A Comparative Study of Cerium(III) and Cerium(IV) Phosphates for Sunscreens
Abstract
:1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gallagher, R.P.; Lee, T.K. Adverse Effects of Ultraviolet Radiation: A Brief Review. Prog. Biophys. Mol. Biol. 2006, 92, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Serpone, N.; Dondi, D.; Albini, A. Inorganic and Organic UV Filters: Their Role and Efficacy in Sunscreens and Suncare Products. Inorganica Chim. Acta 2007, 360, 794–802. [Google Scholar] [CrossRef]
- Ballestín, S.S.; Bartolomé, M.J.L. Toxicity of Different Chemical Components in Sun Cream Filters and Their Impact on Human Health: A Review. Appl. Sci. 2023, 13, 712. [Google Scholar] [CrossRef]
- Gilbert, E.; Pirot, F.; Bertholle, V.; Roussel, L.; Falson, F.; Padois, K. Commonly used UV filter toxicity on biological functions: Review of last decade studies. Int. J. Cosmet. Sci. 2013, 35, 208–219. [Google Scholar] [CrossRef] [PubMed]
- González, S.; Fernández-Lorente, M.; Gilaberte-Calzada, Y. The Latest on Skin Photoprotection. Clin. Dermatol. 2008, 26, 614–626. [Google Scholar] [CrossRef] [PubMed]
- Kolesnik, I.V.; Aslandukov, A.N.; Arkhipin, A.S.; Kozlov, D.A. Hydrothermal Synthesis of Layered Titanium Phosphate Ti2O2H(PO4)[(NH4)2PO4]2 and Its Potential Application in Cosmetics. Crystals 2019, 9, 332. [Google Scholar] [CrossRef]
- Egambaram, O.P.; Kesavan Pillai, S.; Ray, S.S. Materials Science Challenges in Skin UV Protection: A Review. Photochem. Photobiol. 2020, 96, 779–797. [Google Scholar] [CrossRef]
- Carella, F.; Degli Esposti, L.; Adamiano, A.; Iafisco, M. The Use of Calcium Phosphates in Cosmetics, State of the Art and Future Perspectives. Materials 2021, 14, 6398. [Google Scholar] [CrossRef] [PubMed]
- Parwaiz, S.; Khan, M.M.; Pradhan, D. CeO2-Based Nanocomposites: An Advanced Alternative to TiO2 and ZnO in Sunscreens. Mater. Express 2019, 9, 185–202. [Google Scholar] [CrossRef]
- Nery, É.M.; Martinez, R.M.; Velasco, M.V.R.; Baby, A.R. A Short Review of Alternative Ingredients and Technologies of Inorganic UV Filters. J. Cosmet. Dermatol. 2021, 20, 1061–1065. [Google Scholar] [CrossRef]
- Seixas, V.C.; Serra, O.A. Stability of Sunscreens Containing CePO4: Proposal for a New Inorganic UV Filter. Molecules 2014, 19, 9907–9925. [Google Scholar] [CrossRef]
- De Lima, J.F.; Serra, O.A. Cerium Phosphate Nanoparticles with Low Photocatalytic Activity for UV Light Absorption Application in Photoprotection. Dye. Pigment. 2013, 97, 291–296. [Google Scholar] [CrossRef]
- Lima, J.F.; De Sousa Filho, P.C.; Serra, O.A. Single Crystalline Rhabdophane-Type CePO4 Nanoparticles as Efficient UV Filters. Ceram. Int. 2016, 42, 7422–7431. [Google Scholar] [CrossRef]
- Onoda, H.; Tanaka, R. Synthesis of Cerium Phosphate White Pigments from Cerium Carbonate for Cosmetics. J. Mater. Res. Technol. 2019, 8, 5524–5528. [Google Scholar] [CrossRef]
- Onoda, H.; Iwashita, M. Synthesis of Novel White Pigments by Shaking Cerium Compounds with Phosphoric Acid. Emergent Mater. 2023, 6, 1089–1095. [Google Scholar] [CrossRef]
