Adsorption of Vitamin B12 on Sugarcane-Derived Activated Carbon: Fractal Isotherm and Kinetics Modelling, Electrochemistry and Molecular Modelling Studies
Abstract
:1. Introduction
2. Results
2.1. Specific Surface Area and Pore Size
2.2. Kinetic Adsorption Modelling Studies
2.2.1. Influence of Initial VB12 Concentration
2.2.2. Influence of AC Quantity
2.2.3. Influence of Temperature
2.2.4. Influence of pH
2.3. Isotherm Adsorption Modelling Studies
2.4. Electrochemical Study of AC and Vitamin B12 Interactions
2.5. Molecular Modelling
3. Discussion
4. Experimental Section
4.1. Carbon Materials’ Preparation
4.2. Specific Surface Area and Pore Size Determination
4.3. Isotherm Adsorption Studies
4.4. Adsorption Kinetic Data Modelling
4.5. Adsorption Isotherm Data Modelling
4.6. Statistical Tools Used to Determine the Best Fitting Model
4.7. Electrochemical Experiments
4.8. Molecular Modeling
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dao, V.-D.; Jung, S.-H.; Kim, J.-S.; Tran, Q.C.; Chong, S.-A.; Larina, L.L.; Choi, H.-S. AuNP/graphene nanohybrid prepared by dry plasma reduction as a low-cost counter electrode material for dye-sensitized solar cells. Electrochim. Acta 2015, 156, 138–146. [Google Scholar] [CrossRef]
- Yin, Y.; Liu, Q.; Jiang, D.; Du, X.; Qian, J.; Mao, H.; Wang, K. Atmospheric pressure synthesis of nitrogen doped graphene quantum dots for fabrication of BiOBr nanohybrids with enhanced visible-light photoactivity and photostability. Carbon 2015, 96, 1157–1165. [Google Scholar] [CrossRef]
- Da Silva, V.S.; Teixeira, L.I.; do Nascimento, E.; Idemori, Y.M.; DeFreitas-Silva, G. New manganese porphyrin as biomimetic catalyst of cyclohexane oxidation: Effect of water or imidazole as additives. Appl. Catal. A 2014, 469, 124–131. [Google Scholar] [CrossRef]
- Alberti, G.; Amendola, V.; Pesavento, M.; Biesuz, R. Beyond the synthesis of novel solid phases: Review on modelling of sorption phenomena. Coord. Chem. Rev. 2012, 256, 28–45. [Google Scholar] [CrossRef]
- Yu, J.; Xiang, Q.; Zhou, M. Preparation, characterization and visible-light-driven photocatalytic activity of Fe-doped titania nanorods and first-principles study for electronic structures. Appl. Catal. B Environ. 2009, 90, 595–602. [Google Scholar] [CrossRef]
- Limousin, G.; Gaudet, J.-P.; Charlet, L.; Szenknect, S.; Barthès, V.; Krimissa, M. Sorption isotherms: A review on physical bases, modeling and measurement. Appl. Geochem. 2007, 22, 249–275. [Google Scholar] [CrossRef]
- Ho, Y.S.; Wang, C.C. Pseudo-isotherms for the sorption of cadmium ion onto tree fern. Process Biochem. 2004, 39, 761–765. [Google Scholar] [CrossRef]
- Bulut, Y.; Aydın, H. A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination 2006, 194, 259–267. [Google Scholar] [CrossRef]
- Ho, Y.-S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Karapanagioti, H.K.; Gossard, C.M.; Strevett, K.A.; Kolar, R.L.; Sabatini, D.A. Model coupling intraparticle diffusion/sorption, nonlinear sorption, and biodegradation processes. J. Contam. Hydrol. 2001, 48, 1–21. [Google Scholar] [CrossRef]
