Photoredox-Catalyzed Decarboxylative Cross-Coupling Reaction to Synthesis Unsymmetrical Diarylmethanes
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. General Information
3.2. General Procedure for Light-Promoted Decarboxylative Cross-Coupling Reaction between Aryl Acetic Acids and 1,4-Dicyanobenzene
3.3. General Procedure for Light-Promoted Decarboxylative Cross-Coupling Reaction between 3-Indoleacetic Acid and Nitriles
3.4. Scale-Up Experiment
3.5. The Light On/Off Experiment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kc, S.; Dhungana, R.K.; Khanal, N.; Giri, R. Nickel-Catalyzed α-Carbonylalkylarylation of Vinylarenes: Expedient Access to γ,γ-Diarylcarbonyl and Aryltetralone Derivatives. Angew. Chem. Int. Ed. 2020, 59, 8047–8051. [Google Scholar] [CrossRef] [PubMed]
- Buzdar, A.; Jonat, W.; Howell, A.; Jones, S.E.; Blomqvist, C.; Vogel, C.L.; Eiermann, W.; Wolter, J.M.; Azab, M.; Webster, A.; et al. Anastrozole, a Potent and Selective Aromatase Inhibitor, Versus Megestrol Acetate in Postmenopausal Women with Advanced Breast Cancer: Results of Overview Analysis of Two Phase III Trials. Arimidex Study Group. J. Clin. Oncol. 1996, 14, 2000–2011. [Google Scholar] [CrossRef] [PubMed]
- Lassiter, L.K.; Tummala, M.K.; Hussain, M.H.; Stadler, W.M.; Petrylak, D.P.; Carducci, M.A. Phase II Open-Label Study of Oral Piritrexim in Patients with Advanced Carcinoma of the Urothelium Who Have Experienced Failure with Standard Chemotherapy. Clin. Genitourin. Cancer. 2008, 6, 31–35. [Google Scholar] [CrossRef] [PubMed]
- McGuire, K.P.; Ngoubilly, N.; Neavyn, M.; Lanza-Jacoby, S. 3,3′-Diindolylmethane and Paclitaxel Act Synergistically to Promote Apoptosis in HER2/Neu Human Breast Cancer Cells. J. Surg. Res. 2006, 132, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Wanner, C.; Wieland, H.; Schollmeyer, P.; Hörl, W.H. Beclobrate: Pharmacodynamic Properties and Therapeutic Use in Hyperlipidemia. Eur. J. Clin. Pharmacol. 1991, 40, S85–S89. [Google Scholar] [CrossRef] [PubMed]
- Slater, J.W.; Zechnich, A.D.; Haxby, D.G. Second-Generation Antihistamines. Drugs 1999, 57, 31–47. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, S.; Matsumoto, A.; Kano, T.; Maruoka, K. Cu-Catalyzed Enantioselective Alkylarylation of Vinylarenes Enabled by Chiral Binaphthyl–BOX Hybrid Ligands. J. Am. Chem. Soc. 2020, 142, 19017–19022. [Google Scholar] [CrossRef] [PubMed]
- Gulati, U.; Gandhi, R.; Laha, J.K. Benzylic Methylene Functionalizations of Diarylmethanes. Asian J. Org. 2020, 15, 3135–3161. [Google Scholar] [CrossRef] [PubMed]
- Keswani, C.; Singh, S.P.; Cueto, L.; García-Estrada, C.; Mezaache-Aichour, S.; Glare, T.R.; Borriss, R.; Singh, S.P.; Blázquez, M.A.; Sansinenea, E. Auxins of microbial origin and their use in agriculture. Appl. Microbiol. Biotechnol. 2020, 104, 8549–8565. [Google Scholar] [CrossRef]
- Duca, D.R.; Glick, B.R. Indole-3-acetic acid biosynthesis and its regulation in plant-associated bacteria. Appl. Microbiol. Biotechnol. 2020, 104, 8607–8619. [Google Scholar] [CrossRef]
- Cheng, X.; Lu, H.; Lu, Z. Enantioselective benzylic C–H arylation via photoredox and nickel dual catalysis. Nat. Commun. 2019, 10, 3549. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zheng, P.; Xu, T. Dual Nickel- and Photoredox-Catalyzed Reductive Cross-Coupling of Aryl Halides with Dichloromethane via a Radical Process. Org. Lett. 2020, 22, 8643–8647. [Google Scholar] [CrossRef]
- Struwe, J.; Korvorapun, K.; Zangarelli, A.; Ackermann, L. Photo-Induced Ruthenium-Catalyzed C–H Benzylations and Allylations at Room Temperature. Chem. Eur. J. 2021, 27, 16237–16241. [Google Scholar] [CrossRef] [PubMed]
