Cross-Section Calculations for Electron-Impact Ionization of Pyrimidine Molecule and Its Halogenated Derivatives: 2-Chloropyrimidine, 5-Chloropyrimidine, 2-Bromopyrimidine and 5-Bromopyrimidine
Abstract
1. Introduction
2. Results and Discussion
3. Computational Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
BEB | Binary–encounter–Bethe |
BED | Binary–encounter-dipole |
HF | Hartree–Fock |
ICS | Ionization cross-section |
OVGF | Outer valence Green function |
TCS | Total cross-section |
Appendix A. Binding Energies, B, Kinetic Orbital Energies U and HOMOs Energies of the Studied Targets
Appendix A.1. Calculated with the HF Method Binding Energies B, Kinetic Orbital Energies U of the Studied Targets
Orbital No. | B (eV) | U (eV) |
---|---|---|
1 | 423.70 | 602.02 |
2 | 423.70 | 602.02 |
3 | 307.75 | 436.01 |
4 | 307.37 | 435.98 |
5 | 307.37 | 435.98 |
6 | 306.0 | 435.86 |
7 | 36.188 | 49.142 |
8 | 32.871 | 56.227 |
9 | 29.490 | 45.438 |
10 | 24.570 | 45.287 |
11 | 24.509 | 45.486 |
12 | 20.373 | 28.960 |
13 | 19.422 | 45.659 |
14 | 17.855 | 35.506 |
15 | 16.362 | 37.558 |
16 | 16.136 | 40.181 |
17 | 15.964 | 29.630 |
18 | 12.927 | 50.071 |
19 | 11.650 | 36.887 |
20 | 11.329 | 50.811 |
21 | 10.372 | 30.498 |
Orbital No. | B (eV) | U (eV) | B (eV) | U (eV) |
---|---|---|---|---|
1 | 2852.9 | 3731.1 | 2853.4 | 3731.1 |
2 | 424.16 | 602.00 | 424.13 | 602.02 |
3 | 424.16 | 602.01 | 424.13 | 602.02 |
4 | 309.71 | 436.13 | 308.08 | 436.01 |
5 | 307.84 | 435.99 | 307.95 | 435.87 |
6 | 307.84 | 435.99 | 307.82 | 435.97 |
7 | 306.44 | 435.85 | 307.81 | 436.08 |
8 | 287.58 | 593.54 | 288.09 | 593.55 |
9 | 218.69 | 560.89 | 219.20 | 560.91 |
10 | 218.61 | 561.98 | 219.12 | 562.03 |
11 | 218.60 | 562.07 | 219.12 | 562.05 |
12 | 37.053 | 49.944 | 36.686 | 49.013 |
13 | 33.520 | 56.392 | 33.318 | 56.271 |
14 | 31.419 | 61.358 | 32.204 | 62.570 |
15 | 29.034 | 58.689 | 28.678 | 60.286 |
16 | 25.241 | 45.425 | 25.224 | 45.271 |
17 | 24.247 | 51.509 | 24.414 | 51.024 |
18 | 20.215 | 34.408 | 20.679 | 30.373 |
19 | 20.116 | 45.191 | 20.211 | 45.843 |
20 | 17.870 | 41.651 | 17.228 | 54.826 |
21 | 16.944 | 31.629 | 16.981 | 37.236 |
22 | 16.822 | 37.613 | 16.661 | 30.324 |
23 | 16.212 | 50.782 | 16.589 | 41.560 |
24 | 13.492 | 54.721 | 14.032 | 51.316 |
25 | 13.221 | 50.513 | 13.350 | 53.848 |
26 | 12.666 | 60.695 | 13.279 | 61.505 |
27 | 12.154 | 37.355 | 12.082 | 36.944 |
28 | 11.733 | 54.286 | 11.625 | 52.252 |
29 | 10.351 | 39.768 | 10.204 | 41.309 |
Orbital No. | B (eV) | U (eV) | B (eV) | U (eV) |
---|---|---|---|---|
1 | 13334 | 16195 | 13335 | 16195 |
2 | 1772.9 | 3195.1 | 1773.5 | 3195.1 |
3 | 1592.2 | 3166.6 | 1592.8 | 3166.6 |
4 | 1592.2 | 3166.9 | 1592.7 | 3166.9 |
5 | 1592.2 | 3166.9 | 1592.7 | 3166.9 |
6 | 424.20 | 602.00 | 424.13 | 602.02 |
7 | 424.20 | 602.01 | 424.13 | 602.02 |
8 | 309.57 | 436.14 | 308.11 | 436.01 |