- Ho, Y.; McKay, G. Sorption of dye from aqueous solution by peat. Chem. Eng. J. 1998, 70, 115–124. [Google Scholar] [CrossRef]
- Wu, F.-C.; Tseng, R.-L.; Juang, R.-S. Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem. Eng. J. 2009, 150, 366–373. [Google Scholar] [CrossRef]
- Kopelman, R. Fractal reaction kinetics. Science 1988, 241, 1620–1626. [Google Scholar] [CrossRef]
- Savageau, M.A. Michaelis-Menten mechanism reconsidered: Implications of fractal kinetics. J. Theor. Biol. 1995, 176, 115–124. [Google Scholar] [CrossRef]
- Alvarez, A.; Passé-Coutrin, N.; Gaspard, S. Determination of the textural characteristics of carbon samples using scanning electronic microscopy images: Comparison with mercury porosimetry data. Adsorption 2013, 19, 841–850. [Google Scholar] [CrossRef]
- Brouers, F.; Sotolongo, O.; Marquez, F.; Pirard, J.P. Microporous and heterogeneous surface adsorption isotherms arising from Levy distributions. Phys. A 2005, 349, 271–282. [Google Scholar] [CrossRef]
- Ncibi, M.C. Applicability of some statistical tools to predict optimum adsorption isotherm after linear and non-linear regression analysis. J. Hazard. Mater. 2008, 153, 207–212. [Google Scholar] [CrossRef]
- Figaro, S.; Avril, J.P.; Brouers, F.; Ouensanga, A.; Gaspard, S. Adsorption studies of molasse’s wastewaters on activated carbon: Modelling with a new fractal kinetic equation and evaluation of kinetic models. J. Hazard. Mater. 2009, 161, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Brouers, F.; Al-Musawib, T.J. The use of the fractal Brouers-Sotolongo formalism to analyze the kinetics of drug release. arXiv 2019, arXiv:1907.01540. [Google Scholar] [CrossRef]
- Okasha, M.K.; Matter, M.Y. On the three-parameter Burr type XII distribution and its application to heavy tailed lifetime data. J. J. Adv. Math. 2015, 10, 3429–3442. [Google Scholar] [CrossRef]
- Jurlewicz, A.; Weron, K.A. A general probabilistic approach to the universal relaxation response of complex systems. Cell. Mol. Biol. Lett. 1999, 4, 55–86. [Google Scholar]
- Brouers, F. The fractal (BSf) Kinetics equation and its approximations. J. Mod. Phys. 2014, 5, 1594. [Google Scholar] [CrossRef]
- Burr, I.W. Cumulative Frequency Functions. Ann. Math. Statist. 1942, 13, 215–232. [Google Scholar] [CrossRef]
- Singh, S.K.; Maddala, G.S. A Function for Size Distribution of Incomes. In Econometrica; Springer: New York, NY, USA, 2008; Volume 46, p. 461. [Google Scholar] [CrossRef]
- Ncibi, M.C.; Mahjoub, B.; Seffen, M.; Brouers, F.; Gaspard, S. Sorption dynamic investigation of chromium(VI) onto Posidonia oceanica fibres: Kinetic modelling using new generalized fractal equation. Biochem. Eng. J. 2009, 46, 141–146. [Google Scholar] [CrossRef]
- Brouers, F.; Al-Musawi, T.J. On the optimal use of isotherm models for the characterization of biosorption of lead onto algae. J. Mol. Liq. 2015, 212, 46–51. [Google Scholar] [CrossRef]
- Ranguin, R.; Durimel, A.; Karioua, R.; Gaspard, S. Study of chlordecone desorption from activated carbons and subsequent dechlorination by reduced cobalamin. Environ. Sci. Pollut. R. 2017, 24, 25488–25499. [Google Scholar] [CrossRef] [PubMed]
