New Gold(I) Complexes as Potential Precursors for Gas-Assisted Methods: Structure, Volatility, Thermal Stability, and Electron Sensitivity
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Instrumentation
2.3. Software
2.4. Synthesis
2.4.1. Synthesis of [Au4(μ-(NH)2CC2F5)4]n (Denoted, for Convenience, [Au4(µ-AMDC2F5)4]n) (1)
2.4.2. Synthesis of [Au2Cl2(NH2(NH=)CC2F5)2]n (Denoted, for Convenience, [Au2Cl2(HAMDC2F5)2]n) (2)
2.5. X-Ray Crystal Structure Determinations
3. Results and Discussion
3.1. Crystallography
3.2. Infrared Spectra Analysis
3.3. Thermal Analysis
3.4. Mass Spectra Analysis
3.5. Sublimation Experiments
3.6. Variable-Temperature Infrared Spectroscopy (VT IR)
3.7. SEM/EDX Observation and TEM/EDX Studies of [Au4(µ-AMDC2F5)4]n (1) Adsorbed Thin Layers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Belic, D.; Shawrav, M.M.; Bertagnolli, E.; Wanzenboeck, H.D. Direct writing of gold nanostructures with an electron beam: On the way to pure nanostructures by combining optimized deposition with oxygen-plasma treatment. Beilstein J. Nanotechnol. 2017, 8, 2530–2543. [Google Scholar] [CrossRef]
- Tsarapkin, A.; Maćkosz, K.; Jureddy, C.S.; Utke, I.; Höflich, K. Area-Selective Chemical Vapor Deposition of Gold by Electron Beam Seeding. Adv. Mater. 2024, 36, 2313571. [Google Scholar] [CrossRef] [PubMed]
- Glessi, C.; Mahgoub, A.; Hagen, C.W.; Tilset, M. Gold(I) N-heterocyclic carbene precursors for focused electron beam-induced deposition. Beilstein J. Nanotechnol. 2021, 12, 257–269. [Google Scholar] [CrossRef]
- Kuhness, D.; Gruber, A.; Winkler, R.; Sattelkow, J.; Fitzek, H.; Letofsky-Papst, I.; Kothleitner, G.; Plank, H. High-Fidelity 3D Nanoprinting of Plasmonic Gold Nanoantennas. ACS Appl. Mater. Interfaces 2021, 13, 1178–1191. [Google Scholar] [CrossRef]
- Chen, Y.; Bi, K.; Wang, Q.; Zheng, M.; Liu, Q.; Han, Y.; Yang, J.; Chang, S.; Zhang, G.; Duan, H. Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via “Sketch and “Peel” Strategy. ACS Nano 2016, 10, 11228–11236. [Google Scholar] [CrossRef]
- Utke, I.; Swiderek, P.; Höflich, K.; Madajska, K.; Jurczyk, J.; Martinović, P.; Szymańska, I.B. Coordination and organometallic precursors of group 10 and 11: Focused electron beam induced deposition of metals and insight gained from chemical vapour deposition, atomic layer deposition, and fundamental surface and gas phase studies. Coord. Chem. Rev. 2022, 458, 213851. [Google Scholar] [CrossRef]
- Höflich, K.; Yang, R.B.; Berger, A.; Leuchs, G.; Christiansen, S. The Direct Writing of Plasmonic Gold Nanostructures by Electron-Beam-Induced Deposition. Adv. Mater. 2011, 23, 2657–2661. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Kiessling, F.; Gätjens, J. Advanced Nanomaterials in Multimodal Imaging: Design, Functionalization, and Biomedical Applications. J. Nanomater. 2010, 2010, 894303. [Google Scholar] [CrossRef]
- Wang, Q.; Han, W.; Wang, Y.; Lu, M.; Dong, L. Tape nanolithography: A rapid and simple method for fabricating flexible, wearable nanophotonic devices. Microsyst. Nanoeng. 2018, 4, 31. [Google Scholar] [CrossRef] [PubMed]
- Höflich, K.; Becker, M.; Leuchs, G.; Christiansen, S. Plasmonic dimer antennas for surface enhanced Raman scattering. Nanotechnology 2012, 23, 185303. [Google Scholar] [CrossRef] [PubMed]
- Höflich, K.; Hobler, G.; Allen, F.I.; Wirtz, T.; Rius, G.; McElwee-White, L.; Krasheninnikov, A.V.; Schmidt, M.; Utke, I.; Klingner, N.; et al. Roadmap for focused ion beam technologies. Appl. Phys. Rev. 2023, 10, 041311. [Google Scholar] [CrossRef]
- Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021, 2, 1821–1871. [Google Scholar] [CrossRef]
- Huth, M.; Porrati, F.; Dobrovolskiy, O.V. Focused electron beam induced deposition meets materials science. Microelectron. Eng. 2018, 185–186, 9–28. [Google Scholar] [CrossRef]
- Utke, I.; Michler, J.; Winkler, R.; Plank, H. Mechanical Properties of 3d Nanostructures Obtained by Focused Electron/Ion Beam-Induced Deposition: A Review. Micromachines 2020, 11, 397. [Google Scholar] [CrossRef]
- Sun, L.; Yuan, G.; Gao, L.; Yang, J.; Chhowalla, M.; Gharahcheshmeh, M.H.; Gleason, K.K.; Choi, Y.S.; Hong, B.H.; Liu, Z. Chemical vapour deposition. Nat. Rev. Methods Prim. 2021, 1, 5. [Google Scholar] [CrossRef]
- Ansari, M.Z.; Hussain, I.; Mohapatra, D.; Ansari, S.A.; Rahighi, R.; Nandi, D.K.; Song, W.; Kim, S. Atomic Layer Deposition—A Versatile Toolbox for Designing/Engineering Electrodes for Advanced Supercapacitors. Adv. Sci. 2024, 11, 2303055. [Google Scholar] [CrossRef]
- Baum, T.H. Laser Chemical Vapor Deposition of Gold: The Effect of Organometallic Structure. J. Electrochem. Soc. 1987, 134, 2616. [Google Scholar] [CrossRef]
- Barth, S.; Huth, M.; Jungwirth, F. Precursors for direct-write nanofabrication with electrons. J. Mater. Chem. C 2020, 8, 15884–15919. [Google Scholar] [CrossRef]
- Shedd, G.M.; Lezec, H.; Dubner, A.D.; Melngailis, J. Focused ion beam induced deposition of gold. Appl. Phys. Lett. 1986, 49, 1584–1586. [Google Scholar] [CrossRef]
- Blauner, P.G.; Ro, J.S.; Butt, Y.; Melngailis, J. Focused ion beam fabrication of submicron gold structures. J. Vac. Sci. Technol. B 1989, 7, 609–617. [Google Scholar] [CrossRef]
- Whitehorne, T.J.J.; Coyle, J.P.; Mahmood, A.; Monillas, W.H.; Yap, G.P.A.; Barry, S.T. Group 11 Amidinates and Guanidinates: Potential Precursors for Vapour Deposition. Eur. J. Inorg. Chem. 2011, 2011, 3240–3247. [Google Scholar] [CrossRef]
- Tong, L.; Davis, L.M.; Gong, X.; Feng, J.; Beh, E.S.; Gordon, R.G. Synthesis of volatile, reactive coinage metal 5,5-bicyclic amidinates with enhanced thermal stability for chemical vapor deposition. Dalt. Trans. 2019, 48, 6709–6713. [Google Scholar] [CrossRef] [PubMed]
- Bock, D.C.; Ou, N.C.; Bonsu, R.O.; Anghel, C.T.; Su, X.; Mcelwee-white, L. Synthesis of tungsten oxo fluoroalkoxide complexes WO(OR)3L as precursors for growth of WOx nanomaterials by aerosol-assisted chemical vapor deposition. Solid State Ion. 2018, 315, 77–84. [Google Scholar] [CrossRef]
- Reilly, W.L.; Brown, H.C. Reactions of Perfluoronitriles. I. Synthesis of Derivatives of Perfluoroamidines, N-Substituted Perfluoroamidines and Perfluorothioamides. J. Am. Chem. Soc. 1956, 78, 6032–6034. [Google Scholar] [CrossRef]
- Madajska, K. Coordination Compounds for the Formation of Nanostructures from the Gas Phase by a Focused Electron Beam Induced Deposition. Ph.D. Thesis, Nicolaus Copernicus University, Toruń, Poland, 2022. [Google Scholar]
- Uson, R.; Laguna, A.; Laguna, M.; Briggs, D.A.; Murray, H.H.; Fackler, J.P. (Tetrahydrothiophene)Gold(I) or Gold(III) Complexes. Inorg. Synth. 1989, 26, 85–91. [Google Scholar] [CrossRef]
- Szłyk, E.; Łakomska, I.; Grodzicki, A. Thermal and spectroscopic studies of the Ag(I) salts with fluorinated carboxylic and sulfonic acid residues. Thermochim. Acta 1993, 223, 207–212. [Google Scholar] [CrossRef]
- John Wiley & Sons. SpectraBase. Available online: https://spectrabase.com/ (accessed on 12 July 2024).
