First-Principles Study on the High Spin-Polarized Ferromagnetic Semiconductor of Vanadium-Nitride Monolayer and Its Heterostructures
Abstract
1. Introduction
2. Results and Discussion
3. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klitzing, K.V. The quantized Hall effect. Rev. Mod. Phys. 1986, 58, 519. [Google Scholar] [CrossRef]
- Haldane, F.D.M. Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 1988, 61, 2015–2018. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, A.; Das, K.; Sinha, S.; Adak, P.C.; Deshmukh, M.M.; Agarwal, A. Nonlinear anomalous Hall effects probe topological phase-transitions in twisted double bilayer graphene. 2D Mater. 2022, 9, 045020. [Google Scholar] [CrossRef]
- Ovchinnikov, D.; Huang, X.; Lin, Z.; Fei, Z.Y.; Cai, J.Q.; Song, T.C.; He, M.H.; Jiang, Q.N.; Wang, C.; Li, H.; et al. Intertwined topological and magnetic orders in atomically thin Chern insulator MnBi2Te4. Nano Lett. 2021, 21, 2544–2550. [Google Scholar] [CrossRef]
- Wu, M. Unveiling two-dimensional materials: Properties and applications. 2D Mater. 2017, 4, 021014. [Google Scholar] [CrossRef]
- Zhan, F.Y.; Ning, Z.; Gan, L.Y.; Zheng, B.B.; Fan, J.; Wang, R. Electronic and structural properties in low-dimensional systems. Phys. Rev. B 2022, 105, L081115. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, J.; Liu, J.F.; Xu, H. Magnetoelectric coupling in low-dimensional materials. Appl. Phys. Lett. 2021, 118, 222401. [Google Scholar] [CrossRef]
- Bao, H.; Zhao, B.; Zhang, J.; Yang, X.; Zhou, T.; Yang, Z. Quantum anomalous Hall effect with high Chern numbers in functionalized square-octagon Sb monolayers. 2D Mater. 2023, 10, 035004. [Google Scholar] [CrossRef]
- Chang, C.Z.; Zhang, J.S.; Feng, X.; Shen, J.; Zhang, Z.C.; Guo, M.H.; Li, K.; Ou, Y.B.; Wang, L.L.; Ji, Z.Q.; et al. Experimental observation of the quantum anomalous Hall effect. Science 2013, 340, 167–170. [Google Scholar] [CrossRef]
- Zhou, X.C.; Hang, Y.; Liu, L.R.; Zhang, Z.H.; Guo, W.L. Mechanism of two-dimensional material interactions at the nanoscale. J. Am. Chem. Soc. 2019, 141, 7899–7905. [Google Scholar] [CrossRef]
- Feng, X.; Feng, Y.; Wang, J.; Ou, Y.B.; Hao, Z.Q.; Liu, C.; Zhang, Z.C.; Zhang, L.G.; Lin, C.J.; Liao, J.; et al. Topological surface states in low-dimensional materials. Adv. Mater. 2016, 28, 6386–6390. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, R.; Yoshimi, R.; Kawamura, M.; Mogi, M.; Tsukazaki, A.; Yu, X.Z.; Nakajima, K.; Takahashi, K.S.; Kawasaki, M.; Tokura, Y. Magnetic anisotropy in quantum systems. Appl. Phys. Lett. 2019, 115, 102403. [Google Scholar] [CrossRef]
- Deng, Y.J.; Yu, Y.J.; Shi, M.Z.; Guo, Z.X.; Xu, Z.H.; Wang, J.; Chen, X.H.; Zhang, Y.B. Quantum anomalous Hall effect in intrinsic magnetic topological insulator. Science 2020, 367, 895–900. [Google Scholar] [CrossRef]
- Chen, G.R.; Sharpe, A.L.; Fox, E.J.; Zhang, Y.H.; Wang, S.X.; Jiang, L.L.; Li, B.; Li, H.Y.; Kenji, W.; Takashi, T.; et al. Tunable correlated Chern insulator and ferromagnetism in trilayer graphene. Nature 2020, 579, 56–61. [Google Scholar] [CrossRef]
- Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.S.; Liang, T.; Shi, M.M.; Chen, H.Z. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A.H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439. [Google Scholar] [CrossRef] [PubMed]