- Geniller, L.; Taillefer, M.; Jaroschik, F.; Prieto, A. Nickel Metallaphotoredox Catalysis Enabling Desulfurative Cross Coupling Reactions. Adv. Synth. Catal. 2022, 364, 4249–4254. [Google Scholar] [CrossRef]
- Huston, R.C.; Friedemann, T.E. Action of Aromatic Alcohols On Aromatic Compounds in The Presence of Aluminum Chloride. J. Am. Chem. Soc. 1916, 38, 2527–2533. [Google Scholar] [CrossRef]
- Huo, C.; Wang, C.; Sun, C.; Jia, X.; Wang, X.; Chang, W.; Wu, M. Triarylaminium Salt-Initiated Aerobic Double Friedel–Crafts Reaction of Glycine Derivatives with Indoles. Adv. Synth. Catal. 2013, 355, 1911–1916. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Zhou, H.; Li, S.; Zhu, Y.; Li, Y. Visible light-induced aerobic oxidative cross-coupling of glycine derivatives with indoles: A facile access to 3,3′ bisindolylmethanes. Org. Chem. Front. 2018, 5, 2120–2125. [Google Scholar] [CrossRef]
- Tanemura, K. Acceleration under solvent-drop grinding: Synthesis of bis(indolyl)methanes using small amounts of organic solvents or ionic liquids. Tetrahedron Lett. 2021, 82, 153391. [Google Scholar] [CrossRef]
- Maity, P.; Shacklady-McAtee, D.M.; Yap, G.P.A.; Sirianni, E.R.; Watson, M.P. Nickel-Catalyzed Cross Couplings of Benzylic Ammonium Salts and Boronic Acids: Stereospecific Formation of Diarylethanes via C–N Bond Activation. J. Am. Chem. Soc. 2013, 135, 280–285. [Google Scholar] [CrossRef]
- Rubial, B.; Collins, B.S.L.; Bigler, R.; Aichhorn, S.; Noble, A.; Aggarwal, V.K. Enantiospecific Synthesis of ortho-Substituted 1,1-Diarylalkanes by a 1,2-Metalate Rearrangement/anti-SN2′ Elimination/Rearomatizing Allylic Suzuki–Miyaura Reaction Sequence. Angew. Chem. Int. Ed. 2019, 58, 1366–1370. [Google Scholar] [CrossRef]
- Jiang, S.-P.; Dong, X.-Y.; Gu, Q.-S.; Ye, L.; Li, Z.-L.; Liu, X.-Y. Copper-Catalyzed Enantioconvergent Radical Suzuki–Miyaura C(sp3)–C(sp2) Cross-Coupling. J. Am. Chem. Soc. 2020, 142, 19652–19659. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Ren, Q.; Bein, T.; Knochel, P. Transition-Metal-Free Synthesis of Polyfunctional Triarylmethanes and 1,1-Diarylalkanes by Sequential Cross-Coupling of Benzal Diacetates with Organozinc Reagents. Angew. Chem. Int. Ed. 2021, 60, 10409–10414. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.; Wang, K.; Jin, W.-J.; Xie, H.; Qi, L.; Liu, X.-Y.; Shu, X.-Z. Dynamic Kinetic Cross-Electrophile Arylation of Benzyl Alcohols by Nickel Catalysis. J. Am. Chem. Soc. 2021, 143, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wu, L.; Chen, P.; Liu, G. Enantioselective Arylation of Benzylic C–H Bonds by Copper-Catalyzed Radical Relay. Angew. Chem. Int. Ed. 2019, 58, 6425–6429. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Chen, P.; Liu, G. Copper-Catalyzed Arylation of Benzylic C–H bonds with Alkylarenes as the Limiting Reagents. J. Am. Chem. Soc. 2017, 139, 7709–7712. [Google Scholar] [CrossRef] [PubMed]
- Vasilopoulos, A.; Zultanski, S.L.; Stahl, S.S. Feedstocks to Pharmacophores: Cu-Catalyzed Oxidative Arylation of Inexpensive Alkylarenes Enabling Direct Access to Diarylalkanes. J. Am. Chem. Soc. 2017, 139, 7705–7708. [Google Scholar] [CrossRef] [PubMed]
- Mehta, M.; Holthausen, M.H.; Mallov, I.; Pérez, M.; Qu, Z.-W.; Grimme, S.; Stephan, D.W. Catalytic Ketone Hydrodeoxygenation Mediated by Highly Electrophilic Phosphonium Cations. Angew. Chem. Int. Ed. 2015, 54, 8250–8254. [Google Scholar] [CrossRef] [PubMed]
- Mehta, M.; Goicoechea, J.M. Nitrenium Salts in Lewis Acid Catalysis. Angew. Chem. Int. Ed. 2020, 59, 2715–2719. [Google Scholar] [CrossRef]
