Selenium-Modified Biochar Synergistically Achieves the Safe Use of Selenium and the Inhibition of Heavy Metal Cadmium
Abstract
:1. Introduction
2. Results
2.1. Characterization of Rice Husk Biocharn
2.1.1. SEM
2.1.2. Elemental Composition
2.1.3. Fourier Transform Infrared Spectroscopy (FTIR)
2.1.4. X-Ray Diffraction (XRD) Analysis
2.1.5. Zeta Potential
2.2. Adsorption Characteristics of Biochar
2.2.1. Adsorption Kinetics
2.2.2. Adsorption Isotherms
2.2.3. The Impact of the Initial Solution pH on the Adsorption of Cd2+ by Selenium-Modified Rice Husk Biochar
2.2.4. The Effect of Dosage on the Adsorption of Cd2+ by Selenium-Modified Rice Husk Biochar
3. Discussion
4. Materials and Methods
4.1. Reagents and Principles
4.2. Preparation and Modification of Rice Husk Biochar
4.3. Characterization of Modified Biochar
4.4. Adsorption Tests
4.4.1. Adsorption Kinetics Test
4.4.2. Isothermal Adsorption Test
4.4.3. The Influence of the Initial Solution pH Value on the Adsorption Experiment
4.4.4. Adsorption Test at Different Addition Amounts
4.5. Data Analysis
4.5.1. Calculation of Adsorption Amount and Removal Efficiency
4.5.2. Adsorption Kinetic Models
4.5.3. Intraparticle Diffusion Model
4.5.4. Adsorption Isotherm Models
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burger, J. Assessment and management of risk to wildlife from cadmium. Sci. Total Environ. 2008, 389, 37–45. [Google Scholar] [CrossRef] [PubMed]
- He, L.L.; Huang, D.Y.; Zhang, Q.; Zhu, H.H.; Xu, C.; Li, B.; Zhu, Q.H. Meta-analysis of the effects of liming on soil pH and cadmium accumulation in crops. Ecotoxicol. Environ. Saf. 2021, 223, 112621. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Li, Q.; Wu, M.; Lin, L.; Scholz, M. Review of remediation practices regarding cadmium-enriched farmland soil with particular reference to China. J. Environ. Manag. 2016, 181, 646–662. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Kim, Y.J.; Seo, Y.R. An Overview of Carcinogenic Heavy Metal: Molecular Toxicity Mechanism and Prevention. J. Cancer Prev. 2015, 20, 232–240. [Google Scholar] [CrossRef]
- Leong, Y.K.; Chang, J.S. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresour. Technol. 2020, 303, 122886. [Google Scholar] [CrossRef]
- Chen, H.X.; Xu, F.N.; Chen, Z.Z.; Jiang, O.Y.; Gustave, W.; Tang, X.J. Arsenic and cadmium removal from water by a calcium-modified and starch-stabilized ferromanganese binary oxide. J. Environ. Sci. 2020, 96, 186–193. [Google Scholar] [CrossRef]
- Shmaefsky, B.R. Principles of phytoremediation. In Phytoremediation; Springer: Cham, Switzerland, 2020; pp. 1–26. [Google Scholar]
- Vithanage, M.; Herath, I.; Joseph, S.; Bundschuh, J.; Bolan, N.; Ok, Y.S.; Kirkham, M.B.; Rinklebe, J. Interaction of arsenic with biochar in soil and water: A critical review. Carbon 2017, 113, 219–230. [Google Scholar] [CrossRef]