- Low, T.; Chaves, A.; Caldwell, J.D.; Kumar, A.; Fang, N.X.; Avouris, P.; Heinz, T.F.; Guinea, F.; Moreno, L.M.; Koppens, F. Polaritons in layered two-dimensional materials. Nat. Mater. 2017, 16, 182–194. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef]
- Neto, A.C.; Guinea, F.; Peres, N.; Novoselov, K.S.; Geim, A.K. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109. [Google Scholar] [CrossRef]
- Zhang, B.W.; Huang, Y.N.; Bao, W.C.; Wang, B.L.; Meng, Q.Q.; Fan, L.L.; Zhang, Q.F. Computational study on the properties of two-dimensional systems. Phys. Chem. Chem. Phys. 2018, 20, 25437–25445. [Google Scholar] [CrossRef]
- Gelhausen, J.; Eschrig, M. Theory of a weak-link superconductor-ferromagnet Josephson structure. Phy. Rev. B 2016, 94, 104502. [Google Scholar] [CrossRef]
- Pomorski, K.; Prokopow, P. Possible existence of field-induced Josephson junctions. Phys. Status Solidi B 2012, 249, 1802–1813. [Google Scholar] [CrossRef]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.R.; Geim, A.K. Fine structure constant defines graphene’s optical transparency. Science 2008, 320, 1308. [Google Scholar] [CrossRef]
- Dai, J.; Wu, X.J.; Yang, J.L.; Zeng, X.C. Two-dimensional silicene: Material properties and device applications. J. Phys. Chem. Lett. 2013, 4, 3484–3488. [Google Scholar] [CrossRef]
- Cai, Y.M.; Chuu, C.P.; Wei, C.M.; Chou, M.Y. Stability and electronic properties of two-dimensional materials: A first-principles study. Phys. Rev. B 2013, 88, 245408. [Google Scholar] [CrossRef]
- Vogt, P.; Padova, P.D.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M.C.; Resta, A.; Ealet, B.; Lay, G.L. Silicene: Compelling experimental evidence for graphene-like two-dimensional silicon. Phys. Rev. Lett. 2012, 108, 155501. [Google Scholar] [CrossRef] [PubMed]
- Li, L.K.; Yu, Y.J.; Ye, G.J.; Ge, Q.Q.; Ou, X.D.; Wu, H.; Feng, D.L.; Chen, X.H.; Zhang, Y.B. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.H.; Lyu, Y.X.; Zhang, Y.; Ding, R.; Zheng, B.N.; Yang, Z.B.; Lau, S.P.; Chen, X.H.; Hao, J.H. Ultrafast spin dynamics in two-dimensional magnetic materials. Nat. Mater. 2021, 20, 1203–1209. [Google Scholar] [CrossRef]
- Chen, C.; Yin, Y.L.; Zhang, R.C.; Yuan, Q.H.; Xu, Y.; Zhang, Y.S.; Chen, J.; Zhang, Y.; Li, C.; Wang, J.Y.; et al. Observation of exceptional transport properties in two-dimensional magnetic materials. Nat. Mater. 2023, 22, 717–724. [Google Scholar] [CrossRef]
- Xu, Y.J.; Shi, X.Y.; Zhang, Y.S.; Zhang, H.T.; Zhang, Q.L.; Huang, Z.L.; Xu, X.F.; Guo, J.; Zhang, H.; Sun, L.T.; et al. Emergent electronic properties in van der Waals heterostructures. Nat. Commun. 2020, 11, 1330. [Google Scholar] [CrossRef] [PubMed]
- Reich, E.S. Two-dimensional materials: The next big thing. Nature 2014, 506, 19. [Google Scholar] [PubMed]
- Liu, H.; Neal, A.T.; Zhu, Z.; Luo, Z.; Xu, X.F.; Tománek, D.; Ye, P.D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041. [Google Scholar] [CrossRef] [PubMed]
- Bianco, E.; Butler, S.; Jiang, S.S.; Restrepo, O.D.; Windl, W.; Goldberger, J.E. Stability and electronic properties of single-layer phosphorene. ACS Nano 2013, 7, 4414–4421. [Google Scholar] [CrossRef]
- McGuire, M.A.; Dixit, H.; Cooper, V.R.; Sales, B.C. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem. Mater. 2015, 27, 612–620. [Google Scholar] [CrossRef]