9 | 307.85 | 435.98 | 307.86 | 435.76 |
10 | 307.85 | 435.99 | 307.85 | 435.97 |
11 | 306.39 | 435.85 | 307.79 | 436.20 |
12 | 267.70 | 766.10 | 268.24 | 766.10 |
13 | 202.77 | 709.25 | 203.31 | 709.26 |
14 | 202.55 | 710.98 | 203.09 | 711.05 |
15 | 202.53 | 711.12 | 203.08 | 711.07 |
16 | 86.836 | 586.40 | 87.380 | 586.39 |
17 | 86.732 | 587.14 | 87.268 | 587.00 |
18 | 86.709 | 587.01 | 87.266 | 587.21 |
19 | 86.450 | 587.89 | 86.996 | 587.86 |
20 | 86.450 | 587.85 | 86.996 | 587.90 |
21 | 36.971 | 49.811 | 36.677 | 49.056 |
22 | 33.520 | 56.435 | 33.324 | 56.278 |
23 | 30.376 | 51.103 | 30.881 | 56.097 |
24 | 27.840 | 77.019 | 27.691 | 75.621 |
25 | 25.227 | 45.492 | 25.192 | 45.371 |
26 | 24.106 | 55.105 | 24.292 | 54.455 |
27 | 20.118 | 34.612 | 20.677 | 30.583 |
28 | 20.082 | 45.384 | 20.141 | 45.914 |
29 | 17.737 | 41.273 | 16.966 | 37.295 |
30 | 16.817 | 37.635 | 16.706 | 40.492 |
31 | 16.812 | 30.927 | 16.568 | 29.828 |
32 | 15.685 | 52.194 | 16.185 | 59.049 |
33 | 13.052 | 59.804 | 13.126 | 55.832 |
34 | 12.248 | 49.590 | 13.012 | 52.312 |
35 | 12.158 | 37.334 | 12.235 | 62.538 |
36 | 12.018 | 52.657 | 12.087 | 36.963 |
37 | 11.181 | 68.587 | 11.498 | 57.508 |
38 | 10.165 | 47.962 | 10.039 | 47.489 |
Appendix A.2. Calculated with the OVGF Method HOMOs Energies of the Studied Targets
C4H4N2 | 2-C4H3ClN2 | 5-C4H3ClN2 | 2-C4H3BrN2 | 5-C4H3BrN2 |
---|---|---|---|---|
18.144 | 18.561 | 18.023 | 18.529 | |
17.851 | 17.923 | 17.768 | 17.808 | |
18.302 | 16.220 | 15.839 | 16.047 | 15.062 |
17.293 | 15.278 | 15.129 | 15.107 | 15.080 |
16.204 | 15.027 | 15.045 | 14.982 | 15.006 |
14.693 | 14.678 | 14.890 | 14.100 | 14.767 |
14.630 | 11.845 | 13.108 | 11.655 | 12.290 |
14.565 | 12.382 | 12.297 | 11.603 | 11.591 |
11.331 | 11.675 | 11.690 | 11.599 | 11.583 |
11.327 | 11.640 | 11.632 | 10.497 | 11.204 |
10.461 | 10.178 | 10.075 | 10.301 | 10.184 |
9.804 | 10.120 | 10.040 | 9.911 | 9.865 |
References
- Joshipura, K.N.; Mason, N. Atomic-Molecular Ionization by Electron Scattering, 1st ed.; Cambridge University Press: Cambridge, UK, 2019; pp. 177–217. [Google Scholar]
- Szmytkowski, C.; Możejko, P. Recent total cross section measurements in electron scattering from molecules. Eur. Phys. J. D 2020, 74, 90. [Google Scholar] [CrossRef]
- Boudaiffa, B.; Cloutier, P.; Hunting, D.; Huels, M.A.; Sanche, L. Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. Science 2000, 287, 1658–1660. [Google Scholar] [CrossRef] [PubMed]
- Sanche, L. Beyond radical thinking. Nature 2009, 461, 358–359. [Google Scholar] [CrossRef] [PubMed]
- McKee, A.D.; Schaible, M.J.; Rosenberg, R.A.; Kundu, S.; Orlando, T.M. Low energy secondary electron induced damage of condensed nucleotides. J. Chem. Phys. 2019, 150, 204709. [Google Scholar] [CrossRef]
