Google Scholar] [CrossRef]
- Cai, Y.M.; Chuu, C.P.; Wei, C.M.; Chou, M.Y. Stability and electronic properties of two-dimensional materials: A first-principles study. Phys. Rev. B 2013, 88, 245408. [Google Scholar] [CrossRef]
- Vogt, P.; Padova, P.D.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M.C.; Resta, A.; Ealet, B.; Lay, G.L. Silicene: Compelling experimental evidence for graphene-like two-dimensional silicon. Phys. Rev. Lett. 2012, 108, 155501. [Google Scholar] [CrossRef] [PubMed]
- Li, L.K.; Yu, Y.J.; Ye, G.J.; Ge, Q.Q.; Ou, X.D.; Wu, H.; Feng, D.L.; Chen, X.H.; Zhang, Y.B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.H.; Lyu, Y.X.; Zhang, Y.; Ding, R.; Zheng, B.N.; Yang, Z.B.; Lau, S.P.; Chen, X.H.; Hao, J.H. Ultrafast spin dynamics in two-dimensional magnetic materials. Nat. Mater. 2021, 20, 1203–1209. [Google Scholar] [CrossRef]
- Chen, C.; Yin, Y.L.; Zhang, R.C.; Yuan, Q.H.; Xu, Y.; Zhang, Y.S.; Chen, J.; Zhang, Y.; Li, C.; Wang, J.Y.; et al. Observation of exceptional transport properties in two-dimensional magnetic materials. Nat. Mater. 2023, 22, 717–724. [Google Scholar] [CrossRef]
- Xu, Y.J.; Shi, X.Y.; Zhang, Y.S.; Zhang, H.T.; Zhang, Q.L.; Huang, Z.L.; Xu, X.F.; Guo, J.; Zhang, H.; Sun, L.T.; et al. Emergent electronic properties in van der Waals heterostructures. Nat. Commun. 2020, 11, 1330. [Google Scholar] [CrossRef] [PubMed]
- Reich, E.S. Two-dimensional materials: The next big thing. Nature 2014, 506, 19. [Google Scholar] [PubMed]
- Liu, H.; Neal, A.T.; Zhu, Z.; Luo, Z.; Xu, X.F.; Tománek, D.; Ye, P.D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041. [Google Scholar] [CrossRef] [PubMed]
- Bianco, E.; Butler, S.; Jiang, S.S.; Restrepo, O.D.; Windl, W.; Goldberger, J.E. Stability and electronic properties of single-layer phosphorene. ACS Nano 2013, 7, 4414–4421. [Google Scholar] [CrossRef]
- McGuire, M.A.; Dixit, H.; Cooper, V.R.; Sales, B.C. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem. Mater. 2015, 27, 612–620. [Google Scholar] [CrossRef]
- Li, H.; Ruan, S.C.; Zeng, Y.J. Intrinsic van der Waals magnetic materials from bulk to the 2D limit: New frontiers of spintronics. Adv. Mater. 2019, 31, 1900065. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Lu, Q.S.; Liu, W.Q.; Niu, W.; Sun, J.B.; Cook, J.; Vaninger, M.; Miceli, P.F.; Singh, D.J.; Lian, S.W.; et al. Emergent quantum confinement effects in topological materials. Nat. Commun. 2021, 12, 2492. [Google Scholar] [CrossRef]
- Ou, Y.X.; Yanez, W.; Xiao, R.; Stanley, M.; Ghosh, S.; Zheng, B.Y.; Jiang, W.; Huang, Y.S.; Pillsbury, T.; Richardella, A.; et al. Observation of chiral edge states in a magnetic topological insulator. Nat. Commun. 2022, 13, 2972. [Google Scholar] [CrossRef]
- Gong, C.; Li, L.; Li, Z.L.; Ji, H.W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C.Z.; Wang, Y.; et al. Discovery of Intrinsic Ferromagnetism in Two-Dimensional van der Waals Crystals. Nature 2017, 546, 265–269. [Google Scholar] [CrossRef]
- Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Chem. 2017, 2, 16098. [Google Scholar] [CrossRef]
- Ashton, M.; Trometer, N.; Mathew, K.; Suntivich, J.; Freysoldt, C.; Sinnott, S.B.; Hennig, R.G. Thermodynamic stability of MXenes as a function of surface chemistry and transition metal. J. Phys. Chem. C 2019, 123, 3180–3187. [Google Scholar] [CrossRef]
- Hu, J.Q.; Xu, B.; Ou-yang, C.Y.; Yang, S.Y.A.; Yao, Y.G. Investigations on V2C and V2CX2 (X = F, OH) Monolayer as a Promising Anode Material for Li Ion Batteries from First-Principles Calculations. J. Phys. Chem. C 2014, 118, 24274–24281. [Google Scholar] [CrossRef]
- Bonilla, M.; Kolekar, S.; Ma, Y.J.; Diaz, H.C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H.R.; Phan, M.H.; Batzill, M. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 2018, 13, 289–293. [Google Scholar] [CrossRef]
- Lei, Z.; Sathish, C.I.; Geng, X.; Guan, X.; Liu, Y.; Wang, L.; Qiao, L.; Vinu, A.; Yi, J. Manipulation of ferromagnetism in intrinsic two-dimensional magnetic and nonmagnetic materials. Matter 2022, 5, 4212–4273. [Google Scholar] [CrossRef]
- Kutschej, K.; Rashkova, B.; Shen, J.; Edwards, D.; Mitterer, C.; Dehm, G. Influence of Bias Voltage on the Tribological Behavior of Sputtered TiN Coatings. Thin Solid Film. 2007, 516, 369–373. [Google Scholar] [CrossRef]
- Anand, S.; Thekeppat, K.; Waghmare, U.V. Thermal stability and electronic properties of phosphorene with adsorbed alkali metals. Nano Lett. 2016, 16, 126–131. [Google Scholar] [CrossRef]
- Ghosh, A.; Kar, M.; Majumder, C.; Sarkar, P. Thermoelectric properties of 2D transition metal chalcogenides: A first-principles study. Mater. Sci. Eng. B 2021, 272, 115379. [Google Scholar] [CrossRef]
- Zhang, B.; Lu, P.; Tabrizian, R.; Feng, P.X.-L.; Wu, Y. 2D magnetic heterostructures: Spintronics and quantum future. npj Spintronics. 2024, 2, 6. [Google Scholar] [CrossRef]
- Glaser, A.; Surnev, S.; Ramsey, M.G.; Lazar, P.; Redinger, J.; Podloucky, R.; Netzer, F.P. The interaction of oxygen with Pd(111): A comprehensive study. Surf. Sci. 2007, 601, 4817–4823. [Google Scholar] [CrossRef]
- Kuklin, A.V.; Shostak, S.A.; Kuzubov, A.A. Two-dimensional lattices of VN: Emergence of ferromagnetism and half-metallicity on nanoscale. J. Phys. Chem. Lett. 2018, 9, 1422–1428. [Google Scholar] [CrossRef]
- Ke, C.; Wu, Y.; Yang, W.; Wu, Z.; Zhang, C.; Li, X.; Kang, J. Large and controllable spin-valley splitting in two-dimensional WS2/h−VN heterostructure. Phys. Rev. B 2019, 100, 195435. [Google Scholar] [CrossRef]
- Bian, X.; Lian, S.; Fu, B.; An, Y. Tunable spin-valley splitting and magnetic anisotropy of two-dimensional 2H-VS2/h-VN heterostructure. J. Magn. Magn. Mater. 2022, 546, 168867. [Google Scholar] [CrossRef]
- Şahin, H.; Cahangirov, S.; Topsakal, M.; Bekaroglu, E.; Akturk, E.; Senger, R.T.; Ciraci, S. First principles study of graphene oxide: A detailed investigation of structural, electronic and optical properties. Phys. Rev. B 2009, 80, 155453. [Google Scholar] [CrossRef]