- Ranguin, R.; Ncibi, M.C.; Cesaire, T.; Lavoie, S.; Jean-Marius, C.; Grutzmacher, H.; Gaspard, S. Development and characterisation of a nanostructured hybrid material with vitamin B12 and bagasse-derived activated carbon for anaerobic chlordecone (Kepone) removal. Environ. Sci. Pollut. Res. 2020, 27, 41122–41131. [Google Scholar] [CrossRef]
- Watanabe, F. Vitamin B12 Sources and Bioavailability. Exp. Biol. Med. 2007, 232, 1266–1274. [Google Scholar] [CrossRef]
- Glod, G.; Brodmann, U.; Angst, W.; Holliger, C.; Schwarzenbach, R.P. Cobalamin-mediated reduction of cis-and trans-dichloroethene, 1, 1-dichloroethene, and vinyl chloride in homogeneous aqueous solution: Reaction kinetics and mechanistic considerations. Environ. Sci. Technol. 1997, 31, 3154–3160. [Google Scholar] [CrossRef]
- Kim, Y.H.; Carraway, E. Reductive dechlorination of PCE and TCE by vitamin B12 and ZVMs. Environ. Technol. 2002, 23, 1135–1145. [Google Scholar] [CrossRef]
- Smith, M.H.; Woods, S.L. Regiospecificity of chlorophenol reductive dechlorination by vitamin B12s. Appl. Environ. Microbiol. 1994, 60, 4111–4115. [Google Scholar] [CrossRef] [PubMed]
- Chiu, P.C.; Reinhard, M. Transformation of carbon tetrachloride by reduced vitamin B12 in aqueous cysteine solution. Environ. Sci. Technol. 1996, 30, 1882–1889. [Google Scholar] [CrossRef]
- Aljeboree, A.M.; Al-Gubury, H.Y.; Said, M.H.; Alkaim, A.F. The Effect of Different Parameters on the Removal of Vitamin B12 Drug (as a Model Biochemical Pollutants) by AC/Clay. Biochem. Cell. Arch. 2019, 19, 755–759. [Google Scholar] [CrossRef]
- Gañan, J.; González-García, C.M.; González, J.F.; Sabio, E.; Macías-García, A.; Díaz-Díez, M.A. Preparation of activated carbons from bituminous coal pitches. Appl. Surf. Sci. 2004, 238, 347–354. [Google Scholar] [CrossRef]
- Broekhoff, J.C.P.; de Boer, J.H. Studies on Pore Systems in Catalysts: XIII. Pore Distributions from the Desorption Branch of a Nitrogen Sorption Isotherm in the Case of Cylindrical Pores B. Applications. J. Catal. 1968, 10, 377–390. [Google Scholar] [CrossRef]
- Guo, Z.; Zhu, G.; Gao, B.; Zhang, D.; Tian, G.; Chen, Y.; Zhang, W.; Qiu, S. Adsorption of vitamin B12 on ordered mesoporous carbons coated with PMMA. Carbon 2005, 43, 2344–2351. [Google Scholar] [CrossRef]
- Badertscher, M.; Pretsch, E. Bad results from good data. TrAC 2006, 25, 1131–1138. [Google Scholar] [CrossRef]
- Brouers, F.; Sotolongo-Costa, O. Generalized fractal kinetics in complex systems (application to biophysics and biotechnology). Phys. A Stat. Mech. Appl. 2006, 368, 165–175. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the Modeling of Adsorption Isotherm Systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Lupaşcu, T.; Petuhov, O.; Ţîmbaliuc, N.; Cibotaru, S.; Rotaru, A. Adsorption Capacity of Vitamin B12 and Creatinine on Highly-Mesoporous Activated Carbons Obtained from Lignocellulosic Raw Materials. Molecules 2020, 25, 3095. [Google Scholar] [CrossRef]