- Gao, Y.; Zheng, L.; Sanche, L. Low–energy electron damage to condensed–phase DNA and its constituents. Int. J. Mol. Sci. 2021, 22, 7879. [Google Scholar] [CrossRef]
- Cobut, V.; Fongillo, Y.; Patau, J.P.; Goulet, T.; Fraser, M.J.; Jay-Gerin, J.P. Monte-Carlo simulation of fast electron and proton tracks in liquid water-I. Physical and physico-chemical aspects. Radiat. Phys. Chem. 1998, 51, 229–243. [Google Scholar]
- Villagrasa, C.; Francis, Z.; Incerti, S. Physical models implemented in the Geant4-DNA extension of the Geant-4 toolkit for calculating initial radiation damage at the molecular level. Radiat. Prot. Dosim. 2011, 143, 214–218. [Google Scholar] [CrossRef]
- Allison, J.; Amako, K.; Apostolakis, J.; Arce, P.; Asai, M.; Aso, T.; Bagli, E.; Bagulya, A.; Banerjee, S.; Barrand, G.; et al. Recent developments in Geant4. Nucl. Instr. Meth. Phys. Res. A 2016, 835, 186–225. [Google Scholar] [CrossRef]
- Rosales, L.F.; Incerti, S.; Francis, Z.; Bernal, M.A. Accounting for radiation–induced indirect damage on DNA with the Geant 4–DNA code. Phys. Med. 2018, 51, 108–116. [Google Scholar] [CrossRef]
- Costa, F.; Traoré-Dubuis, A.; Álvarez, L.; Lozano, A.I.; Ren, X.; Dorn, A.; Limão-Vieira, P.; Blanco, F.; Oller, J.C.; Muñoz, A.; et al. A Complete cross section set for electron scattering by pyridine: Modelling electron transport in the energy range 0–100 eV. Int. J. Mol. Sci. 2020, 21, 6947. [Google Scholar] [CrossRef]
- Lozano, A.I.; Álvarez, L.; García-Abenza, A.; Guerra, C.; Kossoki, F.; Rosado, J.; Blanco, F.; Oller, J.C.; Hasan, M.; Centurion, M.; et al. Electron scattering from 1-methyl-5-nitroimidazole: Cross–sections for modeling electron transport through potential radiosensitizers. Int. J. Mol. Sci. 2023, 24, 12182. [Google Scholar] [CrossRef] [PubMed]
- Tylińska, B.; Wiatrak, B.; Czyżnikowska, Ż.; Cieśla-Niechwiadowicz, A.; Gębarowska, E.; Janicka-Kłos, A. Novel pyrimidine derivatives as potential anticancer agents: Synthesis, biological evaluation and molecular doking study. Int. J. Mol. Sci. 2023, 22, 3825. [Google Scholar] [CrossRef] [PubMed]
- Al-Tuwaijri, H.M.; Al-Abdullah, E.S.; El-Rashedy, A.A.; Anasari, S.A.; Almomen, A.; Alshibl, H.M.; Haiba, M.E.; Alkahtani, H.M. New indazol–pyrimidine–based derivatives as selective anticancer agents: Design, synthesis, and in silico studies. Molecules 2023, 28, 3664. [Google Scholar] [CrossRef] [PubMed]
- Myriagkou, M.; Papakonstantinou, E.; Deligiannidou, G.-E.; Patsilinakos, A.; Kontogiorgis, C.; Pontiki, E. Novel pyrimidine derivatives as antioxidant and anticancer agents: Design, synthesis and molecular modeling studies. Molecules 2023, 28, 3913. [Google Scholar] [CrossRef]
- Baek, W.Y.; Arndt, A.; Bug, M.U.; Rabus, H.; Wang, M. Total electron–scattering cross sections of pyrimidine. Phys. Rev. A 2013, 88, 032702. [Google Scholar] [CrossRef]
