The Structural Stability of Enzymatic Proteins in the Gas Phase: A Comparison of Semiempirical Hamiltonians and the GFN-FF
Abstract
:1. Introduction
1.1. Experimental Approaches to Gas-Phase Protein Structures
1.2. Theoretical Investigations of Gas-Phase Protein Structures
- Classical force fields (AMBER, CHARMM, GROMOS, etc.) utilized in conformational space exploration via Monte Carlo or molecular dynamics methods;
- Semiempirical methods for assessing the conformational landscape of smaller peptides;
- Density functional theory (DFT), especially newer functionals with dispersion corrections (such as B97X-D), used with triple-zeta polarized basis sets, which limits the available size of the studied peptides.
- Harmonic frequency calculations, when coupled with wavenumber scaling, can reach an accuracy better than 20 cm−1;
- The vibrational self-consistent field (VSCF) method of treating anharmonicity and mode coupling;
- The lack of electrostatic screening for the solvent can lead to increased proton mobility and a large diversity of possible protonation states;
- Force fields developed for a water environment will provide charge distributions inadequate for gas-phase conditions;
- The use of periodic boundary conditions must be either switched off (which brings a heavy performance penalty, as GPU acceleration cannot be used easily) or dealt with by using the proper setting for the cutoff radius to encompass the whole system.
1.3. The Rationale for the Current Study
2. Results and Discussion
2.1. A General Description of the Studied Proteins
2.2. Gas-Phase Optimizations: Convergence and Structural Stability Issues
- The GFN1-xTB Hamiltonians were not able to converge the self-consistent field equations despite many attempts to modify the convergence treatment (in terms of the required accuracy of the SCF, Broyden damping, etc.).
- Using the AM1 Hamiltonian for trypsin, the first SCF calculation converged in 3864 cycles, which is more than the default number of allowed SCF cycles. Further optimization required 3289 steps.
- Several AM1 and PM3 runs with modified coordinates failed after several hundreds of optimization steps due to failure of the SCF (a lack of convergence), which signified that a structural collapse had occurred.
- The GFN2-xTB Hamiltonian was able to converge the initial SCF and perform further structural optimization of trypsin, but the initial convergence was possible only with a very specific SCF setup. The initial guess was set to the Goedecker type (the Gasteiger charge and superposition of the atomic densities failed to yield converged results), and the Broyden damping was set to 0.02.
- The GFN-FF force-field setup and optimization were carried out without problems; the GFN-FF turned out to be the only successful technique for the steroid demethylase.
2.3. Molecular Dynamics with the GFN-FF Force Field
3. Materials and Methods
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AM1 | Austin Model 1 semiempirical method |
CYP51 | sterol 14-demethylase |
DFT | density functional theory |
DFTB | density functional tight binding |
ESI-MS | electron spray ionization–mass spectrometry |
FF | force field |
FRET | Förster resonant energy transfer |
GFN-FF | a partially polarizable force field from the GFN family of methods |