- Chen, P.; Shaghaleh, H.; Hamoud, Y.A.; Wang, J.; Pei, W.; Yuan, X.; Liu, J.; Qiao, C.; Xia, W.; Wang, J. Selenium-Containing Organic Fertilizer Application Affects Yield, Quality, and Distribution of Selenium in Wheat. Life 2023, 13, 1849. [Google Scholar] [CrossRef]
- Su, Y.; Huang, X.; Li, L.; Muhammad, Z.A.; Li, M.; Zheng, T.; Guo, Z.; Zhang, Y.; Luo, D.; Ye, X.; et al. Comparative Responses of Silicon to Reduce Cadmium and Enrich Selenium in Rice Varieties. Foods 2023, 12, 1656. [Google Scholar] [CrossRef]
- Brown, K.M.; Arthur, J.R. Selenium, selenoproteins and human health: A review. Public Health Nutr. 2001, 4, 593–599. [Google Scholar] [CrossRef]
- Rayman, M.P. The argument for increasing selenium intake. Proc. Nutr. Soc. 2002, 61, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Linghu, J.; Kong, L.; Huang, S.; Wang, Q.; Li, H.; Wan, Y. Comparative Responses of Cadmium Accumulation and Subcellular Distribution in Wheat and Rice Supplied with Selenite or Selenate. Environ. Sci. Pollut. Res. Int. 2021, 28, 45075–45086. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.U.; Ishaaq, I.; Barutcular, C.; Skalicky, M.; Maqbool, R.; Rastogi, A.; Hussain, S.; Allakhverdiev, S.I.; Zhu, J. Mitigation Effects of Selenium on Accumulation of Cadmium and Morpho-Physiological Properties in Rice Varieties. Plant Physiol. Biochem. 2022, 170, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Nie, L.; Zhou, B.; Hong, B.; Wang, X.; Chang, T.; Guan, C.; Guan, M. Application of Selenium Can Alleviate the Stress of Cadmium on Rapeseed at Different Growth Stages in Soil. Agronomy 2023, 13, 2228. [Google Scholar] [CrossRef]
- Xu, H.; Yan, J.; Qin, Y.; Xu, J.; Shohag, M.J.I.; Wei, Y.; Gu, M. Effect of Different Forms of Selenium on the Physiological Response and the Cadmium Uptake by Rice under Cadmium Stress. Int. J. Environ. Res. Public Health 2020, 17, 6991. [Google Scholar] [CrossRef]
- Wen, H.J.; Carignan, J.; Qiu, Y.C.; Liu, S.R. Selenium speciation in kero gen from two Chinese selenium deposits: Environmental impli cations. Environ. Sci. Technol. 2006, 40, 1126–1132. [Google Scholar] [CrossRef]
- Bajaj, M.; Eiche, E.; Neumann, T.; Winter, J.; Gallert, C. Hazardous concentrations of selenium in soil and groundwater in North-West India. J. Hazard. Mater. 2011, 189, 640–646. [Google Scholar] [CrossRef]
- Yang, G.; Zhou, R. Further observation on the human maximum safe dietary selenium intake in a seleniferous area of China. J. Trace Elem. Electrolytes Health Dis. 1994, 8, 159–165. [Google Scholar]
- Lillico, J.; Fakih, M.; Natarajan, R.; Clark, L.C.; Marshall, J.R. A report of high-dose selenium supplementation: Response and toxicities. J. Trace Elem. Med. Biol. 2004, 18, 69–74. [Google Scholar]
- Hemingwa, G. The influences of dietary intakes and supplementation with selenium and vitamin E on reproduction diseases and reproductive efficiency in cattle and sheep. Vet. Res. Commun. 2003, 27, 159–174. [Google Scholar] [CrossRef]