- Fuss, M.C.; Sanz, A.G.; Blanco, F.; Oller, J.C.; Limão-Vieira, P.; Brunger, M.J.; García, G. Total electron scattering cross sections for pyrimidine and pyrazine as measured using a magnetically confined experimental system. J. Phys. Conf. Ser. 2014, 488, 012048. [Google Scholar] [CrossRef]
- Colmenares, R.; Sanz, A.G.; Fuss, M.C.; Blanco, F.; García, G. Stopping power for electrons in pyrimidine in the energy range 20–3000 eV. Appl. Radiat. Isotopes 2014, 83, 91–94. [Google Scholar] [CrossRef]
- Maljković, J.B.; Milosavljević, A.R.; Blanco, F.; Šević, D.; Garcıa, G.; Marinković, B.P. Absolute differential cross sections for elastic scattering of electrons from pyrimidine. Phys. Rev. A 2009, 79, 052706. [Google Scholar] [CrossRef]
- Palihawadana, P.; Sullivan, J.; Brunger, M.J.; Winstead, C.; McKoy, V.; Garcıa, G.; Blanco, F.; Buckman, S. Low–energy elastic electron interactions with pyrimidine. Phys. Rev. A 2011, 84, 062702. [Google Scholar] [CrossRef]
- Palihawadana, P.; Machacek, J.R.; Makochekanwa, C.; Sullivan, J.P.; Brunger, M.J.; Winstead, C.; McKoy, V.; Garcıa, G.; Blanco, F.; Buckman, S.J. Electron and positron scattering from pyrimidine. J. Phys. Conf. Ser. 2012, 388, 052079. [Google Scholar] [CrossRef]
- Maljković, J.B. Absolute differential cross sections for elastic electron scattering from small biomolecules. J. Phys. Conf. Ser. 2014, 565, 012005. [Google Scholar] [CrossRef]
- Baek, W.Y.; Bug, M.U.; Rabus, H. Differential elastic electron–scattering cross sections of pyrimidine in the energy range between 20 eV and 1 keV. Phys. Rev A 2014, 89, 062716. [Google Scholar] [CrossRef]
- Regeta, K.; Allan, M.; Winstead, C.; McKoy, V.; Mašın, Z.; Gorfinkiel, J.D. Resonance effects in elastic cross sections for electron scattering on pyrimidine: Experiment and theory. J. Chem. Phys. 2016, 144, 024301. [Google Scholar] [CrossRef]
- Jones, D.B.; Bellm, S.M.; Blanco, F.; García, G.; Limão-Vieira, P.; Brunger, M.J. Differential cross sections for electron impact excitation of pyrimidine. J. Chem. Phys. 2012, 137, 074304. [Google Scholar] [CrossRef]
- Jones, D.B.; Ellis-Gibbings, L.; García, G.; Nixon, K.L.; Lopes, M.C.A.; Brunger, M.J. Intermediate energy cross sections for electron–impact vibrational–excitation of pyrimidine. J. Chem. Phys. 2015, 143, 094304. [Google Scholar] [CrossRef]
- Regeta, K.; Allan, M.; Mašín, Z.; Grofinkiel, J.D. Absolute cross sections for electronic excitation of pyrimidine by electron impact. J. Chem. Phys. 2016, 144, 024302. [Google Scholar] [CrossRef]
- Sinha, N.; Antony, B. Electron and positron interaction with pyrimidine: A theoretical investigation. J. Appl. Phys. 2018, 123, 124906. [Google Scholar] [CrossRef]
- Mašín, Z.; Gornfinkiel, J.D. Effect of the Third π⋆ Resonance on the angular distributions for electron–pyrimidine scattering. Eur. Phys. J. D 2016, 70, 150. [Google Scholar] [CrossRef]