- Li, H.; Ruan, S.C.; Zeng, Y.J. Intrinsic van der Waals magnetic materials from bulk to the 2D limit: New frontiers of spintronics. Adv. Mater. 2019, 31, 1900065. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Lu, Q.S.; Liu, W.Q.; Niu, W.; Sun, J.B.; Cook, J.; Vaninger, M.; Miceli, P.F.; Singh, D.J.; Lian, S.W.; et al. Emergent quantum confinement effects in topological materials. Nat. Commun. 2021, 12, 2492. [Google Scholar] [CrossRef]
- Ou, Y.X.; Yanez, W.; Xiao, R.; Stanley, M.; Ghosh, S.; Zheng, B.Y.; Jiang, W.; Huang, Y.S.; Pillsbury, T.; Richardella, A.; et al. Observation of chiral edge states in a magnetic topological insulator. Nat. Commun. 2022, 13, 2972. [Google Scholar] [CrossRef]
- Gong, C.; Li, L.; Li, Z.L.; Ji, H.W.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C.Z.; Wang, Y.; et al. Discovery of Intrinsic Ferromagnetism in Two-Dimensional van der Waals Crystals. Nature 2017, 546, 265–269. [Google Scholar] [CrossRef]
- Anasori, B.; Lukatskaya, M.R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Chem. 2017, 2, 16098. [Google Scholar] [CrossRef]
- Ashton, M.; Trometer, N.; Mathew, K.; Suntivich, J.; Freysoldt, C.; Sinnott, S.B.; Hennig, R.G. Thermodynamic stability of MXenes as a function of surface chemistry and transition metal. J. Phys. Chem. C 2019, 123, 3180–3187. [Google Scholar] [CrossRef]
- Hu, J.Q.; Xu, B.; Ou-yang, C.Y.; Yang, S.Y.A.; Yao, Y.G. Investigations on V2C and V2CX2 (X = F, OH) Monolayer as a Promising Anode Material for Li Ion Batteries from First-Principles Calculations. J. Phys. Chem. C 2014, 118, 24274–24281. [Google Scholar] [CrossRef]
- Bonilla, M.; Kolekar, S.; Ma, Y.J.; Diaz, H.C.; Kalappattil, V.; Das, R.; Eggers, T.; Gutierrez, H.R.; Phan, M.H.; Batzill, M. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 2018, 13, 289–293. [Google Scholar] [CrossRef]
- Lei, Z.; Sathish, C.I.; Geng, X.; Guan, X.; Liu, Y.; Wang, L.; Qiao, L.; Vinu, A.; Yi, J. Manipulation of ferromagnetism in intrinsic two-dimensional magnetic and nonmagnetic materials. Matter 2022, 5, 4212–4273. [Google Scholar] [CrossRef]
- Kutschej, K.; Rashkova, B.; Shen, J.; Edwards, D.; Mitterer, C.; Dehm, G. Influence of Bias Voltage on the Tribological Behavior of Sputtered TiN Coatings. Thin Solid Film. 2007, 516, 369–373. [Google Scholar] [CrossRef]
- Anand, S.; Thekeppat, K.; Waghmare, U.V. Thermal stability and electronic properties of phosphorene with adsorbed alkali metals. Nano Lett. 2016, 16, 126–131. [Google Scholar] [CrossRef]
- Ghosh, A.; Kar, M.; Majumder, C.; Sarkar, P. Thermoelectric properties of 2D transition metal chalcogenides: A first-principles study. Mater. Sci. Eng. B 2021, 272, 115379. [Google Scholar] [CrossRef]
- Zhang, B.; Lu, P.; Tabrizian, R.; Feng, P.X.-L.; Wu, Y. 2D magnetic heterostructures: Spintronics and quantum future. npj Spintronics. 2024, 2, 6. [Google Scholar] [CrossRef]
- Glaser, A.; Surnev, S.; Ramsey, M.G.; Lazar, P.; Redinger, J.; Podloucky, R.; Netzer, F.P. The interaction of oxygen with Pd(111): A comprehensive study. Surf. Sci. 2007, 601, 4817–4823. [Google Scholar] [CrossRef]
- Kuklin, A.V.; Shostak, S.A.; Kuzubov, A.A. Two-dimensional lattices of VN: Emergence of ferromagnetism and half-metallicity on nanoscale. J. Phys. Chem. Lett. 2018, 9, 1422–1428. [Google Scholar] [CrossRef]
