The Experimental and Modeling Study on the Effect of Ethane in Helium-Rich Natural Gas on the Thermodynamic Equilibrium of Hydrate Formation in the Presence of Tetrahydrofuran
Abstract
:1. Introduction
2. Results
2.1. Peq in the THF–Methane–Ethane System
2.2. Peq in the THF–Methane–Ethane–Helium–Carbon Dioxide System
3. Discussion
3.1. The Effects of Ethane on Hydrate Formation in the THF–Methane–Ethane System
3.2. The Effects of Ethane on Hydrate Formation in the THF–Methane–Ethane–Helium–Carbon Dioxide System
3.3. The Effects of Ethane on Hydrate Formation in This Model
4. Materials and Methods
4.1. Materials
4.2. Experimental Methods
4.3. Model Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grynia, E.; Griffin, P.J. Helium in Natural Gas-Occurrence and Production. J. Nat. Gas Eng. 2016, 1, 163–215. [Google Scholar] [CrossRef]
- Qin, S.; Zhao, Z.; Wu, W.; Zhou, G.; Tao, G.; Li, J. Helium content and helium enrichment conditions of coalbed methane and shale gas. J. Nat. Gas Geosci. 2024, 9, 243–254. [Google Scholar] [CrossRef]
- Zhu, G.; Hou, J.; Zhu, Z.; Yu, Z.; Li, W.; Li, T. Genetic mechanism and exploration progress of global deep alkane gases and small molecule gases (H2, He). Gas Sci. Eng. 2024, 131, 205467. [Google Scholar] [CrossRef]
- Peng, J.; Zhou, J.; Liu, C.; Liu, S.; Wang, X.; Li, Z.; Wang, T.; Liang, G. Cryogenic-membrane separation process for helium extraction and ethane co-production from natural gas. Chem. Eng. Sci. 2024, 300, 120570. [Google Scholar] [CrossRef]
- Wu, X.; Jia, P.; Jia, W.; Li, C. A new process for high-efficiency crude helium extraction and purification from natural gas. Gas Sci. Eng. 2024, 124, 205278. [Google Scholar] [CrossRef]
- Choi, S.; Sultan, M.M.B.; Alsuwailem, A.A.; Zuabi, S.M. Preparation and characterization of multilayer thin-film composite hollow fiber membranes for helium extraction from its mixtures. Sep. Purif. Technol. 2019, 222, 152–161. [Google Scholar] [CrossRef]
- Hamedi, H.; Karimi, I.A.; Gundersen, T. Optimization of helium extraction processes integrated with nitrogen removal units: A comparative study. Comput. Chem. Eng. 2019, 121, 354–366. [Google Scholar] [CrossRef]
- Ussinger, P.H.; Glatthaar, R.; Rhode, W.; Kick, H.; Benkmann, C.; Weber, J.; Wunschel, H.R.; Stenke, V.; Leicht, E.; Stenger, H. Noble Gases. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2001; pp. 393–444. [Google Scholar] [CrossRef]
- Mokhatab, S.; Poe, W.A.; Mak, J.Y. Chapter 12—Nitrogen Rejection and Helium Recovery. In Handbook of Natural Gas Transmission and Processing, 4th ed.; Mokhatab, S., Poe, W.A., Mak, J.Y., Eds.; Gulf Professional Publishing: Houston, TX, USA, 2019; pp. 395–408. [Google Scholar] [CrossRef]
- Spatolisano, E.; Pellegrini, L.A. Helium Shortage 4.0: How to Face the Problem Through its Energy-efficient Recovery from Natural Gas. Chem. Eng. Trans. 2023, 100, 565–570. [Google Scholar] [CrossRef]
- Rufford, T.E.; Chan, K.I.; Huang, S.H.; May, E.F. A Review of Conventional and Emerging Process Technologies for the Recovery of Helium from Natural Gas. Adsorpt. Sci. Technol. 2014, 32, 49–72. [Google Scholar] [CrossRef]
