Sustainable Conversion of Corncob Biomass Waste into High Performance Carbon Materials for Detection of VOCs at Room Temperature
Abstract
1. Introduction
2. Results
3. Materials and Methods
3.1. Synthesis of ACC
3.2. Synthesis of CuO
3.3. Preparation of ACC/PVA/CuO
3.4. Gas Sensing Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khaleed, A.A.; Belloa, A.; Dangbegnon, J.K.; Momodu, D.Y.; Madito, M.J.; Ugbo, F.U.; Kande, A.A.A.; Dhonge, B.P.; Barzegara, F.; Olaniyana, O.; et al. Effect of activated carbon on the enhancement of CO sensing performance of NiO. J. Alloys Compd. 2017, 694, 155–162. [Google Scholar] [CrossRef]
- Tomić, M.; Šetka, M.; Vojkůvka, L.; Vallejos, S. VOCs Sensing by Metal Oxides, Conductive Polymers, and Carbon-Based Materials. Nanomaterials 2021, 11, 552. [Google Scholar] [CrossRef] [PubMed]
- Heo, Y.J.; Park, S.J. Synthesis of activated carbon derived from rice husks for improving hydrogen storage capacity. J. Ind. Eng. Chem. 2015, 31, 330–334. [Google Scholar] [CrossRef]
- Kumar, M.; Sharma, S.; Pal, R.; Vidhani, B.; Supreet. A novel gas sensor based on activated charcoal and polyaniline composites for selective sensing of methanol vapors. Sens. Actuators Phys. 2023, 353, 114210. [Google Scholar] [CrossRef]
- Reza, M.S.; Afroze, S.; Kuterbekov, K.; Kabyshev, A.; Bekmyrza, Z.; Haque, K.; Islam, S.N.; Hossain, M.A.; Hassan, M.; Roy, H.; et al. Advanced Applications of Carbonaceous Materials in Sustainable Water Treatment, Energy Storage, and CO2 Capture: A Comprehensive Review. Sustainability 2023, 15, 8815. [Google Scholar] [CrossRef]
- Magagula, L.P. Synthesis and Characterization of Agricultural WASTE Carbon-Based Structures for Application in Sensing. Master’s Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2022. Available online: https://wiredspace.wits.ac.za (accessed on 1 December 2022).
- Gupta, M.; Hawari, H.F.; Kumar, P.; Burhanudin, Z.A. Copper Oxide/Functionalized Graphene Hybrid Nanostructures for Room Temperature Gas Sensing Applications. Crystals 2022, 12, 264. [Google Scholar] [CrossRef]
- Steinhauer, S. Gas Sensors Based on Copper Oxide Nanomaterials: A Review. Chemosensors 2021, 9, 51. [Google Scholar] [CrossRef]
- Hittini, W.; Abu-Hani, A.; Mahmoud, S. Cellulose-copper oxide hybrid nanocomposites membranes for H2S gas detection at low temperatures. Sci. Rep. 2020, 10, 2940. [Google Scholar] [CrossRef]
- Zhou, K.; Zeng, Z.; Ma, X.; Xu, X.; Guo, Y.; Li, H.; Li, L. Experimental and DFT study on the adsorption of VOCs on activated carbon/metal oxides composites. Chem. Eng. J. 2019, 372, 1122–1133. [Google Scholar] [CrossRef]
- Vasantharaj, S.; Sathiyavimal, S.; Saravanan, M.; Senthilkumar, P.; Gnanasekaran, K.; Shanmugavel, M.; Manikandan, E.; Pugazhendhi, A. Synthesis of ecofriendly copper oxide nanoparticles for fabrication over textile fabrics: Characterization of antibacterial activity and dye degradation potential. J. Photochem. Photobiol. B Biol. 2019, 191, 143–149. [Google Scholar] [CrossRef]
- Li, H.; Zheng, T.; Wang, J.; Zhou, J.; Huang, X.; Chen, L.; Hu, P.; Gao, J.; Zhen, Q.; Bashir, S.; et al. Facile preparation of zeolite-activated carbon composite from coal gangue with enhanced adsorption performance. Chem. Eng. J. 2020, 390, 124513. [Google Scholar] [CrossRef]
- Chen, G.; Wang, F.; Wang, S.; Ji, C.; Wang, W.; Dong, J.; Gao, F. Facile fabrication of copper oxide modified activated carbon composite for efficient CO2 adsorption. Korean J. Chem. Eng. 2021, 38, 46–54. [Google Scholar] [CrossRef]
- Sackey, J.; Nwanya, A.C.; Bashir, A.K.H.; Matinise, N.; Ngilirabanga, J.B.; Ameh, A.E.; Coetsee, E.; Maaza, M. Electrochemical properties of Euphorbia pulcherrima mediated copper oxide nanoparticles. Mater. Chem. Phys. 2020, 244, 122714. [Google Scholar] [CrossRef]
- Munawar, K.; Mansoor, M.A.; Basirun, W.J.; Misran, M.; Huang, N.M.; Mazhar, M. Single step fabrication of CuO-MnO-2TiO2 composite thin films with improved photoelectrochemical response. RSC Adv. 2017, 7, 15885–15893. [Google Scholar] [CrossRef]