- Whitten, J.L.; Yang, H. Theory of Chemisorption and Reactions on Metal Surfaces. Surf. Sci. Rep. 1996, 24, 55–124. [Google Scholar] [CrossRef]
- Lorenc-Grabowska, E.; Gryglewicz, G. Removal of Cyanocobalamine from Aqueous Solution Using Mesoporous Activated Carbon. Dyes Pigments 2007, 75, 136–142. [Google Scholar] [CrossRef]
- Krautler, B. Vitamin B12: Chemistry and Biochemistry. Biochem. Soc. Trans. 2005, 33, 806–810. [Google Scholar] [CrossRef]
- Flieger, J.; Żuk, N.; Pasieczna-Patkowska, S.; Flieger, M.; Panek, R.; Klepka, T.; Franus, W. Optimization of Cyanocobalamin (Vitamin B12) Sorption onto Mesoporous Superparamagnetic Iron Oxide Nanoparticles. Molecules 2024, 29, 2094. [Google Scholar] [CrossRef] [PubMed]
- Newmark, P.; Mester, S. Effect of pH on Vitamin B12 Binding by Transcobalamins. Biochim. Biophys. Acta BBA-Gen. Subj. 1974, 343, 627–631. [Google Scholar] [CrossRef]
- Lexa, D.; Saveant, J.M. Electrochemistry of Vitamin B12. 3. One-Electron Intermediates in the Reduction of Methylcobalamin and Methylcobinamide. J. Am. Chem. Soc. 1978, 100, 3220–3222. [Google Scholar] [CrossRef]
- Shimakoshi, H.; Hisaeda, Y. Electrochemistry and Catalytic Properties of Vitamin B12 Derivatives in Nonaqueous Media. Curr. Opin. Electrochem. 2018, 8, 24–30. [Google Scholar] [CrossRef]
- Huang, Y.; Cannon, F.S.; Watson, J.K.; Reznik, B.; Mathews, J.P. Activated Carbon Efficient Atomistic Model Construction That Depicts Experimentally-Determined Characteristics. Carbon 2015, 83, 1–14. [Google Scholar] [CrossRef]
- Liu, Y.; Grimm, M.; Dai, W.; Hou, M.; Xiao, Z.-X.; Cao, Y. CB-Dock: A Web Server for Cavity Detection-Guided Protein–Ligand Blind Docking. Acta Pharmacol. Sin. 2020, 41, 138–144. [Google Scholar] [CrossRef]
- Xue, Q.; Liu, X.; Russell, P.; Li, J.; Pan, W.; Fu, J.; Zhang, A. Evaluation of the Binding Performance of Flavonoids to Estrogen Receptor Alpha by Autodock, Autodock Vina and Surflex-Dock. Ecotoxicol. Environ. Saf. 2022, 233, 113323. [Google Scholar] [CrossRef]
- Bryk, P.; Łajtar, L.; Pizio, O.; Sokołowska, Z.; Sokołowski, S. Adsorption of Fluids in Pores Formed between Two Hard Cylinders. J. Colloid Interface Sci. 2000, 229, 526–533. [Google Scholar] [CrossRef] [PubMed]
- Easton, E.B.; Machin, W.D. Adsorption of Water Vapor on a Graphitized Carbon Black. J. Colloid Interface Sci. 2000, 231, 204–206. [Google Scholar] [CrossRef] [PubMed]
- Morishige, K.; Kawai, T.; Kittaka, S. Capillary Condensation of Water in Mesoporous Carbon. J. Phys. Chem. C 2014, 118, 4664–4669. [Google Scholar] [CrossRef]
- Jaroniec, M.; Bräuer, P. Recent Progress in Determination of Energetic Heterogeneity of Solids from Adsorption Data. Surf. Sci. Rep. 1986, 6, 65–117. [Google Scholar] [CrossRef]
- Langmuir, I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Swenson, H.; Stadie, N.P. Langmuir’s Theory of Adsorption: A Centennial Review. Langmuir 2019, 35, 5409–5426. [Google Scholar] [CrossRef]