- Masui, T.; Tategaki, H.; Furukawa, S.; Imanaka, N. Synthesis and Characterization of New Environmentally-Friendly Pigments Based on Cerium Phosphate. J. Ceram. Soc. Jpn. 2004, 112, 646–649. [Google Scholar] [CrossRef]
- Sato, T.; Sato, C.; Yin, S. Optimization of Hydrothermal Synthesis of Plate-Like Hydrated Cerium Phosphates and Their Photochemical Properties. Phosphorus Res. Bull. 2008, 22, 17–21. [Google Scholar] [CrossRef]
- Kozlova, T.O.; Popov, A.L.; Kolesnik, I.V.; Kolmanovich, D.D.; Baranchikov, A.E.; Shcherbakov, A.B.; Ivanov, V.K. Amorphous and Crystalline Cerium(IV) Phosphates: Biocompatible ROS-Scavenging Sunscreens. J. Mater. Chem. B 2022, 10, 1775–1785. [Google Scholar] [CrossRef]
- Muthukumar Sivaraman, R.; Daphne Jacinth Gracia, K.; Sheeba Thavamani, S.; Peter Amaladhas, T.; Devanesan, S.; AlSalhi, M.S.; Asemi, N.N.; Natarajan, S. CeO2-CePO4 and Ag@CeO2-CePO4 Nanocomposites from Penaeus Semisulcatus for Heavy Metals Sensing, UV Shielding and Cytotoxic Applications. Arab. J. Chem. 2024, 17, 105382. [Google Scholar] [CrossRef]
- Yin, S.; Saito, M.; Liu, X.; Sato, T. Preparation and Characterization of Plate-like Cerium Phosphate/Nanosize Calcia Doped Ceria Composites by Precipitation Method. Phosphorus Res. Bull. 2011, 25, 68–71. [Google Scholar] [CrossRef]
- Ivanov, V.K.; Baranchikov, A.E.; Polezhaeva, O.S.; Kopitsa, G.P.; Tret’yakov, Y.D. Oxygen Nonstoichiometry of Nanocrystalline Ceria. Russ. J. Inorg. Chem. 2010, 55, 325–327. [Google Scholar] [CrossRef]
- Kozlova, T.O.; Vasil’eva, D.N.; Kozlov, D.A.; Teplonogova, M.A.; Birichevskaya, K.V.; Baranchikov, A.E.; Gavrikov, A.V.; Ivanov, V.K. On the Chemical Stability of CeIV(PO4)(HPO4)0.5(H2O)0.5 in Alkaline Media. Russ. J. Inorg. Chem. 2022, 67, 1901–1907. [Google Scholar] [CrossRef]
- ISO 24443; Determination of Value Sunscreen UVA Protection Factor In Vitro. International Organization for Standardization: Geneva, Switzerland, 2016.
- Lyons, A.B.; Trullas, C.; Kohli, I.; Hamzavi, I.H.; Lim, H.W. Photoprotection beyond Ultraviolet Radiation: A Review of Tinted Sunscreens. J. Am. Acad. Dermatol. 2021, 84, 1393–1397. [Google Scholar] [CrossRef]
- Nazaraly, M.; Wallez, G.; Chanéac, C.; Tronc, E.; Ribot, F.; Quarton, M.; Jolivet, J.P. The First Structure of a Cerium(IV) Phosphate: Ab Initio Rietveld Analysis of CeIV(PO4)(HPO4)0.5(H2O)0.5. Angew. Chem. Int. Ed. 2005, 44, 5691–5694. [Google Scholar] [CrossRef]
- Tong, H.N.; Zhang, H.; Cheng, W.D.; Wu, D.S.; Gong, Y.J.; Zhu, J.; Huang, S.P.; Zhao, D. Synthesis, structure and optical properties of cerium(III) triphosphate CeP3O9. Chin. J. Struct. Chem. 2007, 26, 338–346. [Google Scholar]
- Nazaraly, M.; Wallez, G.; Chanéac, C.; Tronc, E.; Ribot, F.; Quarton, M.; Jolivet, J.P. Synthesis and Characterization of CeIV(PO4)(HPO4)0.5(H2O)0.5. J. Phys. Chem. Solids 2006, 67, 1075–1078. [Google Scholar] [CrossRef]
- Brandel, V.; Clavier, N.; Dacheux, N. Synthesis and Characterization of Uranium(IV) Phosphate-Hydrogenphosphate Hydrate and Cerium(IV) Phosphate-Hydrogenphosphate Hydrate. J. Solid State Chem. 2005, 178, 1054–1063. [Google Scholar] [CrossRef]