GFN1-xTB | extended density functional tight binding method, version 1 |
GFN2-xTB | extended density functional tight binding method, version 2 |
HB | hydrogen bond |
MD | molecular dynamics |
MNDO | Modifield Neglect of Diatomic Overlap—a predecessor of AM1 and PM3 |
PDB | Protein Data Bank |
PM3 | Parametric Method 3 (semiempirical approach) |
RMSD | Root Mean Square Deviation |
SCF | self-consistent field |
References
- Levy, Y.; Onuchic, J.N. Water and proteins: A love–hate relationship. Proc. Natl Acad. Sci. USA 2004, 101, 3325–3326. [Google Scholar] [CrossRef] [PubMed]
- Hoaglund-Hyzer, C.S.; Counterman, A.E.; Clemmer, D.E. Anhydrous Protein Ions. Chem. Rev. 1999, 99, 3037–3080. [Google Scholar] [CrossRef] [PubMed]
- Ruotolo, B.T.; Robinson, C.V. Aspects of native proteins are retained in vacuum. Curr. Opin. Chem. Biol. 2006, 10, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Barylyuk, K.; Balabin, R.M.; Grünstein, D.; Kikkeri, R.; Frankevich, V.; Seeberger, P.H.; Zenobi, R. What Happens to Hydrophobic Interactions during Transfer from the Solution to the Gas Phase? The Case of Electrospray-Based Soft Ionization Methods. J. Am. Soc. Mass Spectr. 2011, 22, 1167–1177. [Google Scholar] [CrossRef]
- Benesch, J.L.P.; Ruotolo, B.T.; Simmons, D.A.; Robinson, C.V. Protein Complexes in the Gas Phase: Technology for Structural Genomics and Proteomics. Chem. Rev. 2007, 107, 3544–3567. [Google Scholar] [CrossRef]
- Meyer, T.; Gabelica, V.; Grubmüller, H.; Orozco, M. Proteins in the gas phase. WIREs Comput. Mol. Sci. 2013, 3, 408–425. [Google Scholar] [CrossRef]
- Barbosa, A.J.; Oliveira, A.R.; Roque, A.C. Protein- and Peptide-Based Biosensors in Artificial Olfaction. Trends Biotechnol. 2018, 36, 1244–1258. [Google Scholar] [CrossRef]
- Gaggiotti, S.; Della Pelle, F.; Mascini, M.; Cichelli, A.; Compagnone, D. Peptides, DNA and MIPs in Gas Sensing. From the Realization of the Sensors to Sample Analysis. Sensors 2020, 20, 4433. [Google Scholar] [CrossRef]
- Gloaguen, E.; Mons, M.; Schwing, K.; Gerhards, M. Neutral Peptides in the Gas Phase: Conformation and Aggregation Issues. Chem. Rev. 2020, 120, 12490–12562. [Google Scholar] [CrossRef]
- Wu, R.; Metternich, J.B.; Tiwari, P.; Zenobi, R. Adapting a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer for Gas-Phase Fluorescence Spectroscopy Measurement of Trapped Biomolecular Ions. Anal. Chem. 2021, 93, 15626–15632. [Google Scholar] [CrossRef]
- Zenobi, R. Coming of Age: Gas-Phase Structural Information on Biomolecules by FRET. Anal. Chem. 2015, 87, 7497–7498. [Google Scholar] [CrossRef]
- Tiwari, P.; Wu, R.; Metternich, J.B.; Zenobi, R. Transition Metal Ion FRET in the Gas Phase: A 10–40 Å Range Molecular Ruler for Mass-Selected Biomolecular Ions. J. Am. Chem. Soc. 2021, 143, 11291–11295. [Google Scholar] [CrossRef] [PubMed]
- Mahé, J.; Jaeqx, S.; Rijs, A.M.; Gaigeot, M.P. Can far-IR action spectroscopy combined with BOMD simulations be conformation selective? Phys. Chem. Chem. Phys. 2015, 17, 25905–25914. [Google Scholar] [CrossRef]
- Galimberti, D.R.; Bougueroua, S.; Mahé, J.; Tommasini, M.; Rijs, A.M.; Gaigeot, M.P. Conformational assignment of gas phase peptides and their H-bonded complexes using far-IR/THz: IR-UV ion dip experiment, DFT-MD spectroscopy, and graph theory for mode assignment. Faraday Discuss. 2019, 217, 67–97. [Google Scholar] [CrossRef]