- Bug, M.U.; Baek, W.Y.; Rabus, H.; Villagrasa, C.; Meylan, S.; Rosenfeld, A.B. An electron–impact cross section data set (10 eV–1 keV) of DNA constituents based on consistent experimental data: A requisite for Monte Carlo simulations. Radiat. Phys. Chem. 2017, 130, 459–479. [Google Scholar] [CrossRef]
- Luthra, M.; Bharadvaja, A.; Prashant, A.; Baluja, K.L. Electron scattering from pyrimidine up to 5 keV. Braz. J. Phys. 2024, 54, 116. [Google Scholar] [CrossRef]
- Linert, I.; Dampc, M.; Mielewska, B.; Zubek, M. Cross sections for ionization and ionic fragmentation of pyrimidine molecules by electron collisions. Eur. Phys. J. D 2012, 66, 20. [Google Scholar] [CrossRef]
- Dinger, M.; Baek, W.Y.; Rabus, H. Comparative experimental and theoretical study on doubly differential electron–impact ionization cross sections of pyrimidine. Phys. Rev. A 2024, 109, 062813. [Google Scholar] [CrossRef]
- Wolff, W.; Luna, H.; Sigaud, L.; Tavares, A.C.; Montenegro, E.C. Absolute total and partial dissociative cross sections of pyrimidine at electron and proton intermediate impact velocities. J. Chem. Phys. 2014, 140, 064309. [Google Scholar] [CrossRef]
- Gupta, D.; Naghma, R.; Antony, B. Electron Impact total ionisation cross section for simple bio–molecules: A theoretical approach. Mol. Phys. 2014, 112, 1201–1209. [Google Scholar] [CrossRef]
- Champion, C.; Quinto, M.A.; Weck, P.F. Electron– and proton–induced ionization of pyrimidine. Eur. Phys. J. D 2015, 69, 127. [Google Scholar] [CrossRef]
- Żywicka, B.; Możejko, P. Electron–impact ionization cross sections calculations for purine and pyrimidine molecules. In Proceedings of the 6th Conference on Elementary Processes in Atomic Systems, Bratislava, Slovakia, 9–12 July 2014; pp. 236–239. [Google Scholar]
- Modelli, A.; Bolognesi, P.; Avaldi, L. Temporary anion states of pyrimidine and halopyrimidines. J. Phys. Chem. A 2011, 115, 10775–10782. [Google Scholar] [CrossRef]
- Barbosa, A.S.; Bettega, M.H.F. Shape resonances in low–energy–electron collisions with halopyrimidines. J. Chem. Phys. 2013, 139, 214301. [Google Scholar] [CrossRef]
- Lampe, F.W.; Franklin, J.L.; Field, F.H. Cross sections for ionization by electrons. J. Am. Chem. Soc. 1957, 79, 6129–6132. [Google Scholar] [CrossRef]
- Schram, B.L.; Van der Wiel, M.J.; de Heer, F.J.; Moustafa, H.R. Absolute gross ionization cross sections for electrons (0.6–12 keV) in hydrocarbons. J. Chem. Phys. 1966, 44, 49–54. [Google Scholar] [CrossRef]
- Dampc, M.; Możejko, P.; Zubek, M. Electron impact ionization and cationic fragmentation of the pyridazine molecules. Eur. Phys. J. D 2018, 72, 216. [Google Scholar] [CrossRef]
- Możejko, P.; Kasperski, G.; Szmytkowski, C.; Karwasz, G.P.; Brusa, R.S.; Zecca, A. Absolute total cross section measurements for electron scattering on benzene molecules. Chem. Phys. Lett. 1996, 257, 309–313. [Google Scholar] [CrossRef]