- Brouers, F.; Al-Musawi, T.J. Brouers-Sotolongo Fractal Kinetics versus Fractional Derivative Kinetics: A New Strategy to Analyze the Pollutants Sorption Kinetics in Porous Materials. J. Hazard. Mater. 2018, 350, 162–168. [Google Scholar] [CrossRef]
- Altenor, S.; Ncibi, M.C.; Emmanuel, E.; Gaspard, S. Textural Characteristics, Physiochemical Properties and Adsorption Efficiencies of Caribbean Alga Turbinaria Turbinata and Its Derived Carbonaceous Materials for Water Treatment Application. Biochem. Eng. J. 2012, 67, 35–44. [Google Scholar] [CrossRef]
- Selmi, T.; Seffen, M.; Celzard, A. Vanessa Fierro Effect of the Adsorption pH and Temperature on the Parameters of the Brouers–Sotolongo Models. Environ. Sci. Pollut. Res. 2018, 25, 1–10. [Google Scholar] [CrossRef]
- Selmi, T.; Seffen, M.; Sammouda, H.; Mathieu, S.; Jagiello, J.; Celzard, A.; Fierro, V. Physical Meaning of the Parameters Used in Fractal Kinetic and Generalised Adsorption Models of Brouers–Sotolongo. Adsorption 2018, 24, 11–27. [Google Scholar] [CrossRef]
- Pierce, C.; Smith, R.N. The Adsorption–Desorption Hysteresis in Relation to Capillarity of Adsorbents. J. Phys. Chem. 1950, 54, 784–794. [Google Scholar] [CrossRef] [PubMed]
- Birkett, G.; Do, D. Simulation Study of Water Adsorption on Carbon Black: The Effect of Graphite Water Interaction Strength. J. Phys. Chem. C 2007, 111, 5735–5742. [Google Scholar] [CrossRef]
- Sachdev, D.; Gupta, S.; Bhullar, N.K.; Verma, G. Recent Progress on the Correlation Between Hydrophobicity and the Water Absorption of Different Materials. J. Inorg. Organomet. Polym. Mater. 2025. [Google Scholar] [CrossRef]
- Altenor, S.; Ncibi, M.; Brehm, N.; Emmanuel, E.; Gaspard, S. Pilot-Scale Synthesis of Activated Carbons from Vetiver Roots and Sugar Cane Bagasse. Waste Biomass Valorization 2013, 4, 485–495. [Google Scholar] [CrossRef]
- Ncibi, M.C.; Ranguin, R.; Pintor, M.J.; Jeanne-Rose, V.; Sillanpää, M.; Gaspard, S. Preparation and Characterization of Chemically Activated Carbons Derived from Mediterranean Posidonia Oceanica (L.) Fibres. J. Anal. Appl. Pyrolysis 2014, 109, 205–214. [Google Scholar] [CrossRef]
- Raut, E.R.; Bedmohata (Thakur), M.A.; Chaudhari, A.R. Study of Synthesis and Characterization of Raw Bagasse, Its Char and Activated Carbon Prepared Using Chemical Additive. Water Sci. Technol. 2023, 87, 2233–2249. [Google Scholar] [CrossRef]
- Clement, N.F.; Kendall, B.S. Effect of Light on Vitamin B12 and Folate. Lab. Med. 2009, 40, 657–659. [Google Scholar] [CrossRef]
- Al-Musawi, T.J.; Brouers, F.; Zarrabi, M. Kinetic Modeling of Antibiotic Adsorption onto Different Nanomaterials Using the Brouers–Sotolongo Fractal Equation. Environ. Sci. Pollut. Res. 2017, 24, 4048–4057. [Google Scholar] [CrossRef]
- Roginsky, S.; Zeldovich, Y.B. The Catalytic Oxidation of Carbon Monoxide on Manganese Dioxide. Acta PhysChemUSSR 1934, 1, 554. [Google Scholar]
- Plazinski, W.; Rudzinski, W.; Plazinska, A. Theoretical Models of Sorption Kinetics Including a Surface Reaction Mechanism: A Review. Adv. Colloid Interface Sci. 2009, 152, 2–13. [Google Scholar] [CrossRef]
