Sodiophilic Ag-diamane-Modulated Polypropylene Separators for High-Performance Sodium Metal Anodes
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. Diamane Synthesis
3.2. Characterization of Materials
3.3. COMSOL Simulation
3.4. Electrochemical Performance Evaluation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, Q.; Yu, D.; Chen, J.; Cheng, L.; Tang, M.; Wang, Y.; Li, Y.; Yang, J.; Wang, H. A 110 Wh kg−1 Ah-level anode-free sodium battery at−40 °C. Joule 2024, 8, 482–495. [Google Scholar] [CrossRef]
- Lee, B.; Paek, E.; Mitlin, D.; Lee, S.W. Sodium Metal Anodes: Emerging Solutions to Dendrite Growth. Chem. Rev. 2019, 119, 5416–5460. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Wang, B.; Song, H.; Mei, P.; Hu, J.; Zhang, M.; Chen, G.; Yan, D.; Zhang, D.; Huang, S. Deciphering the Performance Enhancement, Cell Failure Mechanism, and Amelioration Strategy of Sodium Storage in Metal Chalcogenides-Based Andes. Adv. Mater. 2024, 36, 2314271. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, J.; Guo, X.; Peng, C.; Song, K.; Zhang, Z.; Ding, L.; Liu, C.; Chen, W.; Dou, S. An Ultrathin Nonporous Polymer Separator Regulates Na Transfer Toward Dendrite-Free Sodium Storage Batteries. Adv. Mater. 2023, 35, 2203547. [Google Scholar] [CrossRef]
- Du, L.; Xu, G.; Sun, C.; Zhang, Y.-H.; Zhang, H.; Dong, T.; Huang, L.; Ma, J.; Sun, F.; Li, C.; et al. Smart gel polymer electrolytes enlightening high safety and long life sodium ion batteries. Nat. Commun. 2025, 16, 2979. [Google Scholar] [CrossRef]
- Deysher, G.; Oh, J.A.S.; Chen, Y.-T.; Sayahpour, B.; Ham, S.-Y.; Cheng, D.; Ridley, P.; Cronk, A.; Lin, S.W.-H.; Qian, K.; et al. Design principles for enabling an anode-free sodium all-solid-state battery. Nat. Energy 2024, 9, 1161–1172. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.; Sawczyk, M.; Yuan, Q.; Chen, F.; Mendes, T.C.; Howlett, P.C.; Fu, C.; Kral, P.; Hawker, C.J.; et al. Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes. Nat. Mater. 2022, 21, 1057–1065. [Google Scholar] [CrossRef]
- Deng, T.; Ji, X.; Zou, L.; Chiekezi, O.; Cao, L.; Fan, X.; Adebisi, T.R.; Chang, H.-J.; Wang, H.; Li, B.; et al. Interfacial-engineering-enabled practical low-temperature sodium metal battery. Nat. Nanotechnol. 2022, 17, 269–277. [Google Scholar] [CrossRef]
- Chen, K.; Li, X.; Zang, J.; Zhang, Z.; Wang, Y.; Lou, Q.; Bai, Y.; Fu, J.; Zhuang, C.; Zhang, Y.; et al. Robust VS4@rGO nanocomposite as a high-capacity and long-life cathode material for aqueous zinc-ion batteries. Nanoscale 2021, 13, 12370–12378. [Google Scholar] [CrossRef]
- Kang, T.; Sun, C.; Li, Y.; Song, T.; Guan, Z.; Tong, Z.; Nan, J.; Lee, C.-S. Dendrite-Free Sodium Metal Anodes Via Solid Electrolyte Interphase Engineering with a Covalent Organic Framework Separator. Adv. Energy Mater. 2023, 13, 2204083. [Google Scholar] [CrossRef]