- Woods, W.; Falcão, N.; Teixeira, W.G. Biochar trials aim to enrich soil for smallholders. Nature 2006, 443, 144. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.L.; Yuan, Z.H.; Huang, L.; Zhong, S.X.; Wang, X.; Dai, Y.; Jiang, X.L.; Ying, G.C. Research progress of biochar source properties and remediation of heavy metal contaminated soil. J. Ecol. Environ. 2016, 25, 1879–1884. [Google Scholar]
- Park, J.H.; Choppala, G.K.; Bolan, N.S.; Chung, J.W.; Chuasavathi, T. Biochar reduces the bio-availability and phytotoxicity of heavy metals. Plant Soil 2011, 348, 439–451. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, L.; Li, B.; He, S.; Li, Y.; He, Y.; Liang, X.; Zhan, F. Remediation of Cadmium and Lead in Mine Soil by Ameliorants and Its Impact on Maize (Zea mays L.) Cultivation. Agronomy 2024, 14, 372. [Google Scholar] [CrossRef]
- Lu, X.G.; Wu, J.J.; Guo, Y.T. Advances in remediation of heavy metal contaminated soil by biochar. Appl. Chem. Ind. 2019, 5, 1172–1177. [Google Scholar]
- Zhang, X.; Miao, X.; Xiang, W.; Zhang, J.K.; Cao, C.C.; Wang, H.L.; Hu, X.; Gao, B. Ball milling biochar with ammonia hydroxide or hydrogen peroxide enhances its adsorption of phenyl volatile organic compounds (VOCs). J. Hazard. Mater. 2021, 403, 123540. [Google Scholar] [CrossRef]
- Wang, L.; Bolan, N.S.; Tsang, D.C.W.; Hou, D.Y. Green immobilization of toxic metals using alkaline enhanced rice husk biochar: Effects of pyrolysis temperature and KOH concentration. Sci. Total Environ. 2020, 720, 137584. [Google Scholar] [CrossRef]
- Sizmur, T.; Fresno, T.; Akgül, G.; Frost, H.; Moreno-Jiménez, E. Biochar modification to enhance sorption of inorganics from water. Bioresour. Technol. 2017, 246, 34–47. [Google Scholar] [CrossRef]
- Liu, X.J.; Li, M.F.; Singh, S.K. Manganese-modified lignin biochar as adsorbent for removal of methylene blue. J. Mater. Res. Technol. 2021, 12, 1434–1445. [Google Scholar] [CrossRef]
- Lian, F.; Cui, G.N.; Liu, Z.; Duo, L.; Zhang, G.L.; Xing, B.S. One-step synthesis of a novel N-doped microporous biochar derived from crop straws with high dye adsorption capacity. J. Environ. Manag. 2016, 176, 61–68. [Google Scholar] [CrossRef]
- Lu, Z.; Zhang, H.; Shahab, A.; Zhang, K.; Zeng, H.T.; Bacha, A.-U.-R.; Nabi, I.; Ullah, H. Comparative study on characterization and adsorption properties of phosphoric acid activated biochar and nitrogen-containing modified biochar employing eucalyptus as a precursor. J. Clean. Prod. 2021, 303, 127046. [Google Scholar] [CrossRef]
- Hu, J.Y.; Tao, R.H.; Zhou, X.T.; Zhang, H.M.; Hu, H.X.; Gao, Y.X.; Xie, J.H.; Ma, Y.H. Effects of silicon and selenium fertilizer on Cd and Pb uptake and accumulation in rice. J. Agric. Resour. Environ. 2023, 40, 1308–1318. [Google Scholar]
- Guo, Y.K.; Mao, K.; Cao, H.R.; Ali, W.; Lei, D.; Teng, D.; Chang, C.; Yang, X.; Yang, Q.; Niazi, N.K.; et al. Exogenous selenium (cadmium) inhibits the absorption and transportation of cadmium (selenium) in rice. Environ. Pollut. 2021, 268, 115829. [Google Scholar] [CrossRef]