- Makochekanwa, C.; Sueoka, O.; Kimura, M. Comparative study of electron and positron scattering from benzene (C6H6) and hexafluorobenzene (C6F6) molecules. Phys. Rev. A 2003, 68, 032707. [Google Scholar] [CrossRef]
- Costa, F.; Alvarez, L.; Lozano, A.I.; Blanco, F.; Oller, J.C.; Muñoz, A.; Souza Barbosa, A.; Bettega, M.H.F.; Ferreira da Silva, F.; Limão-Vieira, P.; et al. Experimental and theoretical analysis for total electron scattering cross sections of benzene. J. Chem. Phys. 2019, 151, 084310. [Google Scholar] [CrossRef]
- Jones, D.B.; Bellm, S.M.; Limão-Vieira, P.; Brunger, M.J. Low–energy electron scattering from pyrimidine: Similarities and differences with benzene. Chem. Phys. Lett. 2012, 535, 30–34. [Google Scholar] [CrossRef]
- Możejko, P.; Sanche, L. Cross section calculations for electron scattering from DNA and RNA bases. Radiat. Environ. Biophys. 2003, 42, 201–211. [Google Scholar] [CrossRef]
- Możejko, P.; Sanche, L. Cross sections for electron scattering from selected components of DNA and RNA. Radiat. Phys. Chem. 2005, 73, 77–84. [Google Scholar] [CrossRef]
- Możejko, P. Calculations of electron impact ionization cross section for simple biomolecules: Formic and acetic acids. Eur. Phys. J. Spec. Top. 2007, 144, 233–237. [Google Scholar] [CrossRef]
- Szmytkowski, C.; Stefanowska, S.; Tańska, N.; Żywicka, B.; Ptasińska-Denga, E.; Możejko, P. Cross sections for electron collision with pyridine [C5H5N] molecule. Mol. Phys. 2018, 117, 395–403. [Google Scholar] [CrossRef]
- Kim, Y.K.; Rudd, M.E. Binary–encounter–dipole model for electron–impact ionization. Phys. Rev. A 1994, 50, 3954–3967. [Google Scholar] [CrossRef]
- Hwang, W.; Kim, Y.K.; Rudd, M.E. New model for electron--impact ionization cross sections of molecules. J. Chem. Phys. 1996, 104, 2956–2966. [Google Scholar] [CrossRef]
- Vriens, L. Binary–encounter and classical collision theories. In Case Studies in Atomic Physics 1; McDaniel, E.W., McDowell, M.R.C., Eds.; North-Holland Publishing Company: Amsterdam, The Netherlands, 1969; pp. 335–398. [Google Scholar]
- Bethe, H. Zur Theorie des Durchgangs schneller Korpuskularstrahlen durch Materie. Ann. Phys. 1930, 397, 325–400. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Frisch, M.; Trucks, G.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.; Cheeseman, J.R.; Montgomery, J.; et al. GAUSSIAN 03, Revision B.05; Gaussian: Pittsburgh, PA, USA, 2003. [Google Scholar]
- Cederbaum, L.S. One–body Green’s function for atoms and molecules: Theory and application. J. Phys. B 1975, 8, 290–303. [Google Scholar] [CrossRef]
- von Niessen, W.; Schirmer, J.; Cederbaum, L.S. Computational methods for the one–particle Green’s function. Comp. Phys. Rep. 1984, 1, 57–125. [Google Scholar] [CrossRef]
- Ortiz, J.V. Electron binding energies of anionic alkali metal atoms from partial fourth order electron propagator theory calculations. J. Chem. Phys. 1988, 89, 6348–6352. [Google Scholar] [CrossRef]