- Chien, S.H.; Clayton, W.R. Application of Elovich Equation to the Kinetics of Phosphate Release and Sorption in Soils. Soil Sci. Soc. Am. J. 1980, 44, 265–268. [Google Scholar] [CrossRef]
- Ahmad, M.; Ahmad, N.; Bello, O. Modified Durian Seed as Adsorbent for the Removal of Methyl Red Dye from Aqueous Solutions. Appl. Water Sci. 2015, 5, 407–423. [Google Scholar] [CrossRef]
- Stanislavsky, A.; Weron, K. Is There a Motivation for a Universal Behaviour in Molecular Populations Undergoing Chemical Reactions ? Phys. Chem. Chem. Phys. 2013, 15, 15595–15601. [Google Scholar] [CrossRef] [PubMed]
- Brouers, F.; Marquez-Montesino, F. Dubinin Isotherms versus the Brouers–Sotolongo Family Isotherms: A Case Study. Adsorpt. Sci. Technol. 2016, 34, 552–564. [Google Scholar] [CrossRef]
- Redlich, O.; Peterson, D.L. A Useful Adsorption Isotherm. J. Phys. Chem. 1959, 63, 1024. [Google Scholar] [CrossRef]
- Sips, R. On the Structure of a Catalyst Surface. J. Chem. Phys. 1948, 16, 490–495. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R.; Huyvaert, K.P. AIC Model Selection and Multimodel Inference in Behavioral Ecology: Some Background, Observations, and Comparisons. Behav. Ecol. Sociobiol. 2011, 65, 23–35. [Google Scholar] [CrossRef]
- Kullback, S.; Leibler, R.A. On Information and Sufficiency. Ann. Math. Stat. 1951, 22, 79–86. [Google Scholar] [CrossRef]
- Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principle. In Selected Papers of Hirotugu Akaike; Petrov, B.N., Czaki, F., Eds.; Springer: New York, NY, USA, 1973. [Google Scholar] [CrossRef]
- Cavanaugh, J.E. Unifying the Derivations for the Akaike and Corrected Akaike Information Criteria. Stat. Probab. Lett. 1997, 33, 201–208. [Google Scholar] [CrossRef]
- Quesada-Peñate, I.; Julcour-Lebigue, C.; Jáuregui-Haza, U.-J.; Wilhelm, A.-M.; Delmas, H. Comparative Adsorption of Levodopa from Aqueous Solution on Different Activated Carbons. Chem. Eng. J. 2009, 152, 183–188. [Google Scholar] [CrossRef]
- Forster, M.R. Key Concepts in Model Selection: Performance and Generalizability. J. Math. Psychol. 2000, 44, 205–231. [Google Scholar] [CrossRef] [PubMed]
- Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Hurvich, C.M.; Tsai, C.-L. Regression and Time Series Model Selection in Small Samples. Biometrika 1989, 76, 297–307. [Google Scholar] [CrossRef]
- Laskowski, R.A. SURFNET: A Program for Visualizing Molecular Surfaces, Cavities, and Intermolecular Interactions. J. Mol. Graph. 1995, 13, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera?A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force FIeld, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef]
- Pedregal, J.R.-G.; Sciortino, G.; Guasp, J.; Municoy, M.; Maréchal, J.-D. GaudiMM: A Modular Multi-objective Platform for Molecular Modeling. J. Comput. Chem. 2017, 38, 2118–2126. [Google Scholar] [CrossRef]
Initial Concentration VB12 | |||||
---|---|---|---|---|---|
Model | Parameters | 5 mg·L−1 | 10 mg·L−1 | 25 mg·L−1 | 50 mg·L−1 |
Pseudo-First Order | qeexp | 51.8 | 76.1 | 182.85 | 217.5 |
qecalc | 46.9 | 70.4 | 169.8 | 202.4 | |
k1 | 0.7 | 0.8 | 0.8 | 0.6 | |