- Ke, C.; Wu, Y.; Yang, W.; Wu, Z.; Zhang, C.; Li, X.; Kang, J. Large and controllable spin-valley splitting in two-dimensional WS2/h−VN heterostructure. Phys. Rev. B 2019, 100, 195435. [Google Scholar] [CrossRef]
- Bian, X.; Lian, S.; Fu, B.; An, Y. Tunable spin-valley splitting and magnetic anisotropy of two-dimensional 2H-VS2/h-VN heterostructure. J. Magn. Magn. Mater. 2022, 546, 168867. [Google Scholar] [CrossRef]
- Şahin, H.; Cahangirov, S.; Topsakal, M.; Bekaroglu, E.; Akturk, E.; Senger, R.T.; Ciraci, S. First principles study of graphene oxide: A detailed investigation of structural, electronic and optical properties. Phys. Rev. B 2009, 80, 155453. [Google Scholar] [CrossRef]
- Bader, R. Atoms in molecules: A quantum theory. J. Chem. Phys. 1986, 85, 3133–3134. [Google Scholar] [CrossRef]
- Silvi, B.; Savin, A. Classification of chemical bonds based on topological analysis. Nature 1994, 371, 683–686. [Google Scholar] [CrossRef]
- Huntington, H.B. The nature of solid state chemistry. Solid State Sci. 1958, 7, 213–351. [Google Scholar]
- Wang, L.Q.; Kutana, A.; Zou, X.L.; Yakobson, B.I. Novel electronic and optical properties of graphene. Nanoscale 2015, 7, 9746–9751. [Google Scholar] [CrossRef] [PubMed]
- Michel, K.H.; Verberck, B. Temperature-dependent structural phase transition in graphene nanoribbons. Phys. Rev. B 2009, 80, 224301. [Google Scholar] [CrossRef]
- Cooper, R.C.; Lee, C.; Marianetti, C.A.; Wei, X.D.; Hone, J.; Kysar, J.W. First-principles study of the mechanical properties of graphene. Phys. Rev. B 2013, 87, 035423. [Google Scholar] [CrossRef]
- Frey, N.C.; Kumar, H.; Anasori, B.; Gogotsi, Y.; Shenoy, V.B. High-performance 2D materials for energy and environmental applications. ACS Nano 2018, 12, 6319–6325. [Google Scholar] [CrossRef]
- Ma, A.N.; Wang, P.J.; Zhang, C.W. Two-dimensional materials: Synthesis, characterization, and device applications. Nanoscale 2020, 12, 5464–5470. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Y.C.; Li, H.; Wu, Y.; Li, Y.X.; Li, J.H.; He, K.; Xu, Y.; Zhang, J.S.; Wang, Y.Y. Two-dimensional materials for next-generation electronic devices. Nat. Mater. 2020, 19, 522–527. [Google Scholar] [CrossRef]
- Wang, X.J.; Vanderbilt, D.; Yates, J.R.; Souza, I. Electronic structure of transition-metal dichalcogenides. Phys. Rev. B 2007, 76, 195109. [Google Scholar] [CrossRef]
- Xiao, D.; Chang, M.C.; Niu, Q. Berry phase effects in electronic nanostructures. Rev. Mod. Phys. 2010, 82, 1959–2007. [Google Scholar] [CrossRef]
- Li, Y.L.; Rao, Y.; Mak, K.F.; You, Y.M.; Wang, S.Y.; Dean, C.R.; Heinz, T.F. Observation of the enhanced photovoltaic effect in monolayer MoS2. Nano Lett. 2013, 13, 3329–3333. [Google Scholar] [CrossRef] [PubMed]
- Larionov, K.V.; Pais Pereda, J.J.; Sorokin, P.B. Anisotropic superconductivity in graphene. Phys. Chem. Chem. Phys. 2022, 24, 1023–1028. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, N.; Li, C.; Song, H.Y.; Zhang, Q.; Hu, X.Z.; Gan, L.; Li, H.Q.; Lü, J.T.; Luo, J.; et al. Two-dimensional materials for optoelectronics and photovoltaics. 2D Mater. 2017, 4, 025048. [Google Scholar] [CrossRef]
- Li, X.F.; Lin, M.W.; Lin, J.H.; Huang, B.; Puretzky, A.A.; Ma, C.; Wang, K.; Zhou, W.; Pantelides, S.T.; Chi, M.F.; et al. Two-dimensional materials for energy conversion and storage. Sci. Adv. 2016, 2, e1501882. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.Z.; Ji, S.W.; Tian, Z.; Cheng, W.J.; Wang, X.C.; Mi, W.B. A new carbon nanomaterial with exceptional mechanical and thermal properties. Carbon 2018, 132, 25–31. [Google Scholar] [CrossRef]