- Zakrzewski, V.G.; von Niessen, W. Vectorizable algorithm for Green function and many--body perturbation methods. J. Comp. Chem. 1994, 14, 13–18. [Google Scholar] [CrossRef]
- Berthod, H.; Giessner-Prettre, C.; Pullman, A. Theoretical study of the electronic properties of the purine and pyrimidine components of the nucleic acids. Theoret. Chim. Acta 1966, 5, 53–68. [Google Scholar] [CrossRef]
- Kunii, T.L.; Kuroda, H. Ionization potentials and electron affinities of carbo- and heterocyclic π–conjugated molecules. Theoret. Chim. Acta 1968, 11, 97–106. [Google Scholar] [CrossRef]
- Yencha, A.J.; El-Sayed, M.A. Lowest ionization potentials of some nitrogen heterocyclics. J. Chem. Phys. 1968, 48, 3469–3475. [Google Scholar] [CrossRef]
- Hush, N.S.; Cheung, A.S. Ionization potentials and donor properties of nucleic acid bases and related compounds. Chem. Phys. Lett. 1975, 34, 11–13. [Google Scholar] [CrossRef]
- Schwell, M.; Jochims, H.-W.; Baumgartel, H.; Leach, S. VUV Photophysics and dissociative photoionization of pyrimidine, purine, imidazole and benzimidazole in the 7–18 eV photon energy range. Chem. Phys. 2008, 353, 145–162. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Hwang, W.; Weinberger, N.M.; Ali, M.A.; Rudd, M.E. Electron-impact ionization cross sections of atmospheric molecules. J. Chem. Phys. 1997, 106, 1026–1033. [Google Scholar] [CrossRef]
- Karwasz, G.P.; Możejko, P.; Song, M.-Y. Electron–impact ionization of fluoromethanes–Review of experiments and binary–encounter models. Int. J. Mass. Spectrom. 2014, 365, 232–237. [Google Scholar] [CrossRef]
- Tanaka, H.; Brunger, M.J.; Campbell, L.; Kato, H.; Hoshino, M.; Rau, A.R.P. Scaled plane–wave Born cross sections for atoms and molecules. Rev. Mod. Phys. 2016, 88, 025004. [Google Scholar] [CrossRef]
Energy [eV] | C4H4N2 | 2-C4H3ClN2 | 5-C4H3ClN2 | 2-C4H3BrN2 | 5-C4H3BrN2 |
---|---|---|---|---|---|
9.804 | 0.00000 | ||||
9.865 | 0.00000 | ||||
9.900 | 0.00934 | 0.00355 | |||
9.911 | 0.00000 | ||||
10.00 | 0.01920 | 0.00883 | 0.01366 | ||
10.04 | 0.00000 | ||||
10.12 | 0.00000 | ||||
11 | 0.1877 | 0.1697 | 0.1930 | 0.2058 | 0.1899 |
12 | 0.5286 | 0.4370 | 0.4573 | 0.5588 | 0.5013 |
13 | 0.9283 | 0.8912 | 0.8583 | 1.052 | 0.9616 |
14 | 1.319 | 1.368 | 1.318 | 1.540 | 1.437 |
15 | 1.744 | 1.844 | 1.775 | 2.050 | 1.904 |
16 | 2.244 | 2.402 | 2.342 | 2.628 | 2.508 |
17 | 2.753 | 2.981 | 2.924 | 3.223 | 3.099 |
18 | 3.267 | 3.547 | 3.485 | 3.798 | 3.668 |
19 | 3.785 | 4.131 | 4.053 | 4.393 | 4.244 |
20 | 4.283 | 4.692 | 4.610 | 4.959 | 4.805 |
25 | 6.380 | 7.055 | 6.960 | 7.341 | 7.168 |
30 | 7.992 | 8.874 | 8.775 | 9.175 | 8.995 |
35 | 9.199 | 10.26 | 10.15 | 10.57 | 10.39 |
40 | 10.11 | 11.31 | 11.21 | 11.63 | 11.45 |
45 | 10.77 | 12.10 | 11.99 | 12.43 | 12.24 |