- Bader, R. Atoms in molecules: A quantum theory. J. Chem. Phys. 1986, 85, 3133–3134. [Google Scholar] [CrossRef]
- Silvi, B.; Savin, A. Classification of chemical bonds based on topological analysis. Nature 1994, 371, 683–686. [Google Scholar] [CrossRef]
- Huntington, H.B. The nature of solid state chemistry. Solid State Sci. 1958, 7, 213–351. [Google Scholar]
- Wang, L.Q.; Kutana, A.; Zou, X.L.; Yakobson, B.I. Novel electronic and optical properties of graphene. Nanoscale 2015, 7, 9746–9751. [Google Scholar] [CrossRef] [PubMed]
- Michel, K.H.; Verberck, B. Temperature-dependent structural phase transition in graphene nanoribbons. Phys. Rev. B 2009, 80, 224301. [Google Scholar] [CrossRef]
- Cooper, R.C.; Lee, C.; Marianetti, C.A.; Wei, X.D.; Hone, J.; Kysar, J.W. First-principles study of the mechanical properties of graphene. Phys. Rev. B 2013, 87, 035423. [Google Scholar] [CrossRef]
- Frey, N.C.; Kumar, H.; Anasori, B.; Gogotsi, Y.; Shenoy, V.B. High-performance 2D materials for energy and environmental applications. ACS Nano 2018, 12, 6319–6325. [Google Scholar] [CrossRef]
- Ma, A.N.; Wang, P.J.; Zhang, C.W. Two-dimensional materials: Synthesis, characterization, and device applications. Nanoscale 2020, 12, 5464–5470. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Y.C.; Li, H.; Wu, Y.; Li, Y.X.; Li, J.H.; He, K.; Xu, Y.; Zhang, J.S.; Wang, Y.Y. Two-dimensional materials for next-generation electronic devices. Nat. Mater. 2020, 19, 522–527. [Google Scholar] [CrossRef]
- Wang, X.J.; Vanderbilt, D.; Yates, J.R.; Souza, I. Electronic structure of transition-metal dichalcogenides. Phys. Rev. B 2007, 76, 195109. [Google Scholar] [CrossRef]
- Xiao, D.; Chang, M.C.; Niu, Q. Berry phase effects in electronic nanostructures. Rev. Mod. Phys. 2010, 82, 1959–2007. [Google Scholar] [CrossRef]
- Li, Y.L.; Rao, Y.; Mak, K.F.; You, Y.M.; Wang, S.Y.; Dean, C.R.; Heinz, T.F. Observation of the enhanced photovoltaic effect in monolayer MoS2. Nano Lett. 2013, 13, 3329–3333. [Google Scholar] [CrossRef] [PubMed]
- Larionov, K.V.; Pais Pereda, J.J.; Sorokin, P.B. Anisotropic superconductivity in graphene. Phys. Chem. Chem. Phys. 2022, 24, 1023–1028. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, N.; Li, C.; Song, H.Y.; Zhang, Q.; Hu, X.Z.; Gan, L.; Li, H.Q.; Lü, J.T.; Luo, J.; et al. Two-dimensional materials for optoelectronics and photovoltaics. 2D Mater. 2017, 4, 025048. [Google Scholar] [CrossRef]
- Li, X.F.; Lin, M.W.; Lin, J.H.; Huang, B.; Puretzky, A.A.; Ma, C.; Wang, K.; Zhou, W.; Pantelides, S.T.; Chi, M.F.; et al. Two-dimensional materials for energy conversion and storage. Sci. Adv. 2016, 2, e1501882. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.Z.; Ji, S.W.; Tian, Z.; Cheng, W.J.; Wang, X.C.; Mi, W.B. A new carbon nanomaterial with exceptional mechanical and thermal properties. Carbon 2018, 132, 25–31. [Google Scholar] [CrossRef]