- Matthews, K.C.; Rush, B.; Gearba, R.; Guo, X.; Yu, G.; Warner, J.H. Cryo-Electron Microscopy Reveals Na Infiltration into Separator Pore Free-Volume as a Degradation Mechanism in Na Anode:Liquid Electrolyte Electrochemical Cells. Adv. Mater. 2024, 36, 2308711. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gao, Y.; Liu, D.; Zou, G.; Li, L.; Fernandez, C.; Zhang, Q.; Peng, Q. A Sodiophilic Amyloid Fibril Modified Separator for Dendrite-Free Sodium-Metal Batteries. Adv. Mater. 2024, 36, 2304942. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Lin, Z.; Hu, H.; Wang, Y.; Zeng, L. 3D printing for sodium batteries: From material design to integrated devices. Appl. Phys. Rev. 2024, 11, 041319. [Google Scholar] [CrossRef]
- Yamada, Y.; Wang, J.; Ko, S.; Watanabe, E.; Yamada, A. Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 2019, 4, 269–280. [Google Scholar]
- Li, Y.Q.; Zhou, Q.; Weng, S.T.; Ding, F.X.; Qi, X.G.; Lu, J.Z.; Li, Y.; Zhang, X.; Rong, X.H.; Lu, Y.X.; et al. Interfacial engineering to achieve an energy density of over 200 Wh kg−1 in sodium batteries. Nat. Energy 2022, 7, 511–519. [Google Scholar] [CrossRef]
- Wang, X.; Lu, J.; Wu, Y.; Zheng, W.; Zhang, H.; Bai, T.; Liu, H.; Li, D.; Ci, L. Building Stable Anodes for High-Rate Na-Metal Batteries. Adv. Mater. 2024, 36, 2311256. [Google Scholar] [CrossRef]
- Zhao, C.; Wei, Y.; Pan, Y.; Chen, C. A novel strategy for capacity judgement of hard carbon in sodium-ion batteries: Ensuring the consistency of the available anode capacity between half-cell and full-cell. Solid State Ion. 2024, 412, 116586. [Google Scholar] [CrossRef]
- Yang, J.-L.; Zhao, X.-X.; Zhang, W.; Ren, K.; Luo, X.-X.; Cao, J.-M.; Zheng, S.-H.; Li, W.-L.; Wu, X.-L. “Pore-Hopping” Ion Transport in Cellulose-Based Separator Towards High-Performance Sodium-Ion Batteries. Angew. Chem. Int. Ed. 2023, 62, e202300258. [Google Scholar] [CrossRef]
- Zhao, L.; Tao, Y.; Zhang, Y.; Lei, Y.; Lai, W.-H.; Chou, S.; Liu, H.-K.; Dou, S.-X.; Wang, Y.-X. A Critical Review on Room-Temperature Sodium-Sulfur Batteries: From Research Advances to Practical Perspectives. Adv. Mater. 2024, 36, 2402337. [Google Scholar] [CrossRef]
- Xue, Z.; Zhang, T.; Li, X.; Wang, F.; Xu, G.; Zhu, M. Simultaneous Regulation of Organic and Inorganic Components in Interphase by Fiber Separator for High-Stable Sodium Metal Batteries. Angew. Chem. Int. Ed. 2025, 64, e202415283. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Q.; Xin, L.; Liu, Y.; Yang, F.; Stach, E.A.; Xie, J. Making Li-metal electrodes rechargeable by controlling the dendrite growth direction. Nat. Energy 2017, 2, 17083. [Google Scholar] [CrossRef]
- Xue, Z.; Zhu, D.; Shan, M.; Wang, H.; Zhang, J.; Cui, G.; Hu, Z.; Gordon, K.C.; Xu, G.; Zhu, M. Functional separator materials of sodium-ion batteries: Grand challenges and industry perspectives. Nano Today 2024, 55, 102175. [Google Scholar] [CrossRef]
- Lagadec, M.F.; Zahn, R.; Wood, V. Characterization and performance evaluation of lithium-ion battery separators. Nat. Energy 2019, 4, 16–25. [Google Scholar] [CrossRef]
- Han, D.; Wang, X.; Zhou, Y.-N.; Zhang, J.; Liu, Z.; Xiao, Z.; Zhou, J.; Wang, Z.; Zheng, J.; Jia, Z.; et al. A Graphene-Coated Thermal Conductive Separator to Eliminate the Dendrite-Induced Local Hotspots for Stable Lithium Cycling. Adv. Energy Mater. 2022, 12, 2201190. [Google Scholar] [CrossRef]