50 | 11.25 | 12.68 | 12.57 | 13.01 | 12.82 |
55 | 11.59 | 13.11 | 12.99 | 13.43 | 13.24 |
60 | 11.82 | 13.40 | 13.29 | 13.73 | 13.55 |
65 | 11.97 | 13.61 | 13.50 | 13.94 | 13.75 |
70 | 12.06 | 13.74 | 13.63 | 14.07 | 13.88 |
75 | 12.10 | 13.81 | 13.70 | 14.14 | 13.96 |
80 | 12.10 | 13.84 | 13.73 | 14.17 | 13.99 |
85 | 12.08 | 13.83 | 13.72 | 14.16 | 13.98 |
90 | 12.02 | 13.79 | 13.69 | 14.12 | 13.94 |
95 | 11.95 | 13.73 | 13.63 | 14.06 | 13.89 |
100 | 11.87 | 13.65 | 13.55 | 13.98 | 13.81 |
110 | 11.67 | 13.46 | 13.36 | 13.79 | 13.63 |
125 | 11.33 | 13.11 | 13.01 | 13.44 | 13.28 |
150 | 10.72 | 12.46 | 12.37 | 12.79 | 12.64 |
175 | 10.13 | 11.80 | 11.72 | 12.13 | 12.00 |
200 | 9.568 | 11.18 | 11.10 | 11.51 | 11.38 |
250 | 8.594 | 10.09 | 10.01 | 10.40 | 10.29 |
300 | 7.789 | 9.171 | 9.105 | 9.477 | 9.374 |
350 | 7.122 | 8.407 | 8.347 | 8.701 | 8.608 |
400 | 6.564 | 7.763 | 7.708 | 8.046 | 7.960 |
450 | 6.090 | 7.214 | 7.163 | 7.487 | 7.407 |
500 | 5.683 | 6.741 | 6.694 | 7.004 | 6.930 |
600 | 5.020 | 5.968 | 5.926 | 6.213 | 6.148 |
700 | 4.503 | 5.362 | 5.325 | 5.592 | 5.534 |
800 | 4.089 | 4.874 | 4.841 | 5.091 | 5.039 |
900 | 3.748 | 4.473 | 4.443 | 4.678 | 4.630 |
1000 | 3.463 | 4.137 | 4.109 | 4.331 | 4.287 |
1500 | 2.530 | 3.031 | 3.011 | 3.186 | 3.155 |
2000 | 2.009 | 2.411 | 2.395 | 2.542 | 2.516 |
2500 | 1.674 | 2.011 | 1.998 | 2.124 | 2.104 |
3000 | 1.440 | 1.731 | 1.720 | 1.831 | 1.813 |
3500 | 1.266 | 1.523 | 1.513 | 1.612 | 1.597 |
4000 | 1.131 | 1.361 | 1.353 | 1.443 | 1.429 |
4500 | 1.024 | 1.233 | 1.225 | 1.307 | 1.295 |
5000 | 0.9359 | 1.127 | 1.120 | 1.196 | 1.185 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żywicka, B.; Możejko, P. Cross-Section Calculations for Electron-Impact Ionization of Pyrimidine Molecule and Its Halogenated Derivatives: 2-Chloropyrimidine, 5-Chloropyrimidine, 2-Bromopyrimidine and 5-Bromopyrimidine. Molecules 2025, 30, 6. https://doi.org/10.3390/molecules30010006
Żywicka B, Możejko P. Cross-Section Calculations for Electron-Impact Ionization of Pyrimidine Molecule and Its Halogenated Derivatives: 2-Chloropyrimidine, 5-Chloropyrimidine, 2-Bromopyrimidine and 5-Bromopyrimidine. Molecules. 2025; 30(1):6. https://doi.org/10.3390/molecules30010006
Chicago/Turabian StyleŻywicka, Bożena, and Paweł Możejko. 2025. "Cross-Section Calculations for Electron-Impact Ionization of Pyrimidine Molecule and Its Halogenated Derivatives: 2-Chloropyrimidine, 5-Chloropyrimidine, 2-Bromopyrimidine and 5-Bromopyrimidine" Molecules 30, no. 1: 6. https://doi.org/10.3390/molecules30010006
APA StyleŻywicka, B., & Możejko, P. (2025). Cross-Section Calculations for Electron-Impact Ionization of Pyrimidine Molecule and Its Halogenated Derivatives: 2-Chloropyrimidine, 5-Chloropyrimidine, 2-Bromopyrimidine and 5-Bromopyrimidine. Molecules, 30(1), 6. https://doi.org/10.3390/molecules30010006