- Sharma, D.K.; Kumar, S.; Auluck, S. Effect of strain on the electronic and magnetic properties of graphene and graphene nanostructures. J. Phys. Condens. Matter 2020, 32, 315501. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio total energy Calculations for Materials Research. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Ernzerhof, M.; Scuseria, G.E. Assessment of the perdew-burke-ernzerhof exchange-correlation Functional. J. Chem. Phys. 1999, 110, 5029–5036. [Google Scholar] [CrossRef]
- Blochl, P.E. Projector augmented-wave method. Phys. Rev. B Condens. Matter 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Moellmann, J.; Grimme, S. Extension of the D3 dispersion correction to arbitrary dimensionalities. J. Phys. Chem. C 2014, 118, 7615–7621. [Google Scholar] [CrossRef]
- Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5. [Google Scholar] [CrossRef]
- Mark, E.; Tuckerman, P.; Ungar, J.; Rosenvinge, T.V.; Michael, L.; Klein, M. Ab Initio Molecular Dynamics Simulations. J. Phys. Chem. 1996, 100, 12878–12887. [Google Scholar]
- Wu, Q.; Zhang, S.; Song, H.F.; Troyer, M.; Soluyanov, A.A. Wannier90: A tool for obtaining maximally localized wannier functions. Comput. Phys. Commun. 2018, 224, 405–416. [Google Scholar] [CrossRef]
- Wang, X.J.; Yates, J.R.; Souza, I.; Vanderbilt, D. Ab Initio calculations of the electronic structure of transition-metal oxides and their relationship to magnetic properties. Phys. Rev. B 2006, 74, 195118. [Google Scholar] [CrossRef]
- Silvestrelli, P.L.; Marzari, N.; Vanderbilt, D.; Parrinello, M. Ab Initio study of the structural properties of lithium and sodium chlorides. Solid State Commun. 1998, 107, 7–11. [Google Scholar] [CrossRef]
Configuration | I/V | II/VI | III/VII | IV/VIII |
---|---|---|---|---|
Eb (eV) | −2.344 | −2.343 | −2.342 | −2.342 |
−4.249 | −4.242 | −3.050 | −3.319 | |
d (Å) | 3.223 | 3.238 | 3.242 | 3.228 |
3.203 | 3.269 | 3.294 | 3.310 | |
∆NSOC (meV) | 0.00 | 1.12 | 0.00 | 0.00 |
4.20 | 4.22 | 4.73 | 4.20 | |
∆SOC (meV) | 23.51 | 23.49 | 23.53 | 23.50 |
18.50 | 18.89 | 18.58 | 18.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hua, G.; Wu, X.; Ge, X.; Zhou, T.; Shao, Z. First-Principles Study on the High Spin-Polarized Ferromagnetic Semiconductor of Vanadium-Nitride Monolayer and Its Heterostructures. Molecules 2025, 30, 2156. https://doi.org/10.3390/molecules30102156
Hua G, Wu X, Ge X, Zhou T, Shao Z. First-Principles Study on the High Spin-Polarized Ferromagnetic Semiconductor of Vanadium-Nitride Monolayer and Its Heterostructures. Molecules. 2025; 30(10):2156. https://doi.org/10.3390/molecules30102156
Chicago/Turabian StyleHua, Guiyuan, Xuming Wu, Xujin Ge, Tianhang Zhou, and Zhibin Shao. 2025. "First-Principles Study on the High Spin-Polarized Ferromagnetic Semiconductor of Vanadium-Nitride Monolayer and Its Heterostructures" Molecules 30, no. 10: 2156. https://doi.org/10.3390/molecules30102156
APA StyleHua, G., Wu, X., Ge, X., Zhou, T., & Shao, Z. (2025). First-Principles Study on the High Spin-Polarized Ferromagnetic Semiconductor of Vanadium-Nitride Monolayer and Its Heterostructures. Molecules, 30(10), 2156. https://doi.org/10.3390/molecules30102156