- Shao, S.; Ma, B.; Ai, L.; Tian, X.; Zhang, L. Foliar Spraying of Selenium Combined with Biochar Alleviates Cadmium Toxicity in Peanuts and Enriches Selenium in Peanut Grains. Int. J. Environ. Res. Public Health 2022, 19, 3542. [Google Scholar] [CrossRef]
- Saidi, I.; Chtourou, Y.; Djebali, W. Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings. J. Plant Physiol. 2014, 171, 85–91. [Google Scholar] [CrossRef]
- Wang, C.X.; Liu, Y.C.; Chang, Z.L.; Chen, Q.B.; Wang, Y.; Li, Z.C.; Yan, M.; Wei, Y. Impact of modified rice husk biochar on denitrification process and N2O emission in water. Chin. J. Environ. Sci. 2013, 43, 2908–2916. [Google Scholar]
- Bashir, S.; Zhu, J.; Fu, Q.L.; Hu, H.Q. Comparing the adsorption mechanism of Cd by rice straw pristine and KOH-modified biochar. Environ. Sci. Pollut. Res. 2018, 11, 3384–3396. [Google Scholar] [CrossRef]
- Wang, J.N.; Sun, X.; Yang, L.H.; Jiang, N.; Zhang, M.; Liu, Z.Q.; He, T.Y. Characterization and Cd2+ adsorption properties of rice husk biochar modified by chitosan, iron and manganese. J. Agric. Environ. Sci. 2023, 42, 1964–1973. [Google Scholar]
- Yang, J.H.; Zhang, H.L.; Liang, J.J.; Hu, Z.K. Adsorption of methylene blue bychitosan/magnetic durian biochar. Environ. Sci. Technol. 2021, 44, 7–12. [Google Scholar]
- Wangw, X. Preparation of Chitosan-Modified Biochar and Its Adsorption performance on Cadmium. Master’s Thesis, Chang’an University, Xi’an, China, 2022; pp. 20–21. [Google Scholar]
- Jin, Y.H.; Wang, L.; He, X.M. Research progress of lithium-selenium batteries. Energy Storage Sci. Technol. 2015, 6, 569–576. [Google Scholar]
- Li, J.; Zhang, C.; Tao, Y.; Ling, G.W.; Tao, Q.H. Lithium-selenium batteries and carbon/selenium electrodes: Opportunities and challenges. New Carbon Mater. 2016, 5, 459–466. [Google Scholar]
- Fu, X.Y.; Wang, J.Q.; Zhang, L.L.; Li, T.; Liu, J.; Yang, X.L. Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 prepared by using activated carbon as template and carbon source. Lonics 2022, 6, 4423–4431. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, S.; Xi, C.; Zhang, F. Modification of the crosslinked hyperbranched polyamide-amines by thiourea and its selective adsorption for Cu(II). Polym. Bull. 2023, 80, 7927–7947. [Google Scholar] [CrossRef]
- Liu, S.; Wang, J. Exploring the potential of cellulose benzoate adsorbents modified with carbon nanotubes and magnetic carbon nanotubes for microplastic removal from water. Chem. Eng. J. 2023, 469, 143910. [Google Scholar] [CrossRef]
- Van Veenhuyzen, B.; Tichapondwa, S.; Höorstmann, C.; Chirwa, E.; Brink, H.G. High capacity Pb(II)adsorption characteristics onto raw-and chemically activated waste activated sludge. J. Hazard. Mater. 2021, 416, 125943. [Google Scholar] [CrossRef]
- Chen, H.S.; Hong, C.Q.; Mo, W.J.; Cai, X.K.; Gui, F.Z.; Guan, X.; Pan, X.H. Investigation on the adsorption of heavy metal nickel by biochar prepared from three types of fungal bran. Chin. Agric. Sci. Bull. 2023, 39, 40–46. [Google Scholar]