- Qin, J.Q.; Shi, H.D.; Huang, K.; Lu, P.F.; Wen, P.C.; Xing, F.F.; Yang, B.; Ye, M.; Yu, Y.; Wu, Z.S. Achieving stable Na metal cycling via polydopamine/multilayer graphene coating of a polypropylene separator. Nat. Commun. 2021, 12, 5786. [Google Scholar] [CrossRef]
- Li, M.; Lu, G.; Zheng, W.; Zhao, Q.; Li, Z.; Jiang, X.; Yang, Z.; Li, Z.; Qu, B.; Xu, C. Multifunctionalized Safe Separator Toward Practical Sodium-Metal Batteries with High-Performance under High Mass Loading. Adv. Funct. Mater. 2023, 33, 2214759. [Google Scholar] [CrossRef]
- Li, A.; Wang, H.; Liu, X.; Shen, W.; Fang, C.; Zhang, Z.; Zhang, Y.; Chen, L.; Wang, Q.; Wan, B.; et al. Enhanced stability of sodium anodes by amino-functioned macroporous two-dimensional nanodiamond coated polypropylene separators. Chem. Eng. J. 2024, 491, 151914. [Google Scholar] [CrossRef]
- Sorokin, P.B.; Yakobson, B.I. Two-Dimensional Diamond-Diamane: Current State and Further Prospects. Nano Lett. 2021, 21, 5475–5484. [Google Scholar] [CrossRef]
- Shen, N.; Dai, S.; Zhou, G.; Miao, J.; Hu, Z.; Zhi, G.; Li, X.; Wang, H.; Kong, D.; Xu, T.; et al. Sodiophilic Zn-Diamane Ion Rectification Layer Modulated Polypropylene Separators Enable Dendrite-Free Sodium Metal Batteries. Adv. Funct. Mater. 2025, 35, 2417809. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.; Cai, Q.; Dong, A.; Yang, D.; Zhao, D. Hierarchically Porous Silica Membrane as Separator for High-Performance Lithium-Ion Batteries. Adv. Mater. 2022, 34, 2107957. [Google Scholar] [CrossRef]
- Li, X.; Ye, W.; Xu, P.; Huang, H.; Fan, J.; Yuan, R.; Zheng, M.-S.; Wang, M.-S.; Dong, Q. An Encapsulation-Based Sodium Storage via Zn-Single-Atom Implanted Carbon Nanotubes. Adv. Mater. 2022, 34, 2202898. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Zheng, X.; Du, Y.; Borras, M.C.; Wu, K.; Konstantinov, K.; Pang, W.K.; Chou, S.; Liu, H.; Dou, S.; et al. Multifunctional Separator Enables High-Performance Sodium Metal Batteries in Carbonate-Based Electrolytes. Adv. Mater. 2024, 36, 2307645. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Tang, Z.; Zhang, Q.; Sun, H.; OuYang, M.; Cao, Y. Synergistic Dual-Polar-Functionalized Metal-Organic Framework-Modified Separator for Stable and High-Performance Sodium Metal Batteries. ACS Nano 2025, 19, 16133–16146. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.-S.; Constantin, L.; Li, D.-w.; Liu, L.; Keramatnejad, K.; Azina, C.; Huang, X.; Golgir, H.R.; Lu, Y.; Ahmadi, Z. Ultraviolet laser photolysis of hydrocarbons for nondiamond carbon suppression in chemical vapor deposition of diamond films. Light-Sci. Appl. 2018, 7, 17177. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Xu, J.; Duan, Z.; Xu, Y.; Zhang, X.; Zhang, L.; Wang, Y.; Chu, P.K. Potassium-Rich Iron Hexacyanoferrate/Carbon Cloth Electrode for Flexible and Wearable Potassium-Ion Batteries. Adv. Sci. 2024, 11, 2305467. [Google Scholar] [CrossRef]
- Jia, M.; Chen, W.; He, Y.; Liu, Y.; Jia, M. ZnS/CoS@C Derived from ZIF-8/67 Rhombohedral Dodecahedron Dispersed on Graphene as High-Performance Anode for Sodium-Ion Batteries. Molecules 2023, 28, 6914. [Google Scholar] [CrossRef]