- Weh, R.; Xiao, G.; Pouya, E.S.; May, E.F. Direct helium recovery from natural gas by dual reflux pressure swing adsorption cascade. Chem. Eng. J. 2022, 450, 137894. [Google Scholar] [CrossRef]
- Grenev, I.V.; Gavrilov, V.Y. In Silico Screening of Metal−Organic Frameworks and Zeolites for He/N2 Separation. Molecules 2023, 28, 20. [Google Scholar] [CrossRef]
- Al-Sobhi, S.A.; Alnouss, A.; Alsaba, W.; Elkamel, A. Sustainable design and analysis for helium extraction from sale gas in liquefied natural gas production. J. Nat. Gas Sci. Eng. 2022, 102, 104599. [Google Scholar] [CrossRef]
- Quader, M.A.; Rufford, T.E.; Smart, S. Modeling and cost analysis of helium recovery using combined-membrane process configurations. Sep. Purif. Technol. 2020, 236, 116269. [Google Scholar] [CrossRef]
- Hamedi, H.; Karimi, I.A.; Gundersen, T. A novel cost-effective silica membrane-based process for helium extraction from natural gas. Comput. Chem. Eng. 2019, 121, 633–638. [Google Scholar] [CrossRef]
- Wang, Y.; Qian, Y.; Liu, Z.; Xu, T.; Sun, Q.; Liu, A.; Yang, L.; Gong, J.; Guo, X. The hydrate-based separation of hydrogen and ethylene from fluid catalytic cracking dry gas in presence of n-octyl-β-d-glucopyranoside. Int. J. Hydrogen Energy 2022, 47, 31350–31369. [Google Scholar] [CrossRef]
- Kudryavtseva, M.S.; Petukhov, A.N.; Shablykin, D.N.; Atlaskin, A.A.; Stepanova, E.A.; Vorotyntsev, V.M.; Vorotyntsev, A.V. Separation of CH4-CO2 gas mixture by gas hydrate crystallisation: A parametric study. Gas Sci. Eng. 2023, 116, 205026. [Google Scholar] [CrossRef]
- Tu, Z.; Li, L.; Wang, F.; Zhang, Y. Review on separation of coalbed methane by hydrate method. Fuel 2024, 358, 130224. [Google Scholar] [CrossRef]
- Spatolisano, E.; Pellegrini, L.A. Solid–Liquid–Vapor Equilibrium Prediction for Typical Helium-Bearing Natural Gas Mixtures. J. Chem. Eng. Data 2021, 66, 4122–4131. [Google Scholar] [CrossRef]
- Kamiya, L.; Kasai, R.; Takeya, S.; Ohmura, R. Hydrate-based continuous hydrogen gas separation from mixing gas containing carbon dioxide with cyclopentanone. Int. J. Hydrog. Energy 2025, 121, 111–117. [Google Scholar] [CrossRef]
- Viswanadhan, S.K.; Singh, A.; Veluswamy, H.P. Hydrate-based gas separation (HBGS) technology review: Status, challenges and way forward. Gas Sci. Eng. 2024, 131, 205465. [Google Scholar] [CrossRef]
- Chen, G.; Guo, T. Thermodynamic modeling of hydrate formation based on new concepts. Fluid Phase Equilib. 1996, 122, 43–65. [Google Scholar] [CrossRef]
- Wei, Y.; Worley, J.; Zerpa, L.E.; Chien, Y.A.; Dunn-Rankin, D.; Kezirian, M.T.; Koh, C.A. Natural gas storage in hydrates in the presence of thermodynamic hydrate promoters: Review and experimental investigation. Fluid Phase Equilib. 2025, 591, 114286. [Google Scholar] [CrossRef]
- Zhang, X.; He, J.; Sun, H.; Lan, X.; Dong, W.; Li, J.; Liu, Q.; Wu, Q. Experimental study of the selective formation of CH4/CO2 mixture gas hydrate: Implications for bio-natural gas purification and separation. Sep. Purif. Technol. 2025, 368, 132964. [Google Scholar] [CrossRef]
- Zhang, G.; Sun, Y.; Li, B.; Shen, Y.; Qi, Y. Enhancement of hydrocarbon recovery from CH4-C2H6-C3H8 mixed hydrates via gas sweep. Fuel 2022, 320, 123885. [Google Scholar] [CrossRef]