- Clavier, N.; Mesbah, A.; Szenknect, S.; Dacheux, N. Monazite, Rhabdophane, Xenotime & Churchite: Vibrational Spectroscopy of Gadolinium Phosphate Polymorphs. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 205, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Skogareva, L.S.; Shekunova, T.O.; Baranchikov, A.E.; Yapryntsev, A.D.; Sadovnikov, A.A.; Ryumin, M.A.; Minaeva, N.A.; Ivanov, V.K. Synthesis of Cerium Orthophosphates with Monazite and Rhabdophane Structure from Phosphoric Acid Solutions in the Presence of Hydrogen Peroxide. Russ. J. Inorg. Chem. 2016, 61, 1219–1224. [Google Scholar] [CrossRef]
- Masui, T.; Hirai, H.; Imanaka, N.; Adachi, G. Characterization and Thermal Behavior of Amorphous Cerium Phosphate. Phys. Status Solidi 2003, 198, 364–368. [Google Scholar] [CrossRef]
- Garcia-Lodeiro, I.; Irisawa, K.; Jin, F.; Meguro, Y.; Kinoshita, H. Reduction of Water Content in Calcium Aluminate Cement with/out Phosphate Modification for Alternative Cementation Technique. Cem. Concr. Res. 2018, 109, 243–253. [Google Scholar] [CrossRef]
- Kosacki, I.; Suzuki, T.; Anderson, H.U.; Colomban, P. Raman Scattering and Lattice Defects in Nanocrystalline CeO2 Thin Films. Solid State Ion. 2002, 149, 99–105. [Google Scholar] [CrossRef]
- Ivanov, V.K.; Shcherbakov, A.B.; Usatenko, A. V Structure-Sensitive Properties and Biomedical Applications of Nanodispersed Cerium Dioxide. Russ. Chem. Rev. 2009, 78, 855–871. [Google Scholar] [CrossRef]
- Loridant, S. Raman Spectroscopy as a Powerful Tool to Characterize Ceria-Based Catalysts. Catal. Today 2021, 373, 98–111. [Google Scholar] [CrossRef]
- Sato, T.; Yin, S. Morphology Control of Cerium Phosphates for Uv-Shielding Application. Phosphorus Res. Bull. 2010, 24, 43–48. [Google Scholar] [CrossRef]
- Meng, F.; Li, H.; Gong, J.; Fan, Z. Photocatalytic and Magnetic Properties of Loosened Ceria Hollow Microspheres Synthesized by a Single-Step Hydrothermal Method. J. Mater. Sci. Mater. Electron. 2016, 27, 8433–8439. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, B.; Jiang, S.; Bai, H.; Zhang, S. Use of CeO2 Nanoparticles to Enhance UV-Shielding of Transparent Regenerated Cellulose Films. Polymers 2019, 11, 458. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.-P.; Xu, A.-W.; Song, R.-Q.; Zhang, H.-X.; You, L.-P.; Yu, J.C.; Liu, H.-Q. Systematic Synthesis and Characterization of Single-Crystal Lanthanide Orthophosphate Nanowires. J. Am. Chem. Soc. 2003, 125, 16025–16034. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Ni, Y.; Ma, X. Phase-Controllable Synthesis, Shape Evolution and Optical Performances of CePO4 Nanocrystals via a Simple Oil-Bath Route. RSC Adv. 2014, 4, 36553. [Google Scholar] [CrossRef]
- Al Mamun, M.A.; Noor, M.; Ullah, A.K.M.A.; Hossain, M.S.; Abdul, M.; Islam, F.; Hakim, M.A. Effect of CePO4 on Structural, Magnetic and Optical Properties of Ceria Nanoparticles. Mater. Res. Express 2018, 6, 016102. [Google Scholar] [CrossRef]