- Khan, M.A.; Nayan, N.; Ahmad, M.K.; Soon, C.F. Surface Study of CuO Nanopetals by Advanced Nanocharacterization Techniques with Enhanced Optical and Catalytic Properties. Nanomaterials 2020, 10, 1298. [Google Scholar] [CrossRef]
- Vaseem, M.; Hong, A.-R.; Kim, R.-T.; Hahn, Y.-B. Copper oxide quantum dot ink for inkjet-driven digitally controlled high mobility field effect transistors. J. Mater. Chem. C 2013, 1, 2112. [Google Scholar] [CrossRef]
- Ahmad, S.; Mujahid, M.; Khan, A.; Mohammad, F. Graphene/Nickel Oxide-Based Nanocomposite of Polyaniline with Special Reference to Ammonia Sensing. ACS Omega 2018, 3, 9378–9387. [Google Scholar] [CrossRef]
- Silvestre-Albero, A.; Silvestre-Albero, J.; Sepúlveda-Escribano, A.; Rodríguez-Reinoso, F. Ethanol removal using activated carbon: Effect of porous structure and surface chemistry. Microporous Mesoporous Mater. 2009, 120, 62–68. [Google Scholar] [CrossRef]
- Bartolomé, J.; Taeño, M.; Martínez-Casado, R.; Maestre, D.; Cremades, A. Ethanol gas sensing mechanisms of p-type NiO at room temperature. Appl. Surf. Sci. 2022, 579, 152134. [Google Scholar] [CrossRef]
- Rahman, M.T.; Reza, K.M.; Bhuiyan, M.S.A.; Gurung, A.; Islam, M.J.; Qiao, Q. A Flexible, Ultrasensitive, and Highly Selective BiFunctional Acetone and Ethanol Gas Sensor. In Proceedings of the 12th International Conference on Electrical and Computer Engineering (ICECE), Dhaka, Bangladesh, 21–23 December 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Kumar, S.; Puri, N.K. Highly selective sustainable ethanol gas sensor based on p-p heterojunction of SnS/MoSe2 nanocomposite at room temperature. Mater. Chem. Phys. 2024, 326, 129802. [Google Scholar] [CrossRef]
- Khan, M.; Ferlazzo, A.; Hussain, M.; Fazio, E.; Corsaro, C.; Mezzasalma, A.M.; Neri, G. Ethanol-Gas-Sensing Performances of Built-in ZrO2/Co3O4 Hybrid Nanostructures. Sensors 2023, 23, 9578. [Google Scholar] [CrossRef] [PubMed]
- Dehkordi, H.A.; Mokhtari, A.; Soleimanian, V.; Ghasemi, M. High Sensitive α-Fe2O3 Nano-structured Gas Sensor Fabricated through Annealing Technique for Detecting Ethanol. arXiv 2023, arXiv:2302.14663. [Google Scholar] [CrossRef]
- Park, J.; Yee, H.; Lee, K.S.; Lee, W.; Shin, M.; Kim, T.; Kim, S. Determination of breath alcohol using a differential-type amperometric biosensor based on alcohol dehydrogenase. Anal. Chim. Acta 1999, 390, 83–91. [Google Scholar] [CrossRef]
- Okechukwu, V.O.; Mavumengwana, V.; Hümmelgen, I.A.; Mamo, M.A. Concomitant in Situ FTIR and Impedance Measurements to Address the 2-Methylcyclopentanone Vapor-Sensing Mechanism in MnO2-Polymer Nanocomposites. ACS Omega 2019, 4, 8324–8333. [Google Scholar] [CrossRef]
BET Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Size (nm) | |
---|---|---|---|
ACC | 1508 | 0.72 | 2.17 |
CuO | 0.62 | 0.12 | 1.44 |
ACC/PVA/CuO 5% | 278 | 0.13 | 1.94 |
ACC/PVA/CuO 10% | 133 | 0.061 | 1.83 |
ACC/PVA/CuO 15% | 98 | 0.058 | 2.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magagula, L.P.; Masemola, C.M.; Motaung, T.E.; Moloto, N.; Linganiso-Dziike, E.C. Sustainable Conversion of Corncob Biomass Waste into High Performance Carbon Materials for Detection of VOCs at Room Temperature. Molecules 2025, 30, 110. https://doi.org/10.3390/molecules30010110
Magagula LP, Masemola CM, Motaung TE, Moloto N, Linganiso-Dziike EC. Sustainable Conversion of Corncob Biomass Waste into High Performance Carbon Materials for Detection of VOCs at Room Temperature. Molecules. 2025; 30(1):110. https://doi.org/10.3390/molecules30010110
Chicago/Turabian StyleMagagula, Lindokuhle P., Clinton M. Masemola, Tshwafo E. Motaung, Nosipho Moloto, and Ella C. Linganiso-Dziike. 2025. "Sustainable Conversion of Corncob Biomass Waste into High Performance Carbon Materials for Detection of VOCs at Room Temperature" Molecules 30, no. 1: 110. https://doi.org/10.3390/molecules30010110
APA StyleMagagula, L. P., Masemola, C. M., Motaung, T. E., Moloto, N., & Linganiso-Dziike, E. C. (2025). Sustainable Conversion of Corncob Biomass Waste into High Performance Carbon Materials for Detection of VOCs at Room Temperature. Molecules, 30(1), 110. https://doi.org/10.3390/molecules30010110