- Konermann, L. Molecular Dynamics Simulations on Gas-Phase Proteins with Mobile Protons: Inclusion of All-Atom Charge Solvation. J. Phys. Chem. B 2017, 121, 8102–8112. [Google Scholar] [CrossRef] [PubMed]
- Konermann, L.; Metwally, H.; McAllister, R.G.; Popa, V. How to run molecular dynamics simulations on electrospray droplets and gas phase proteins: Basic guidelines and selected applications. Methods 2018, 144, 104–112. [Google Scholar] [CrossRef]
- Lee, J.H.; Pollert, K.; Konermann, L. Testing the Robustness of Solution Force Fields for MD Simulations on Gaseous Protein Ions. J. Phys. Chem. B 2019, 123, 6705–6715. [Google Scholar] [CrossRef]
- Eldrid, C.; Cragnolini, T.; Ben-Younis, A.; Zou, J.; Raleigh, D.P.; Thalassinos, K. Linking Gas-Phase and Solution-Phase Protein Unfolding via Mobile Proton Simulations. Anal. Chem. 2022, 94, 16113–16121. [Google Scholar] [CrossRef] [PubMed]
- Ahadi, E.; Konermann, L. Modeling the Behavior of Coarse-Grained Polymer Chains in Charged Water Droplets: Implications for the Mechanism of Electrospray Ionization. J. Phys. Chem. B 2012, 116, 104–112. [Google Scholar] [CrossRef]
- Brodmerkel, M.N.; De Santis, E.; Uetrecht, C.; Caleman, C.; Marklund, E.G. Stability and conformational memory of electrosprayed and rehydrated bacteriophage MS2 virus coat proteins. Curr. Res. Struct. Biol. 2022, 4, 338–348. [Google Scholar] [CrossRef]
- Nouchikian, L.; Lento, C.; Donovan, K.; Dobson, R.; Wilson, D.J. Comparing the Conformational Stability of Pyruvate Kinase in the Gas Phase and in Solution. J. Am. Soc. Mass Spectr. 2020, 31, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Sever, A.I.M.; Konermann, L. Gas Phase Protein Folding Triggered by Proton Stripping Generates Inside-Out Structures: A Molecular Dynamics Simulation Study. J. Phys. Chem. B 2020, 124, 3667–3677. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, D.; Banerjee, A.; Wales, D.J. Side-Chain Polarity Modulates the Intrinsic Conformational Landscape of Model Dipeptides. J. Phys. Chem. B 2021, 125, 5809–5822. [Google Scholar] [CrossRef]
- Chung, L.W.; Sameera, W.M.C.; Ramozzi, R.; Page, A.J.; Hatanaka, M.; Petrova, G.P.; Harris, T.V.; Li, X.; Ke, Z.; Liu, F.; et al. The ONIOM Method and Its Applications. Chem. Rev. 2015, 115, 5678–5796. [Google Scholar] [CrossRef] [PubMed]
- Dewar, M.J.S.; Zoebisch, E.G.; Healy, E.F.; Stewart, J.J.P. Development and use of quantum mechanical molecular models. 76. AM1: A new general purpose quantum mechanical molecular model. J. Am. Chem. Soc. 1985, 107, 3902–3909. [Google Scholar] [CrossRef]
- Stewart, J.J.P. Optimization of parameters for semiempirical methods I. Method. J. Comput. Chem. 1989, 10, 209–220. [Google Scholar] [CrossRef]
- Grimme, S.; Bannwarth, C.; Shushkov, P. A Robust and Accurate Tight-Binding Quantum Chemical Method for Structures, Vibrational Frequencies, and Noncovalent Interactions of Large Molecular Systems Parametrized for All spd-Block Elements (Z = 1–86). J. Chem. Theory Comput. 2017, 13, 1989–2009. [Google Scholar] [CrossRef]
- Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-xTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Depende nt Dispersion Contributions. J. Chem. Theory Comput. 2019, 15, 1652–1671. [Google Scholar] [CrossRef]