- Pahlavanzadeh, H.; Nouri, S.; Aghajanloo, M.; Mohammadi, A.H.; Mohammadi, S. Experimental measurements and thermodynamic modeling of hydrate dissociation conditions for CO2 + THF + MgCl2 + water systems. Fluid Phase Equilib. 2023, 564, 113626. [Google Scholar] [CrossRef]
- Patel, P.; Garaniya, V.; Baalisampang, T.; Arzaghi, E.; Abbassi, R.; Salehi, F. A computational analysis of similarity relations using helium as a surrogate of hydrogen in semi-confined facilities. Int. J. Hydrogen Energy 2024, 91, 1113–1126. [Google Scholar] [CrossRef]
- Han, G.; Lee, W.; Kim, M.; Lee, J.W.; Ahn, Y. Hydrogen separation from hydrogen-compressed natural gas blends through successive hydrate formations. Chem. Eng. J. 2024, 483, 149409. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, G.; Lu, F.; Ren, Q.; Xu, Z.; Fan, S.; Sun, Q.; Wang, Y.; Guo, X. The Experimental and Modeling Study on the Thermodynamic Equilibrium Hydrate Formation Pressure of Helium-Rich Natural Gas in the Presence of Tetrahydrofuran. Molecules 2024, 29, 4827. [Google Scholar] [CrossRef]
- Wang, M.; Sun, Z.; Qiu, X.; Zhu, M.; Li, C.; Zhang, A.; Li, J.; Li, C.; Huang, H. Hydrate Dissociation Equilibrium Conditions for Carbon Dioxide + Tetrahydrofuran. J. Chem. Eng. Data 2017, 62, 812–815. [Google Scholar] [CrossRef]
- Lee, Y.; Kawamura, T.; Yamamoto, Y.; Yoon, J. Phase Equilibrium Studies of Tetrahydrofuran (THF) + CH4, THF + CO2, CH4 + CO2, and THF + CO2 + CH4 Hydrates. J. Chem. Eng. Data 2012, 57, 3543–3548. [Google Scholar] [CrossRef]
- Sun, Q.; Zhao, J.; Gao, J.; Xu, Z.; Wang, Y.; Guo, X. Experimental and Modeling Study on Phase Equilibria of the Methane + Ethane Gas Mixture. J. Chem. Eng. Data 2023, 68, 2345–2352. [Google Scholar] [CrossRef]
- Sun, C.; Chen, G.; Zhang, L. Hydrate phase equilibrium and structure for (methane+ethane+tetrahydrofuran+water) system. J. Chem. Thermodyn. 2010, 42, 1173–1179. [Google Scholar] [CrossRef]
- Lee, S.; Lee, Y.; Park, S.; Kim, Y.; Cha, I.; Seo, Y. Stability conditions and guest distribution of the methane + ethane + propane hydrates or semiclathrates in the presence of tetrahydrofuran or quaternary ammonium salts. J. Chem. Thermodyn. 2013, 65, 113–119. [Google Scholar] [CrossRef]
- Yi, J.; Zhong, D.; Yan, J.; Lu, Y. Impacts of the surfactant sulfonated lignin on hydrate based CO2 capture from a CO2/CH4 gas mixture. Energy 2019, 171, 61–68. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, C.; Chen, Z.; Wang, H.; Hu, K.; Chen, X.; Du, X. The growth of sII type methane hydrate influenced by thermodynamic inhibitors. Chem. Eng. Sci. 2023, 276, 118805. [Google Scholar] [CrossRef]
- Bhawangirkar, D.R.; Yin, Z.; Zhang, B.; Wu, Q.; Patankar, S.; Sun, B.; Linga, P. How Do Varying THF Concentrations Affect the CH4 Cage Occupancy in CH4 + THF sII Hydrates? A Thermodynamic Approach. Energy Fuels 2024, 38, 15327–15339. [Google Scholar] [CrossRef]
- Chen, G.; Guo, T. A new approach to gas hydrate modelling. Chem. Eng. J. 1998, 71, 145–151. [Google Scholar] [CrossRef]