- Chen, G.; Baccaro, S.; Nikl, M.; Cecilia, A.; Du, Y.Y.; Mihokova, E. The Red-Shift of Ultraviolet Spectra and the Relation to Optical Basicity of Ce-Doped Alkali Rare-Earth Phosphate Glasses. J. Am. Ceram. Soc. 2004, 87, 1378–1380. [Google Scholar] [CrossRef]
- Chen, M.Y.; Zu, X.T.; Xiang, X.; Zhang, H.L. Effects of Ion Irradiation and Annealing on Optical and Structural Properties of CeO2 Films on Sapphire. Phys. B Condens. Matter 2007, 389, 263–268. [Google Scholar] [CrossRef]
- Elaziouti, A.; Laouedj, N.; Bekka, A.; Vannier, R.-N. Preparation and Characterization of p–n Heterojunction CuBi2O4/CeO2 and Its Photocatalytic Activities under UVA Light Irradiation. J. King Saud Univ. Sci. 2015, 27, 120–135. [Google Scholar] [CrossRef]
- Verma, R.; Samdarshi, S.K.; Bojja, S.; Paul, S.; Choudhury, B. A Novel Thermophotocatalyst of Mixed-Phase Cerium Oxide (CeO2/Ce2O3) Homocomposite Nanostructure: Role of Interface and Oxygen Vacancies. Sol. Energy Mater. Sol. Cells 2015, 141, 414–422. [Google Scholar] [CrossRef]
- Noor, M.; Al Mamun, M.A.; Atique Ullah, A.K.M.; Matsuda, A.; Kawamura, G.; Hakim, M.A.; Islam, M.F.; Matin, M.A. Physics of Ce3+↔Ce4+ Electronic Transition in Phytosynthesized CeO2/CePO4 Nanocomposites and Its Antibacterial Activities. J. Phys. Chem. Solids 2021, 148, 109751. [Google Scholar] [CrossRef]
- Kolesnik, I.V.; Shcherbakov, A.B.; Kozlova, T.O.; Kozlov, D.A.; Ivanov, V.K. Comparative Analysis of Sun Protection Characteristics of Nanocrystalline Cerium Dioxide. Russ. J. Inorg. Chem. 2020, 65, 960–966. [Google Scholar] [CrossRef]
- Rodrigues, N.D.N.; Stavros, V.G. From fundamental science to product: A bottom-up approach to sunscreen development. Sci. Prog. 2018, 101, 8–31. [Google Scholar] [CrossRef]
- Bouddouch, A.; Amaterz, E.; Bakiz, B.; Taoufyq, A.; Guinneton, F.; Villain, S.; Valmalette, J.C.; Gavarri, J.R.; Benlhachemi, A. Photocatalytic and Photoluminescence Properties of CePO4 Nanostructures Prepared by Coprecipitation Method and Thermal Treatment. Optik 2021, 238, 166683. [Google Scholar] [CrossRef]
- Zholobak, N.M.; Ivanov, V.K.; Shcherbakov, A.B.; Shaporev, A.S.; Polezhaeva, O.S.; Baranchikov, A.Y.; Spivak, N.Y.; Tretyakov, Y.D. UV-Shielding Property, Photocatalytic Activity and Photocytotoxicity of Ceria Colloid Solutions. J. Photochem. Photobiol. B Biol. 2011, 102, 32–38. [Google Scholar] [CrossRef]
- Shekunova, T.O.; Lapkina, L.A.; Shcherbakov, A.B.; Meshkov, I.N.; Ivanov, V.K.; Tsivadze, A.Y.; Gorbunova, Y.G. Deactivation of Singlet Oxygen by Cerium Oxide Nanoparticles. J. Photochem. Photobiol. A Chem. 2019, 382, 111925. [Google Scholar] [CrossRef]
- Coronado, J.M.; Javier Maira, A.; Martínez-Arias, A.; Conesa, J.C.; Soria, J. EPR Study of the Radicals Formed upon UV Irradiation of Ceria-Based Photocatalysts. J. Photochem. Photobiol. A Chem. 2002, 150, 213–221. [Google Scholar] [CrossRef]
- Shao, Y.; Ma, Y. Mesoporous CeO2 Nanowires as Recycled Photocatalysts. Sci. China Chem. 2012, 55, 1303–1307. [Google Scholar] [CrossRef]