- Spicher, S.; Grimme, S. Robust Atomistic Modeling of Materials, Organometallic, and Biochemical Systems. Angew. Chem. Int. Ed. 2020, 59, 15665–15673. [Google Scholar] [CrossRef]
- Juers, D.H.; Farley, C.A.; Saxby, C.P.; Cotter, R.A.; Cahn, J.K.B.; Holton-Burke, R. Conor an d Harrison, K.; Wu, Z. The impact of cryosolution thermal contraction on proteins and protein crystals: Volumes, conformation and order. Acta Cryst. Sect. D 2018, 74, 922–938. [Google Scholar] [CrossRef]
- Hargrove, T.Y.; Friggeri, L.; Wawrzak, Z.; Qi, A.; Hoekstra, W.J.; Schotzinger, R.J.; York, J.D.; Guengerich, F.P.; Lepesheva, G.I. Structural analyses of Candida albicans Sterol 14α-Demethylase Complexed Azole Drugs Address Mol. Basis Azole-Med Iated Inhib. Fungal Sterol Biosynthesis. J. Biol. Chem. 2017, 292, 6728–6743. [Google Scholar] [CrossRef] [PubMed]
- de Almeida, R.F.M.; Santos, F.C.; Marycz, K.; Alicka, M.; Krasowska, A.; Suchodolski, J.; Panek, J.J.; Jezierska, A.; Starosta, R. New diphenylphosphane derivatives of ketoconazole are promising antifunga l agents. Sci. Rep. 2019, 9, 16214. [Google Scholar] [CrossRef]
- Lepesheva, G.I.; Waterman, M.R. Sterol 14α-demethylase cytochrome P450 (CYP51), a P450 in all biological kingdoms. Biochim. Biophys. Acta 2007, 1770, 467–477. [Google Scholar] [CrossRef] [PubMed]
- Bannwarth, C.; Caldeweyher, E.; Ehlert, S.; Hansen, A.; Pracht, P.; Seibert, J.; Spicher, Sebastian a nd Grimme, S. Extended tight-binding quantum chemistry methods. WIREs Comput. Mol. Sci. 2021, 11, e1493. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucl. Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Case, D.; Aktulga, H.; Belfon, K.; Ben-Shalom, I.; Brozell, S.; Cerutti, D.; III, T.C.; Cisneros, G.; Cruzeiro, V.; Darden, T.; et al. Amber 2021; University of California: San Francisco, CA, USA, 2021. [Google Scholar]
- Hennemann, M.; Clark, T. EMPIRE: A highly parallel semiempirical molecular orbital program: 1: Self-consistent field calculations. J. Mol. Model. 2014, 20, 2331. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD—Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Frishman, D.; Argos, P. Knowledge-based protein secondary structure assignment. Proteins Struct. Funct. Bioinf. 1995, 23, 566–579. [Google Scholar] [CrossRef]
- Plett, C.; Katbashev, A.; Ehlert, S.; Grimme, S.; Bursch, M. ONIOM meets xtb: Efficient, accurate, and robust multi-layer simulations across the periodic table. Phys. Chem. Chem. Phys. 2023, 25, 17860–17868. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panek, J.J. The Structural Stability of Enzymatic Proteins in the Gas Phase: A Comparison of Semiempirical Hamiltonians and the GFN-FF. Molecules 2025, 30, 2131. https://doi.org/10.3390/molecules30102131
Panek JJ. The Structural Stability of Enzymatic Proteins in the Gas Phase: A Comparison of Semiempirical Hamiltonians and the GFN-FF. Molecules. 2025; 30(10):2131. https://doi.org/10.3390/molecules30102131
Chicago/Turabian StylePanek, Jarosław J. 2025. "The Structural Stability of Enzymatic Proteins in the Gas Phase: A Comparison of Semiempirical Hamiltonians and the GFN-FF" Molecules 30, no. 10: 2131. https://doi.org/10.3390/molecules30102131
APA StylePanek, J. J. (2025). The Structural Stability of Enzymatic Proteins in the Gas Phase: A Comparison of Semiempirical Hamiltonians and the GFN-FF. Molecules, 30(10), 2131. https://doi.org/10.3390/molecules30102131