- Zhangl, Z.; Yi, P.; Fang, D.D.; Wang, Q. Adsorption mechanism of cadmium by superparamagnetic nano-Fe3O4@SiO2 functionalized materials. Environ. Sci. 2021, 42, 2917–2927. [Google Scholar]
- Zhang, S.; Arkin, K.; Zheng, Y.; Ma, J.C.; Bei, Y.Y.; Liu, D.; Shang, Q.K. Preparation of a composite material based on self-assembly of biomass carbon dots and sodium alginate hydrogel and its green, efficient and visual adsorption performance for Pb2+. J. Environ. Chem. Eng. 2022, 10, 106921. [Google Scholar] [CrossRef]
- Liu, L.; Yue, T.; Liu, R.; Lin, H.; Wang, D.; Li, B. Efficient absorptive removal of Cd(II)in aqueous solution by biochar derived from sewage sludge and calcium sulfate. Bioresour. Technol. 2021, 336, 125333. [Google Scholar] [CrossRef]
- Luo, X.; Yu, L.; Wang, C.; Yin, X.; Mosa, A.; Lv, J.; Sun, H. Sorption of vanadium (V) onto natural soil colloids under various solution pH and ionic strength conditions. Chemosphere 2017, 169, 609–617. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Liu, G.C.; Li, F.M.; Zheng, H. Adsorption of Cd(II)varies with biochars derived at different pyrolysis temperatures. Environ. Sci. 2014, 35, 4735–4744. [Google Scholar]
- Wei, K.; Chen, L.; Qu, Y.; Zhang, Y.F.; Jin, X.Y.; Xue, W.B.; Zhang, J.L. Zeta potential of microarc oxidation film onzirlo alloy in different aqueous solutions. Corros. Sci. 2018, 143, 129–135. [Google Scholar] [CrossRef]
- Cui, Z.W.; Ren, Y.F.; Wang, W.; Zhang, L.M. Adsorption characteristics and mechanism of cadmium in water by alkali and magnetic composite modified wheat straw biochar. Environ. Sci. 2020, 41, 3315–3325. [Google Scholar]
- Zhang, T.T.; Chen, J.M.; Xiong, H.Y.; Yuan, Z.D.; Zhu, Y.L.; Hu, B.W. Constructing new Fe3O4@MnOx with 3D hollow structure for efficient recovery of uranium from simulated seawater. Chemosphere 2021, 283, 131241. [Google Scholar] [CrossRef]
- Tong, X.J.; Li, J.Y.; Jiang, J.; Xu, R.K. Effect of biochars derived from crop straws on Cu(II)adsorption by red soils. J. Ecol. Rural. Environ. 2011, 27, 37–41. [Google Scholar]
- Nassar, N.N. Rapid removal and recovery of Pb(II)from wastewater by magnetic nanoadsorbents. J. Hazard. Mater. 2010, 184, 538–546. [Google Scholar] [CrossRef]
- Li, N.W.; Cheny, Q.; Luo, W.; Wu, G.H. Effect of chitosan/biochar composites on Cr ion adsorption. Appl. Chem. Ind. 2022, 51, 406–410+425. [Google Scholar]
- Hou, S.Q.; Wang, H.Z.; Sun, J.X.; Zhu, P.Y. Preparation of “Mg O/AC” and its adsorption properties of Cr(VI). Chin. J. Environ. Eng. 2009, 3, 2133–2137. [Google Scholar]
- Wang, Y.Z.; Zhou, X.; Xiu, L.; Shan, R.; Yuan, H.R. Preparation of K2FeO4 modified biochar and its adsorption characteristics for Cd(II)in aqueous solution. Ecol. Environ. Sci. 2021, 30, 2380–2386. [Google Scholar]
- Wang, F. Adsorption Characteristics of Rice Husk Biochar and Its Effect to Remediate Soil Polluted by Heavy Metal Cadmium. Master’s Thesis, Shenyang Agricultural University, Shenyang, China, 2017; pp. 18–19. [Google Scholar]