- Wandre, T.M.; Gaikwad, P.N.; Tapase, A.S.; Garadkar, K.M.; Vanalakar, S.A.; Lokhande, P.D.; Sasikala, R.; Hankare, P.P. Sol–Gel Synthesized TiO2–CeO2 Nanocomposite: An Efficient Photocatalyst for Degradation of Methyl Orange under Sunlight. J. Mater. Sci. Mater. Electron. 2016, 27, 825–833. [Google Scholar] [CrossRef]
- Tang, Z.-R.; Zhang, Y.; Xu, Y.-J. A Facile and High-Yield Approach to Synthesize One-Dimensional CeO2 Nanotubes with Well-Shaped Hollow Interior as a Photocatalyst for Degradation of Toxic Pollutants. RSC Adv. 2011, 1, 1772. [Google Scholar] [CrossRef]
- Vinothkumar, G.; Lalitha, A.I.; Suresh Babu, K. Cerium Phosphate–Cerium Oxide Heterogeneous Composite Nanozymes with Enhanced Peroxidase-Like Biomimetic Activity for Glucose and Hydrogen Peroxide Sensing. Inorg. Chem. 2019, 58, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Wang, Y.; Zhang, S.; Zhong, Q.; Rong, W.; Li, X. One-Pot Synthesis of Ceria and Cerium Phosphate (CeO2-CePO4) Nanorod Composites for Selective Catalytic Reduction of NO with NH3: Active Sites and Reaction Mechanism. J. Colloid Interface Sci. 2018, 524, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Fijołek, L.; Wolski, L. Bifunctional CePO4/CeO2 Nanocomposite as a Promising Heterogeneous Catalyst for the Enhancement of the Ozonation Recovery Effect in the Presence of Chloride Ions. Sci. Rep. 2022, 12, 9043. [Google Scholar] [CrossRef] [PubMed]
- Hirano, S.; Suzuki, K.T. Exposure, Metabolism, and Toxicity of Rare Earths and Related Compounds. Environ. Health Perspect. 1996, 104, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Pulido-Reyes, G.; Rodea-Palomares, I.; Das, S.; Sakthivel, T.S.; Leganes, F.; Rosal, R.; Seal, S.; Fernández-Pinãs, F. Untangling the Biological Effects of Cerium Oxide Nanoparticles: The Role of Surface Valence States. Sci. Rep. 2015, 5, 15613. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, Y.; Jiao, C.; Liu, M.; Luo, W.; Dong, C.; Fan, S.; He, X.; Yang, F.; Zhang, Z. Comparative Toxicity of Rod-Shaped Nano-CeO2 and Nano-CePO4 to Lettuce. Metallomics 2021, 13, mfab033. [Google Scholar] [CrossRef]
- Clavier, N.; Podor, R.; Dacheux, N. Crystal Chemistry of the Monazite Structure. J. Eur. Ceram. Soc. 2011, 31, 941–976. [Google Scholar] [CrossRef]
- Dacheux, N.; Clavier, N.; Podor, R. Monazite as a Promising Long-Term Radioactive Waste Matrix: Benefits of High-Structural Flexibility and Chemical Durability. Am. Mineral. 2013, 98, 833–847. [Google Scholar] [CrossRef]
- Achary, S.N.; Bevara, S.; Tyagi, A.K. Recent Progress on Synthesis and Structural Aspects of Rare-Earth Phosphates. Coord. Chem. Rev. 2017, 340, 266–297. [Google Scholar] [CrossRef]
- Rozhin, P.; Melchionna, M.; Fornasiero, P.; Marchesan, S. Nanostructured Ceria: Biomolecular Templates and (Bio)Applications. Nanomaterials 2021, 11, 2259. [Google Scholar] [CrossRef] [PubMed]
- Walther, R.; Huynh, T.H.; Monge, P.; Fruergaard, A.S.; Mamakhel, A.; Zelikin, A.N. Ceria Nanozyme and Phosphate Prodrugs: Drug Synthesis through Enzyme Mimicry. ACS Appl. Mater. Interfaces 2021, 13, 25685–25693. [Google Scholar] [CrossRef]