- Petit, T.; Puskar, L. FTIR spectroscopy of nanodiamonds: Methods and interpretation. Diamond Relat. Mater. 2018, 89, 52–66. [Google Scholar] [CrossRef]
- Hou, Z.; Wang, Z.; Wang, P.; Chen, F.; Luo, X. Near-infrared light-triggered mild-temperature photothermal effect of nanodiamond with functional groups. Diamond Relat. Mater. 2022, 123, 108831. [Google Scholar] [CrossRef]
- Tian, B.; Huang, Z.; Yang, H.; Wang, H.; Xu, T.; Kong, D.; Gao, C.; Zang, J.; Li, X.; Wang, Y. Sodiophilic silver nanoparticles anchoring on vertical graphene modified carbon cloth for longevous sodium metal anodes. Ionics 2022, 28, 4641–4651. [Google Scholar] [CrossRef]
- Godipurge, S.S.; Yallappa, S.; Biradar, N.J.; Biradar, J.S.; Dhananjaya, B.L.; Hegde, G.; Jagadish, K.; Hegde, G. A facile and green strategy for the synthesis of Au, Ag and Au–Ag alloy nanoparticles using aerial parts of R. hypocrateriformis extract and their biological evaluation. Enzyme Microb. Technol. 2016, 95, 174–184. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Yang, H.; Wang, Z.; Huang, Z.; Pan, D.; Zhang, Z.; Duan, Z.; Xu, T.; Kong, D.; et al. Longevous Sodium Metal Anodes with High Areal Capacity Enabled by 3D-Printed Sodiophilic Monoliths. ACS Nano 2023, 17, 10844–10856. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, C.; Li, C.; Liang, Z.; Hu, X.; Liu, H.; Zhang, Z.; Cui, M.; Chen, G.; Wan, J.; et al. Highly Thermally Stable, Highly Electrolyte-Wettable Hydroxyapatite/Cellulose Nanofiber Hybrid Separators for Lithium- Ion Batteries. ACS Appl. Energy Mater. 2023, 6, 3862–3871. [Google Scholar] [CrossRef]
- Li, Z.; Peng, M.; Zhou, X.; Shin, K.; Tunmee, S.; Zhang, X.; Xie, C.; Saitoh, H.; Zheng, Y.; Zhou, Z.; et al. In Situ Chemical Lithiation Transforms Diamond-Like Carbon into an Ultrastrong Ion Conductor for Dendrite-Free Lithium-Metal Anodes. Adv. Mater. 2021, 33, 2100793. [Google Scholar] [CrossRef]
- Bai, W.; Wang, H.; Min, D.H.; Miao, J.; Li, B.; Xu, T.; Kong, D.; Li, X.; Yu, X.; Wang, Y.; et al. 3D-Printed Hierarchically Microgrid Frameworks of Sodiophilic Co3O4@C/rGO Nanosheets for Ultralong Cyclic Sodium Metal Batteries. Adv. Sci. 2024, 11, 2404419. [Google Scholar] [CrossRef]
- Pathak, R.; Chen, K.; Gurung, A.; Reza, K.M.; Bahrami, B.; Pokharel, J.; Baniya, A.; He, W.; Wu, F.; Zhou, Y.; et al. Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nature Commun. 2020, 11, 93. [Google Scholar] [CrossRef]
- Pan, D.; Yang, H.; Liu, Y.; Wang, H.; Xu, T.; Kong, D.; Yao, J.; Shi, Y.; Li, X.; Yang, H.Y.; et al. Ultrahigh areal capacity and long cycling stability of sodium metal anodes boosted using a 3D-printed sodiophilic MXene/rGO microlattice aerogel. Nanoscale 2023, 15, 17482–17493. [Google Scholar] [CrossRef]
- Wang, Y.; Lim, Y.V.; Huang, S.; Ding, M.; Kong, D.; Pei, Y.; Xu, T.; Shi, Y.; Li, X.; Yang, H.Y. Enhanced sodium storage kinetics by volume regulation and surface engineering via rationally designed hierarchical porous FeP@C/rGO. Nanoscale 2020, 12, 4341–4351. [Google Scholar] [CrossRef]
- Sullivan, M.; Tang, P.; Meng, X. Atomic and Molecular Layer Deposition as Surface Engineering Techniques for Emerging Alkali Metal Rechargeable Batteries. Molecules 2022, 27, 6170. [Google Scholar] [CrossRef]