- Sun, Q.; Guo, X.; Chapman, W.G.; Liu, A.; Yang, L.; Zhang, J. Vapor–hydrate two-phase and vapor–liquid–hydrate three-phase equilibrium calculation of THF/CH4/N2 hydrates. Fluid Phase Equilib. 2015, 401, 70–76. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, S.; Liu, Y.; Sun, Q.; Xu, Z.; Liu, A.; Wang, Y.; Guo, X. Thermodynamic effects of the interaction of multiple solutes and dodecahedral-cage deformation on the semi-clathrate hydrate formation with CH4-CO2. Chem. Eng. Sci. 2023, 269, 118468. [Google Scholar] [CrossRef]
- Patel, N.C.; Teja, A.S. A new cubic equation of state for fluids and fluid mixtures. Chem. Eng. Sci. 1982, 37, 463–473. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, Y.; Guo, X.; Sun, Q.; Liu, A.; Zhang, G.; Yue, G.; Yang, L. Experimental and modeling investigation on separation of methane from coal seam gas (CSG) using hydrate formation. Energy 2018, 150, 377–395. [Google Scholar] [CrossRef]
- Ivanov, E.V. To the issue of temperature-dependent behavior of standard molar volumes of components in the binary system (water+tetrahydrofuran) at ambient pressure. J. Chem. Thermodym. 2014, 72, 37–43. [Google Scholar] [CrossRef]
Gas | (mol%) | (mol%) | (mol%) | (mol%) |
---|---|---|---|---|
y1 | y2 | y3 | y4 | |
Gas 1 | 99.0 | 01.0 | - | - |
Gas 2 | 90.0 | 10.0 | - | - |
Gas 3 | 95.1 | 00.5 | 0.4 | 4.0 |
Gas 4 | 94.6 | 01.0 | 0.4 | 4.0 |
Gas 5 | 90.6 | 05.0 | 0.4 | 4.0 |
Gases | ARD | GF |
---|---|---|
Gas 1 | 1.6% | 0.999 |
Gas 2 | 1.5% | 0.999 |
Gas 3 | 2.1% | 0.999 |
Gas 4 | 1.7% | 0.999 |
Gas 5 | 2.2% | 0.999 |
X′ (Pa) | Y′ (K) | Z′ (K) | |
---|---|---|---|
6.2728 × 10−15 | 4879.29 | 23.01 | |
1.6464 × 10−11 | 2799.66 | 15.90 | |
6.0000 × 10−12 | 2034.89 | 6.31 |
(Pa) | (K) | (K) | ||||
---|---|---|---|---|---|---|
1.8 × 1024 | −2.00 × 104 | −130 | 300 | 300 | 100 | |
7.7 × 1016 | −5.56 × 103 | − 57.9 | 300 | 300 | 150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Wang, R.; Chen, H.; Xu, Z.; Fan, S.; Sun, Q.; Wang, Y.; Guo, X. The Experimental and Modeling Study on the Effect of Ethane in Helium-Rich Natural Gas on the Thermodynamic Equilibrium of Hydrate Formation in the Presence of Tetrahydrofuran. Molecules 2025, 30, 2109. https://doi.org/10.3390/molecules30102109
Liu Z, Wang R, Chen H, Xu Z, Fan S, Sun Q, Wang Y, Guo X. The Experimental and Modeling Study on the Effect of Ethane in Helium-Rich Natural Gas on the Thermodynamic Equilibrium of Hydrate Formation in the Presence of Tetrahydrofuran. Molecules. 2025; 30(10):2109. https://doi.org/10.3390/molecules30102109
Chicago/Turabian StyleLiu, Zengqi, Rui Wang, Haixin Chen, Zhen Xu, Shiguang Fan, Qiang Sun, Yiwei Wang, and Xuqiang Guo. 2025. "The Experimental and Modeling Study on the Effect of Ethane in Helium-Rich Natural Gas on the Thermodynamic Equilibrium of Hydrate Formation in the Presence of Tetrahydrofuran" Molecules 30, no. 10: 2109. https://doi.org/10.3390/molecules30102109
APA StyleLiu, Z., Wang, R., Chen, H., Xu, Z., Fan, S., Sun, Q., Wang, Y., & Guo, X. (2025). The Experimental and Modeling Study on the Effect of Ethane in Helium-Rich Natural Gas on the Thermodynamic Equilibrium of Hydrate Formation in the Presence of Tetrahydrofuran. Molecules, 30(10), 2109. https://doi.org/10.3390/molecules30102109