- Ni, P.; Wei, X.; Guo, J.; Ye, X.; Yang, S. On the Origin of the Oxidizing Ability of Ceria Nanoparticles. RSC Adv. 2015, 5, 97512–97519. [Google Scholar] [CrossRef]
- De Marzi, L.; Monaco, A.; De Lapuente, J.; Ramos, D.; Borras, M.; Di Gioacchino, M.; Santucci, S.; Poma, A. Cytotoxicity and Genotoxicity of Ceria Nanoparticles on Different Cell Lines in Vitro. Int. J. Mol. Sci. 2013, 14, 3065–3077. [Google Scholar] [CrossRef] [PubMed]
Sample | C48-700 | C48-1000 | C96-700 | C96-1000 |
---|---|---|---|---|
Soaking duration in 1 M NaOH solution, h | 48 | 48 | 96 | 96 |
Annealing temperature, °C | 700 | 1000 | 700 | 1000 |
Sample | Phase Composition | Lattice Parameters | Crystallite Size, nm |
---|---|---|---|
CeO2 | CeO2: 100 wt.% | a = 5.4184(7) Å | 6.2 ± 0.5 |
CeO2-700 | CeO2: 100 wt.% | a = 5.4121(7) Å | 16.4 ± 0.5 |
CeHP | Ce(PO4)(HPO4)0.5(H2O)0.5: 100 wt.% | a = 21.041(1) Å b = 6.5644(5) Å c = 6.9609(5) Å β = 91.965(5)° | >100 |
CeP | CePO4: 96.1 ± 2.9 wt.% CeP3O9: 4.1 ± 0.3 wt.% | CePO4: a = 6,7969(2) Å b = 7.0202(6) Å c = 6.4689(5) Å β = 103.453(4)° CeP3O9: a = 11.28(1) Å b = 8.60(1) Å c = 7.345(1) Å | >100 |
C48-700 | CeO2: 94.3 ± 0.6 wt.% CePO4: 5.7 ± 0.2 wt.% | CeO2: a = 5.4166(7) Å CePO4: a = 6.756(5) Å b = 6.956(5) Å c = 6.444(4) Å β = 103.83(7)° | CeO2: 9.7 ± 0.5 CePO4: 80 ± 30 |
C48-1000 | CeO2: 82.5 ± 0.7 wt.% CePO4: 17.4 ± 0.7 wt.% | CeO2: a = 5.4116(2) Å CePO4: a = 6.793(1) Å b = 7.019(1) Å c = 6.469(1) Å β = 103.46(1)° | CeO2: >100 CePO4: >100 |
C96-700 | CeO2: 100 wt.% CePO4: not detected | a = 5.419(1) Å | 9.9 ± 0.5 |
C96-1000 | CeO2: 85.6 ± 0.9 wt.% CePO4: 14.3 ± 1.0 wt.% | CeO2: a = 5.4125(2) Å CePO4: a = 6.786(2) Å b = 7.021(3) Å c = 6.467(2) Å β = 103.36(3)° | CeO2: >100 CePO4: >100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozlova, T.O.; Vasilyeva, D.N.; Kozlov, D.A.; Kolesnik, I.V.; Teplonogova, M.A.; Tronev, I.V.; Sheichenko, E.D.; Protsenko, M.R.; Kolmanovich, D.D.; Ivanova, O.S.; et al. A Comparative Study of Cerium(III) and Cerium(IV) Phosphates for Sunscreens. Molecules 2024, 29, 2157. https://doi.org/10.3390/molecules29092157
Kozlova TO, Vasilyeva DN, Kozlov DA, Kolesnik IV, Teplonogova MA, Tronev IV, Sheichenko ED, Protsenko MR, Kolmanovich DD, Ivanova OS, et al. A Comparative Study of Cerium(III) and Cerium(IV) Phosphates for Sunscreens. Molecules. 2024; 29(9):2157. https://doi.org/10.3390/molecules29092157
Chicago/Turabian StyleKozlova, Taisiya O., Darya N. Vasilyeva, Daniil A. Kozlov, Irina V. Kolesnik, Maria A. Teplonogova, Ilya V. Tronev, Ekaterina D. Sheichenko, Maria R. Protsenko, Danil D. Kolmanovich, Olga S. Ivanova, and et al. 2024. "A Comparative Study of Cerium(III) and Cerium(IV) Phosphates for Sunscreens" Molecules 29, no. 9: 2157. https://doi.org/10.3390/molecules29092157
APA StyleKozlova, T. O., Vasilyeva, D. N., Kozlov, D. A., Kolesnik, I. V., Teplonogova, M. A., Tronev, I. V., Sheichenko, E. D., Protsenko, M. R., Kolmanovich, D. D., Ivanova, O. S., Baranchikov, A. E., & Ivanov, V. K. (2024). A Comparative Study of Cerium(III) and Cerium(IV) Phosphates for Sunscreens. Molecules, 29(9), 2157. https://doi.org/10.3390/molecules29092157