- Liu, X.; Liu, H.; Yuan, R.; Shang, L.; Liu, T.; Wang, W.; Miao, Y.; Chen, X.; Song, H. Potato-starch-based hard carbon microspheres: Preparation and application as an anode material for sodium-ion batteries. Solid State Ion. 2024, 406, 116475. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, M.; Zhang, B.; Li, B. A 3D Carbon Architecture Encapsulation Strategy for Boosting the Performance of Nickel Disulfide as an Anode for Sodium-Ion Batteries. Molecules 2024, 29, 5906. [Google Scholar] [CrossRef]
- Lu, X.; Chen, R.; Shen, S.; Li, Y.; Zhao, H.; Wang, H.; Wu, T.; Su, Y.; Luo, J.; Hu, X.; et al. Spatially Confined in Situ Formed Sodiophilic-Conductive Network for High-Performance Sodium Metal Batteries. Nano Lett. 2024, 24, 5490–5497. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Wang, D.; Liu, Q.; Yu, Z.; Huang, J.-Q.; Zhang, B. Intermetallic Layers with Tuned Na Nucleation and Transport for Anode-Free Sodium Metal Batteries. Nano Lett. 2025, 25, 1800–1807. [Google Scholar] [CrossRef] [PubMed]
- Sayahpour, B.; Li, W.; Bai, S.; Lu, B.; Han, B.; Chen, Y.-T.; Deysher, G.; Parab, S.; Ridley, P.; Raghavendran, G.; et al. Quantitative analysis of sodium metal deposition and interphase in Na metal batteries. Energy Environ. Sci. 2024, 17, 1216–1228. [Google Scholar] [CrossRef]
- Liu, M.; Kong, D.; Chu, N.; Zhi, G.; Wang, H.; Xu, T.; Wang, X.; Li, X.; Zhang, Z.; Yang, H.Y.; et al. 3D Printed Sodiophilic Reduced Graphene Oxide/Diamane Microlattice Aerogel for Enhanced Sodium Metal Battery Anodes. Adv. Sci. 2025, 12, 2417638. [Google Scholar] [CrossRef]
- Fuchs, T.; Ortmann, T.; Becker, J.; Haslam, C.G.; Ziegler, M.; Singh, V.K.; Rohnke, M.; Mogwitz, B.; Peppler, K.; Nazar, L.F.; et al. Imaging the microstructure of lithium and sodium metal in anode-free solid-state batteries using electron backscatter diffraction. Nat. Mater. 2024, 23, 1678–1685. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhi, G.; Hu, Z.; Zhang, Z.; Wang, H.; Kong, D.; Xing, G.; Wang, D.; Mai, Z.; Xu, T.; Li, X.; et al. Sodiophilic Ag-diamane-Modulated Polypropylene Separators for High-Performance Sodium Metal Anodes. Molecules 2025, 30, 2092. https://doi.org/10.3390/molecules30102092
Zhi G, Hu Z, Zhang Z, Wang H, Kong D, Xing G, Wang D, Mai Z, Xu T, Li X, et al. Sodiophilic Ag-diamane-Modulated Polypropylene Separators for High-Performance Sodium Metal Anodes. Molecules. 2025; 30(10):2092. https://doi.org/10.3390/molecules30102092
Chicago/Turabian StyleZhi, Gang, Zhanwei Hu, Zhuangfei Zhang, Hui Wang, Dezhi Kong, Guozhong Xing, Dandan Wang, Zhihong Mai, Tingting Xu, Xinjian Li, and et al. 2025. "Sodiophilic Ag-diamane-Modulated Polypropylene Separators for High-Performance Sodium Metal Anodes" Molecules 30, no. 10: 2092. https://doi.org/10.3390/molecules30102092
APA StyleZhi, G., Hu, Z., Zhang, Z., Wang, H., Kong, D., Xing, G., Wang, D., Mai, Z., Xu, T., Li, X., & Wang, Y. (2025). Sodiophilic Ag-diamane-Modulated Polypropylene Separators for High-Performance Sodium Metal Anodes. Molecules, 30(10), 2092. https://doi.org/10.3390/molecules30102092