ARED | 2.6 | 3.1 | 3.6 | 5.0 | |
AICc | 119.34 | 129.73 | 183.88 | 175.35 | |
R2 | 0.79 | 0.86 | 0.87 | 0.94 | |
Pseudo-Second Order | qeexp | 51.8 | 76.1 | 182.85 | 217.5 |
qecalc | 49.8 | 73.9 | 179.1 | 212.9 | |
k2 | 0.02 | 0.02 | 0.006 | 0.004 | |
ARED | 1.1 | 0.9 | 2.0 | 2.1 | |
AICc | 99.9 | 104.2 | 154.5 | 138.2 | |
R2 | 0.89 | 0.94 | 0.95 | 0.98 | |
Elovich | qeexp | 51.8 | 76.1 | 182.85 | 217.5 |
qecalc | 52.9 | 74.1 | 185.2 | 217.4 | |
α | 328.6 | 784.6 | 1748.7 | 1024.7 | |
β | 0.2 | 0.1 | 0.04 | 0.03 | |
ARED | 1.5 | 2.0 | 0.2 | 0.9 | |
AICc | 70.7 | 99.0 | 105.9 | 141.8 | |
R2 | 0.95 | 0.93 | 0.98 | 0.97 | |
BS (n,a) | qeexp | 51.8 | 76.1 | 182.85 | 217.5 |
qecalc | 51.1 | 73.9 | 184.5 | 214.2 | |
n | 2.0 | 0.7 | 0.5 | 1.1 | |
τ | 0.9 | 2.6 | 4.39 | 2.1 | |
α | 0.7 | 0.4 | 0.3 | 0.6 | |
ARED | 25.5 | 1.5 | 0.2 | 0.2 | |
AICc | 146.8 | 87.3 | 94.2 | 110.7 | |
R2 | 0.92 | 0.96 | 0.99 | 0.99 |
∆G°(kJ·mol−1) | ∆H° (kJ·mol−1) | ∆S° (J·mol−1·K−1) | ||||
---|---|---|---|---|---|---|
T °C | 25 °C | 35 °C | 45 °C | 55 °C | ||
−0.37 | −0.79 | −0.65 | −0.80 | 3.64 | 13.67 |
T°C | |||||
---|---|---|---|---|---|
Model | Parameters | 25 °C | 35 °C | 45 °C | 55 °C |
Pseudo-First Order | qeexp | 184.4 | 219.2 | 234.8 | 297.6 |
qecalc | 169.8 | 193.01 | 218.3 | 268.9 | |
k1 | 0.8 | 0.858 | 0.70 | 0.49 | |
ARED | 6690.0 | 2.10 | 4.40 | 4.11 | |
AICc | 186.2 | 131.2 | 194.8 | 179.2 | |
R2 | 0.87 | 0.94 | 0.86 | 0.94 | |
Pseudo-Second Order | qeexp | 184.4 | 219.2 | 234.8 | 297.61 |
qecalc | 179.1 | 203.9 | 228.9 | 285.12 | |
k2 | 0.01 | 0.0063 | 0.0050 | 0.0026 | |
ARED | 3927.2 | 0.21 | 2.09 | 0.08 | |
AICc | 154.5 | −86.6 | 136.0 | −90.0 | |
R2 | 0.95 | 0.98 | 0.94 | 0.98 | |
Elovich | qeexp | 184.4 | 219.2 | 234.78 | 297.61 |
qecalc | 185.2 | 207.56 | 230.60 | 277.29 | |
α | 1748.7 | 13,565.40 | 16,699.95 | 6885.41 | |
β | 0.04 | 0.05 | 0.05 | 0.03 | |
ARED | 755.3 | 7.88 | 5.55 | 17.47 | |
AICc | 105.9 | 170.82 | 199.56 | 226.47 | |
R2 | 0.98 | 0.89 | 0.90 | 0.83 | |
BS (n,α) | qeexp | 184.4 | 219.2 | 234.8 | 297.6 |
qecalc | 184.5 | 257.5 | 229.2 | 315.3 | |
n | 0.90 | 18.24 | 0.70 | 2.99 | |
τ | 0.25 | 0.18 | 2.62 | 1.13 | |
α | 0.52 | 4.51 | 0.38 | 1.00 | |
ARED | 0.11 | 0.32 | 0.28 | 1.32 | |
AICc | −61.1 | 19.65 | −46.35 | −38.3 | |
R2 | 0.99 | 0.99 | 0.98 | 0.98 |
Parameters | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
qe exp | qe calc | Constants | ARED | AICc | R2 | |||||
model | Langmuir | 306.3 | 305.7 | Q° = 327.5 | 127.6 | 85.8 | 0.99 | |||
Freundlich | 306.3 | 334.3 | KF = 60.5 | n = 3.5 | 14.0 | 29.6 | 0.92 | |||
R-P | 306.3 | 305.3 | AR-P = 13.3 | AR-P = 0.03 | β = 1.0 | 1.4 | 30.6 | 0.99 | ||
BS | 306.3 | 302.4 | qm = 302.6 | Kw = 0.05 | α = 0.9 | 0.8 | 11.4 | 0.99 | ||
HS | 306.3 | 303.4 | qm = 316.4 | a = 1.1 | b = 19.9 | 0.1 | 0.7 | 0.99 | ||
BG | 306.3 | 303.1 | qm = 308.2 | a = 1.0 | b = 23.5 | 0.6 | −6.7 | 0.99 | ||
GBS | 306.3 | 307.4 | qm = 322.6 | a = 1.2 | b = 18.2 | C = 1.3 | 0.4 | 8.0 | 0.99 |
Replica 01 | Replica 02 | Replica 03 | Replica 04 | |||||