- Wen, X.O. Study on Passivation Efficiency and Mechanism of Iron-Based Biochar for Cadmium and Arsenic. Master’s Thesis, Guangdong University of Technology, Guangzhou, China, 2021; pp. 27–28. [Google Scholar]
Sample | Mass Percentage/% | ||||||
---|---|---|---|---|---|---|---|
C | N | O | Si | P | Se | Cd | |
CK350 | 77.75 | 2.26 | 15.72 | 2.51 | 0.95 | 0.08 | 0.21 |
A350 | 77.59 | 2.81 | 13.05 | 2.02 | 0.89 | 4.58 | 0.15 |
B350 | 69.91 | 4.70 | 17.75 | 2.04 | 0.88 | 3.64 | 0.08 |
C350 | 62.42 | 3.48 | 28.53 | 1.59 | 1.16 | 2.75 | 0.07 |
Adsorption Kinetics | Parameter | CK350 | A350 | B350 | C350 |
---|---|---|---|---|---|
Pseudo-first order kinetic model | qe/(mg·g−1) | 9.422 | 41.535 | 22.015 | 36.771 |
k1 | 0.451 | 1.387 | 0.802 | 1.083 | |
R2 | 0.897 | 0.923 | 0.895 | 0.889 | |
Pseudo-secondary kinetic model | qe/(mg·g−1) | 10.379 | 44.472 | 24.233 | 36.211 |
k2 | 0.060 | 1.894 | 0.088 | 0.075 | |
R2 | 0.956 | 0.966 | 0.951 | 0.923 |
Item | Parameter | CK350 | A350 | B350 | C350 |
---|---|---|---|---|---|
The first stage | kip/(mg·g−1·min0.5) | 6.363 | 39.718 | 19.594 | 42.75 |
c/(mg·g−1) | 1.897 | 6.848 | 5.251 | 15.038 | |
R2 | 1 | 1 | 1 | 1 | |
The second stage | kip/(mg·g−1·min0.5) | 4.147 | 6.267 | 6.39 | 7.857 |
c/(mg·g−1) | 0.933 | 26.998 | 6.564 | 18.432 | |
R2 | 0.998 | 0.964 | 0.973 | 0.976 | |
The third stage | kip/(mg·g−1·min0.5) | 0.121 | 0.287 | 0.341 | 0.048 |
c/(mg·g−1) | 8.896 | 41.578 | 21.236 | 37.481 | |
R2 | 0.969 | 0.720 | 0.762 | 0.877 |
Adsorption Isotherms | Parameter | CK350 | A350 | B350 | C350 |
---|---|---|---|---|---|
Langmuir model | qmax/(mg·g−1) | 12.256 | 57.845 | 25.799 | 39.666 |
K1(L·mg−1) | 0.049 | 0.040 | 0.417 | 0.951 | |
R2 | 0.970 | 0.868 | 0.994 | 0.989 | |
Freundlich model | KF | 1.962 | 7.504 | 11.322 | 19.538 |
1/n | 0.363 | 0.402 | 0.198 | 0.183 | |
R2 | 0.861 | 0.953 | 0.791 | 0.836 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Jiang, H.; Tan, Z.; Yu, L.; Chen, J.; Xiao, Q.; Rong, Q.; Zhou, C. Selenium-Modified Biochar Synergistically Achieves the Safe Use of Selenium and the Inhibition of Heavy Metal Cadmium. Molecules 2025, 30, 347. https://doi.org/10.3390/molecules30020347
Wang W, Jiang H, Tan Z, Yu L, Chen J, Xiao Q, Rong Q, Zhou C. Selenium-Modified Biochar Synergistically Achieves the Safe Use of Selenium and the Inhibition of Heavy Metal Cadmium. Molecules. 2025; 30(2):347. https://doi.org/10.3390/molecules30020347
Chicago/Turabian StyleWang, Wanjing, Haiyan Jiang, Zebin Tan, Luyao Yu, Jie Chen, Qingliang Xiao, Qinlei Rong, and Chunhuo Zhou. 2025. "Selenium-Modified Biochar Synergistically Achieves the Safe Use of Selenium and the Inhibition of Heavy Metal Cadmium" Molecules 30, no. 2: 347. https://doi.org/10.3390/molecules30020347
APA StyleWang, W., Jiang, H., Tan, Z., Yu, L., Chen, J., Xiao, Q., Rong, Q., & Zhou, C. (2025). Selenium-Modified Biochar Synergistically Achieves the Safe Use of Selenium and the Inhibition of Heavy Metal Cadmium. Molecules, 30(2), 347. https://doi.org/10.3390/molecules30020347