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011. [Google Scholar] [CrossRef] [PubMed]
- Brandenburg, K. DIAMOND, Release 2.1e; Crystal Impact GbR: Bonn, Germany, 2001. [Google Scholar]
- Farrugia, L.J. WinGX and ORTEP for Windows: An Update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Krug, M.; Weiss, M.S.; Heinemann, U.; Mueller, U. XDSAPP: A graphical user interface for the convenient processing of diffraction data using XDS. J. Appl. Crystallogr. 2012, 45, 568–572. [Google Scholar] [CrossRef]
- Kabsch, W. XDS. J. Appl. Cryst. 2010, D66, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. 2015, C71, 3–8. [Google Scholar] [CrossRef]
- CrysAlis RED and CrysAlis CCD; Oxford Diffraction Ltd.: Oxfordshire, UK; Abingdon, UK, 2000.
- Spackman, M.A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Spackman, M.A.; McKinnon, J.J. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm 2002, 4, 378–392. [Google Scholar] [CrossRef]
- Blatov, V.A.; Shevchenko, A.P.; Proserpio, D.M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro. Cryst. Growth Des. 2014, 14, 3576–3586. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2009; pp. 1–408. [Google Scholar]
- Berger, L.; Madajska, K.; Szymańska, I.B.; Höflich, K.; Polyakov, M.N.; Jurczyk, J.; Guerra-Nuñez, C.; Utke, I. Gas-assisted silver deposition with a focused electron beam. Beilstein J. Nanotechnol. 2018, 9, 224–232. [Google Scholar] [CrossRef]
- Mueller, U.; Förster, R.; Hellmig, M.; Huschmann, F.U.; Kastner, A.; Malecki, P.; Pühringer, S.; Röwer, M.; Sparta, K.; Steffien, M.; et al. The macromolecular crystallography beamlines at BESSY II of the Helmholtz-zentrum Berlin: Current status and perspectives. Eur. Phys. J. Plus 2015, 130, 141. [Google Scholar] [CrossRef]
Compound | νNH | νNH2 | ν=NH | νC=N | δNH2 | νasNCN | vsNCN | vAu-N |
---|---|---|---|---|---|---|---|---|
[Au4(µ-AMDC2F5)4]n (1) | 3412 3344 | ─ | ─ | ─ | ─ | 1614 | 1512 | 563 |
[Au2Cl2(HAMDC2F5)2]n (2) | ─ | 3233 | 3163 | 1678 | 1611 | ─ | ─ | 565 |
HAMDC2F5 | ─ | 3362 | 3130 | 1664 | 1593 | ─ | ─ | ─ |
Complex | Heat Effect | Temperature [K] | Residue [%] | |||
---|---|---|---|---|---|---|
Found [%] | Calc. [%] | |||||
[Au4(µ-AMDC2F5)4]n (1) | Endo | 322 | 527 | 550 | 56.98 | 55.01 (Au) |
[Au2Cl2(HAMDC2F5)2]n (2) | Endo Endo | 312 377 | 368 411 | 377 451 | 51.95 | 49.99 (Au) |
Element | Atomic Content of the Element [%at.] after Irradiation | Atomic Content of the Element [%at.] of the Complex |
---|---|---|
[Au4(µ-AMDC2F5)4]n (1) | ||
Au | 83.02 | 1 |
F | 13.13 | 5 |
C | 3.84 * | 3 |
N | ─ | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butrymowicz-Kubiak, A.; Muzioł, T.M.; Madajski, P.; Szymańska, I.B. New Gold(I) Complexes as Potential Precursors for Gas-Assisted Methods: Structure, Volatility, Thermal Stability, and Electron Sensitivity. Molecules 2025, 30, 146. https://doi.org/10.3390/molecules30010146
Butrymowicz-Kubiak A, Muzioł TM, Madajski P, Szymańska IB. New Gold(I) Complexes as Potential Precursors for Gas-Assisted Methods: Structure, Volatility, Thermal Stability, and Electron Sensitivity. Molecules. 2025; 30(1):146. https://doi.org/10.3390/molecules30010146
Chicago/Turabian StyleButrymowicz-Kubiak, Aleksandra, Tadeusz M. Muzioł, Piotr Madajski, and Iwona B. Szymańska. 2025. "New Gold(I) Complexes as Potential Precursors for Gas-Assisted Methods: Structure, Volatility, Thermal Stability, and Electron Sensitivity" Molecules 30, no. 1: 146. https://doi.org/10.3390/molecules30010146
APA StyleButrymowicz-Kubiak, A., Muzioł, T. M., Madajski, P., & Szymańska, I. B. (2025). New Gold(I) Complexes as Potential Precursors for Gas-Assisted Methods: Structure, Volatility, Thermal Stability, and Electron Sensitivity. Molecules, 30(1), 146. https://doi.org/10.3390/molecules30010146