- Moon, P.J.; Fahandej-Sadi, A.; Qian, W.; Lundgren, R.J. Decarboxylative Benzylation of Aryl and Alkenyl Boronic Esters. Angew. Chem. Int. Ed. 2018, 57, 4612–4616. [Google Scholar] [CrossRef]
- Guo, G.; Yuan, Y.; Bao, X.; Cao, X.; Sang, T.; Wang, J.; Huo, C. Photocatalytic Redox-Neutral Approach to Diarylmethanes. Org. Lett. 2021, 23, 6936–6940. [Google Scholar] [CrossRef]
- Chu, L.; Ohta, C.; Zuo, Z.; MacMillan, D.W.C. Carboxylic Acids as A Traceless Activation Group for Conjugate Additions: A Three-Step Synthesis of (±)-Pregabalin. J. Am. Chem. Soc. 2014, 136, 10886–10889. [Google Scholar] [CrossRef] [PubMed]
- Qvortrup, K.; Rankic, D.A.; MacMillan, D.W.C. A General Strategy for Organocatalytic Activation of C–H Bonds via Photoredox Catalysis: Direct Arylation of Benzylic Ethers. J. Am. Chem. Soc. 2014, 136, 626–629. [Google Scholar] [CrossRef] [PubMed]
- Noble, A.; McCarver, S.J.; MacMillan, D.W.C. Merging Photoredox and Nickel Catalysis: Decarboxylative Cross-Coupling of Carboxylic Acids with Vinyl Halides. J. Am. Chem. Soc. 2015, 137, 624–627. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.; Lipshultz, J.M.; MacMillan, D.W.C. Merging Photoredox and Nickel Catalysis: The Direct Synthesis of Ketones by the Decarboxylative Arylation of α-Oxo Acids. Angew. Chem. Int. Ed. 2015, 54, 7929–7933. [Google Scholar] [CrossRef] [PubMed]
- Cassani, C.; Bergonzini, G.; Wallentin, C.-J. Photocatalytic Decarboxylative Reduction of Carboxylic Acids and Its Application in Asymmetric Synthesis. Org. Lett. 2014, 16, 4228–4231. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.-Q.; Guo, W.; Ding, W.; Wu, X.; Chen, X.; Lu, L.-Q.; Xiao, W.-J. Decarboxylative Alkynylation and Carbonylative Alkynylation of Carboxylic Acids Enabled by Visible-Light Photoredox Catalysis. Angew. Chem. Int. Ed. 2015, 54, 11196–11199. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Jia, K.; Chen, Y. Hypervalent Iodine Reagents Enable Chemoselective Deboronative/Decarboxylative Alkenylation by Photoredox Catalysis. Angew. Chem. Int. Ed. 2015, 54, 1881–1884. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Jin, C.; Liu, J.; Zhang, H.; Yuan, M.; Li, G. Acylation of indoles via photoredox catalysis: A route to 3-acylindoles. Green Chem. 2016, 18, 1201–1205. [Google Scholar] [CrossRef]
- McNally, A.; Prier, C.K.; MacMillan, D.W.C. Discovery of an α-Amino C–H Arylation Reaction Using the Strategy of Accelerated Serendipity. Science 2011, 334, 1114–1117. [Google Scholar] [CrossRef]
- Wang, T.; Yu, W.; Lan, J.; Wang, H.; Jiang, Z.; Li, Y.; Fu, J. Visible-light-driven three-component reductive 1,2-diarylation of alkenes. Chem. Catal. 2023, 3, 100619. [Google Scholar] [CrossRef]
- Venditto, N.J.; Boerth, J.A. Deoxy-Arylation of Amides via a Tandem Hydrosilylation/Radical– Radical Coupling Sequence. Org. Lett. 2024, 26, 3617–3621. [Google Scholar] [CrossRef] [PubMed]
- Leng, L.; Ready, J.M. Hydroesterification and Difunctionalization of Olefins with N-Hydroxyphthalimide Esters. ACS Catal. 2021, 11, 13714–13720. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Bai, Z.-Q.; Yuan, P.-F.; Wu, L.-Z.; Liu, Q. Highly Efficient Iridium-Based Photosensitizers for Thia-Paternò–Büchi Reaction and Aza-Photocyclization. ACS Catal. 2021, 11, 446–455. [Google Scholar] [CrossRef]
- Li, W.; Pohl, T.; Rost, J.M.; Rittenhouse Seth, T.; Sadeghpour, H.R.; Nipper, J.; Butscher, B.; Balewski, J.B.; Bendkowsky, V.; Löw, R.; et al. A Homonuclear Molecule with a Permanent Electric Dipole Moment. Science 2011, 334, 1110–1114. [Google Scholar] [CrossRef] [PubMed]