---|---|---|---|---|---|---|---|---|
Cuboid | Clashes | Vina | Clashes | Vina | Clashes | Vina | Clashes | Vina |
Cube AC1 | ||||||||
AC1.1 | 0 | −18.869 | 0 | −12.627 | 0 | −21.856 | 0 | −11.773 |
AC1.2 | 0 | −11.925 | 0 | −18.394 | 0 | −9.264 | 0 | −27.395 |
AC1.3 | 0 | −21.889 | 0 | −12.380 | 0 | −10.253 | 0 | −10.175 |
AC1.4 | 0 | −8.811 | 0 | −10.261 | 0 | −10.967 | 0 | −12.834 |
AC1.5 | 0 | −7.958 | 0 | −8.568 | 0 | −9.725 | 0 | −0.997 |
AC1.6 | 0 | −12.325 | 0 | −12.507 | 0 | −10.786 | 0 | −13.311 |
AC1.7 | 0 | −14.519 | 0 | −10.569 | 0 | −12.877 | 0 | −8.443 |
AC1.8 | 0 | −12.557 | 0 | −13.934 | 0 | −12.922 | 0 | −10.059 |
Cube AC2 | ||||||||
AC2.1 | 1.661 | −11.776 | 0 | −8.624 | 0 | −23.528 | 0 | −14.500 |
AC2.2 | 0 | −9.162 | 0 | −15.800 | 0 | −15.330 | 0 | −9.861 |
AC2.3 | 0 | −12.602 | 0 | −4.211 | 0 | −13.029 | 0 | −10.548 |
AC2.4 | 0 | −16.726 | 0 | −11.247 | 0 | −10.704 | 0 | −16.304 |
AC2.5 | 0 | −9.659 | 0 | −14.604 | 0 | −14.403 | 0 | −14.770 |
Cube AC3 | ||||||||
AC3.1 | 0 | −10.438 | 0 | −19.253 | 0 | −16.519 | 0 | −8.455 |
AC3.2 | 0 | −11.276 | 0 | −17.098 | 0 | −5.156 | 0 | −15.194 |
AC3.3 | 0 | −15.103 | 0 | −15.553 | 0 | −19.563 | 0 | −15.175 |
AC3.4 | 0 | −11.071 | 0 | −10.043 | 0 | −9.269 | 0 | −9.113 |
AC3.5 | 0 | −10.731 | 0 | −8.743 | 0 | −14.941 | 0 | −14.440 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ranguin, R.; Ncibi, M.C.; Jean-Marius, C.; Brouers, F.; Cebrián-Torrejón, G.; Doménech-Carbó, A.; Souila, S.; Sánchez-Aparicio, J.-E.; Dorce, D.; Zapirain-Gysling, I.; et al. Adsorption of Vitamin B12 on Sugarcane-Derived Activated Carbon: Fractal Isotherm and Kinetics Modelling, Electrochemistry and Molecular Modelling Studies. Molecules 2025, 30, 2096. https://doi.org/10.3390/molecules30102096
Ranguin R, Ncibi MC, Jean-Marius C, Brouers F, Cebrián-Torrejón G, Doménech-Carbó A, Souila S, Sánchez-Aparicio J-E, Dorce D, Zapirain-Gysling I, et al. Adsorption of Vitamin B12 on Sugarcane-Derived Activated Carbon: Fractal Isotherm and Kinetics Modelling, Electrochemistry and Molecular Modelling Studies. Molecules. 2025; 30(10):2096. https://doi.org/10.3390/molecules30102096
Chicago/Turabian StyleRanguin, Ronald, Mohamed Chaker Ncibi, Corine Jean-Marius, François Brouers, Gerardo Cebrián-Torrejón, Antonio Doménech-Carbó, Steffen Souila, José-Emilio Sánchez-Aparicio, Daniel Dorce, Iker Zapirain-Gysling, and et al. 2025. "Adsorption of Vitamin B12 on Sugarcane-Derived Activated Carbon: Fractal Isotherm and Kinetics Modelling, Electrochemistry and Molecular Modelling Studies" Molecules 30, no. 10: 2096. https://doi.org/10.3390/molecules30102096
APA StyleRanguin, R., Ncibi, M. C., Jean-Marius, C., Brouers, F., Cebrián-Torrejón, G., Doménech-Carbó, A., Souila, S., Sánchez-Aparicio, J.-E., Dorce, D., Zapirain-Gysling, I., Maréchal, J.-D., Jauregui-Haza, U., & Gaspard, S. (2025). Adsorption of Vitamin B12 on Sugarcane-Derived Activated Carbon: Fractal Isotherm and Kinetics Modelling, Electrochemistry and Molecular Modelling Studies. Molecules, 30(10), 2096. https://doi.org/10.3390/molecules30102096