- Sharma, D.K.; Kumar, S.; Auluck, S. Effect of strain on the electronic and magnetic properties of graphene and graphene nanostructures. J. Phys. Condens. Matter 2020, 32, 315501. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio total energy Calculations for Materials Research. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Ernzerhof, M.; Scuseria, G.E. Assessment of the perdew-burke-ernzerhof exchange-correlation Functional. J. Chem. Phys. 1999, 110, 5029–5036. [Google Scholar] [CrossRef]
- Blochl, P.E. Projector augmented-wave method. Phys. Rev. B Condens. Matter 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Moellmann, J.; Grimme, S. Extension of the D3 dispersion correction to arbitrary dimensionalities. J. Phys. Chem. C 2014, 118, 7615–7621. [Google Scholar] [CrossRef]
- Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5. [Google Scholar] [CrossRef]
- Mark, E.; Tuckerman, P.; Ungar, J.; Rosenvinge, T.V.; Michael, L.; Klein, M. Ab Initio Molecular Dynamics Simulations. J. Phys. Chem. 1996, 100, 12878–12887. [Google Scholar]
- Wu, Q.; Zhang, S.; Song, H.F.; Troyer, M.; Soluyanov, A.A. Wannier90: A tool for obtaining maximally localized wannier functions. Comput. Phys. Commun. 2018, 224, 405–416. [Google Scholar] [CrossRef]
- Wang, X.J.; Yates, J.R.; Souza, I.; Vanderbilt, D. Ab Initio calculations of the electronic structure of transition-metal oxides and their relationship to magnetic properties. Phys. Rev. B 2006, 74, 195118. [Google Scholar] [CrossRef]
- Silvestrelli, P.L.; Marzari, N.; Vanderbilt, D.; Parrinello, M. Ab Initio study of the structural properties of lithium and sodium chlorides. Solid State Commun. 1998, 107, 7–11. [Google Scholar] [CrossRef]
Configuration | I/V | II/VI | III/VII | IV/VIII |
---|---|---|---|---|
Eb (eV) | −2.344 | −2.343 | −2.342 | −2.342 |
−4.249 | −4.242 | −3.050 | −3.319 | |
d (Å) | 3.223 | 3.238 | 3.242 | 3.228 |
3.203 | 3.269 | 3.294 | 3.310 | |
∆NSOC (meV) | 0.00 | 1.12 | 0.00 | 0.00 |
4.20 | 4.22 | 4.73 | 4.20 | |
∆SOC (meV) | 23.51 | 23.49 | 23.53 | 23.50 |
18.50 | 18.89 | 18.58 | 18.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hua, G.; Wu, X.; Ge, X.; Zhou, T.; Shao, Z. First-Principles Study on the High Spin-Polarized Ferromagnetic Semiconductor of Vanadium-Nitride Monolayer and Its Heterostructures. Molecules 2025, 30, 2156. https://doi.org/10.3390/molecules30102156
Hua G, Wu X, Ge X, Zhou T, Shao Z. First-Principles Study on the High Spin-Polarized Ferromagnetic Semiconductor of Vanadium-Nitride Monolayer and Its Heterostructures. Molecules. 2025; 30(10):2156. https://doi.org/10.3390/molecules30102156
Chicago/Turabian StyleHua, Guiyuan, Xuming Wu, Xujin Ge, Tianhang Zhou, and Zhibin Shao. 2025. "First-Principles Study on the High Spin-Polarized Ferromagnetic Semiconductor of Vanadium-Nitride Monolayer and Its Heterostructures" Molecules 30, no. 10: 2156. https://doi.org/10.3390/molecules30102156
APA StyleHua, G., Wu, X., Ge, X., Zhou, T., & Shao, Z. (2025). First-Principles Study on the High Spin-Polarized Ferromagnetic Semiconductor of Vanadium-Nitride Monolayer and Its Heterostructures. Molecules, 30(10), 2156. https://doi.org/10.3390/molecules30102156