- Marimuthu, A.; Zhang, J.; Linic, S. Tuning Selectivity in Propylene Epoxidation by Plasmon Mediated Photo-Switching of Cu Oxidation State. Science 2013, 339, 1590–1593. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Gong, Y.; Zhou, D. Transition Metal-Free Oxidative Radical Decarboxylation/Cyclization for the Construction of 6-Alkyl/Aryl Phenanthridines. J. Org. Chem. 2015, 80, 9336–9341. [Google Scholar] [CrossRef] [PubMed]
- Lipp, B.; Nauth, A.M.; Opatz, T. Transition-Metal-Free Decarboxylative Photoredox Coupling of Carboxylic Acids and Alcohols with Aromatic Nitriles. J. Org. Chem. 2016, 81, 6875–6882. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, P.; Wang, Y. 3-Amino-fluorene-2,4-dicarbonitriles (AFDCs) as Photocatalysts for the Decarboxylative Arylation of α-Amino Acids and α-Oxy Acids with Arylnitriles. Org. Lett. 2019, 21, 2130–2133. [Google Scholar] [CrossRef]
- Shi, J.; Yuan, T.; Zheng, M.; Wang, X. Metal-Free Heterogeneous Semiconductor for Visible-Light Photocatalytic Decarboxylation of Carboxylic Acids. ACS Catal. 2021, 11, 3040–3047. [Google Scholar] [CrossRef]
- Zuo, Z.; MacMillan, D.W.C. Decarboxylative Arylation of α-Amino Acids via Photoredox Catalysis: A One-Step Conversion of Biomass to Drug Pharmacophore. J. Am. Chem. Soc. 2014, 136, 5257–5260. [Google Scholar] [CrossRef]
- Sang, T.; Li, K.; Ouyang, X.; Song, R.; Li, J. Recent advances in the radical-mediated decyanative alkylation of cyano(hetero)arene. Green Synth. Catal. 2021, 2, 145–155. [Google Scholar]
- Roth, H.G.; Romero, N.A.; Nicewicz, D.A. Experimental and Calculated Electrochemical Potentials of Common Organic Molecules for Applications to Single-Electron Redox Chemistry. Synlett 2016, 27, 714–723. [Google Scholar]
- Huang, H.; Zhang, G.; Gong, L.; Zhang, S.; Chen, Y. Visible-Light-Induced Chemoselective Deboronative Alkynylation under Biomolecule-Compatible Conditions. J. Am. Chem. Soc. 2014, 136, 2280–2283. [Google Scholar] [CrossRef] [PubMed]
Entry | Deviation from Standard Conditions | 3a Yield (%) b |
1 | No deviation | 82 |
2 | Without LED irradiation | trace |
3 | Without fac-Ir(ppy)3 | 0 |
4 | [Ir(dtbbpy)(ppy)2]PF6 instead of fac-Ir(ppy)3 | 32 |
5 | Ru(bpy)3(PF6)2 instead of fac-Ir(ppy)3 | 0 |
6 | EosinY instead of fac-Ir(ppy)3 | 0 |
7 | Rose bengal instead of fac-Ir(ppy)3 | 0 |
8 | without K2CO3 | 30 |
9 | K3PO4 instead of K2CO3 | 67 |
10 | NaOAc instead of K2CO3 | 64 |
11 | CsF instead of K2CO3 | 68 |
12 | DCM instead of DMSO | 0 |
13 | MeCN instead of DMSO | 61 |
14 | DMA instead of DMSO | 67 |
15 | Air instead of Ar | trace |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, G.; Zhang, Y.; Li, Y.; Li, Z. Photoredox-Catalyzed Decarboxylative Cross-Coupling Reaction to Synthesis Unsymmetrical Diarylmethanes. Molecules 2024, 29, 2156. https://doi.org/10.3390/molecules29092156
Guo G, Zhang Y, Li Y, Li Z. Photoredox-Catalyzed Decarboxylative Cross-Coupling Reaction to Synthesis Unsymmetrical Diarylmethanes. Molecules. 2024; 29(9):2156. https://doi.org/10.3390/molecules29092156
Chicago/Turabian StyleGuo, Guozhe, Yuquan Zhang, Yanchun Li, and Zhijun Li. 2024. "Photoredox-Catalyzed Decarboxylative Cross-Coupling Reaction to Synthesis Unsymmetrical Diarylmethanes" Molecules 29, no. 9: 2156. https://doi.org/10.3390/molecules29092156
APA StyleGuo, G., Zhang, Y., Li, Y., & Li, Z. (2024). Photoredox-Catalyzed Decarboxylative Cross-Coupling Reaction to Synthesis Unsymmetrical Diarylmethanes. Molecules, 29(9), 2156. https://doi.org/10.3390/molecules29092156