Therapeutic Applications of Nanomedicine: Recent Developments and Future Perspectives
Abstract
:1. Introduction
1.1. Nanomedicine: Applications in Photodynamic Therapy
1.1.1. Nano-Designed Photosensitizers, a Promising Therapeutic Approach for Cancer
1.1.2. NanoPS for Tumor Targeting
1.1.3. Clinical Applications of PDT and the Potential of NanoPSs
1.1.4. Versatile Therapeutic Strategies Utilizing NanoPSs
1.1.5. Challenges and Future Perspective
1.2. Nanomedicine: Applications in Immunotherapy
1.2.1. Targeting the Tumor Immune Microenvironment
1.2.2. Targeting and Reprogramming T-Cells
1.2.3. Activating and Enhancing NK Cells
1.2.4. Activating NKG2D Receptors
1.2.5. Targeting Antigen-Presenting Cells
1.2.6. As a Carrier for Immune Checkpoint Inhibitors
1.2.7. Clinical Development of the Nanoimmunotherapy
Product Name | Nanoparticles | Targeting Cells/Disease | Mechanism of Action | Status | References |
---|---|---|---|---|---|
NBTXR3 in combination with immunotherapy (Anti-PD-1/L-1) | Hafnium oxide crystalline NPs | Solid tumors | To boost the immune system locally and physically kill malignancies | Phase I and II | NCT05039632 [93] |
Lipovaxin-MM | Liposomal vaccine | Metastatic melanoma | A new anti-cancer vaccine; is safe and effective in improving the body’s ability to destroy cancer cells in patients | Phase I | NCT01052142 [93] |
PLD with IPI-549 and Etrumadenant | Liposomal NPs | Metastatic triple-negative breast cancer (TNBC) or ovarian cancer | Adenosine receptor antagonist that can treat malignancies by preventing adenosine-mediated immunosuppression | Phase I | NCT03719326 [94] |
MEPACT/Mifamurtide | Liposomal muramyl tripeptide phosphatidylethanolamine (MTP-PE) | Osteosarcoma | Activates macrophages and monocytes in the tumor microenvironment to modulate innate immunity | Expanded access | NCT04571229 [95] |
RALA+PLA-bP (NAS-co-NVP) | PLA NPs | HIV | Induces highly cytotoxic T cells | FDA approved | [96] |
JVRS-100 | Liposomal DNA complex | Potential adjuvant for influenza vaccines | Improves cross-protection and immunogenicity against fatal viral diseases | Phase 1 completed | NCT00662272 [93] |
CRLX101 | Cyclodextrin-based polymer | Advanced solid tumors | Suppresses the expression of vascular endothelial growth factor, CD31, and carbonic anhydrase IX in tumor sections, which prevented hypoxia and angiogenesis | Phase I and II completed | NCT00333502 [97] |
DOTAP liposome vaccine | Cationic liposomes | Potential vaccine against infectious disease and tumors | Causes immune responses via an antigen-specific Th2 reaction | Phase I | NCT05264974 [98] |
RNA-LP | Lipid NPs | Melanoma | Activates inherent pathways to activate APCs and suppress myeloid derived suppressor cells (MDSCs) | Phase I | NCT05264974 [99] |
AZD4635 | Polymeric nanoparticle | Advanced solid malignancies | Enhances anti-tumor activity by rescuing T cell function | Phase 1 completed | NCT02740985 [100] |
1.2.8. Challenges and Perspective
1.3. Nanomedicine: Applications in Gene Delivery
1.3.1. Inorganic NPs
1.3.2. Organic Nanoparticles
Nanocarriers | Formulations | Encapsulated Gene Molecule | Particle Size | Preparatory Techniques | Advantages | References |
---|---|---|---|---|---|---|
Lipids | Lipid-like nanomaterials: FTT lipids | Cas9 mRNA and sgRNA | 490 nm | Rolling circle amplification (RCA) reaction | Provide cell-type-specific targeting | [123] |
Ionizable lipid cholesterol and the PEGylated lipid | Si RNA and mRNA | ~155 and ~125 nm | Microfluidic hydrodynamic focusing and staggered herringbone mixing | Improved gene knockdown ability | [124] | |
DLin-MC3-DMA, and DMG-PEG2000 | pDNA | 400 nm | Ethanol-loading technique | Prolong gene expression | [125] | |
Polymers | Hyaluronic acid-coated chitosan with AS1411 ligands | Cas9 RNPs | 63 nm to 150 nm | Electrostatic adsorption | Improved delivery of CRISPR/Cas9 into the tumor | [126] |
Polyplex | siRNA | 25 ± 2 nm | Reversible addition–fragmentation chain transfer (RAFT) polymerization | Deeper penetration of SiRNA Polyplexes into homospheroids | [127] | |
Inorganic NPs | Gold NPs | SiRNA | 42.4 nm | Thiol–gold chemistry | High serum stability and tumor-specific targeting ability | [128] |
Iron oxide NPs | SiRNA | 10–20 nm | Co-precipitation method | Efficient delivery of interfering RNA into human embryonic kidney cells (HEK-293); efficient intracellular protein release into the cytosols | [129] | |
Dendrimers | 5 (G5) amine-terminated polyamidoamine (PAMAM) dendrimer | Cas9 | 100 nm | By reacting 4-(bromomethyl)phenylboronic acid with the dendrimer at different feeding ratios | Efficient intracellular protein release into the cytosols | [130] |
1.3.3. Recent Advancement in NP-Based Gene Therapy
1.3.4. Functionalization of NPs
1.3.5. CRISP/Cas9 Delivery for Genome Editing
1.3.6. Use of Cell-Penetrating Peptides
1.3.7. Clinical Translation of NP-Based Gene Therapy
1.4. Nanomedicine: Application in Tissue Engineering
1.4.1. Advanced Characteristics of NPs Assisting in Tissue Engineering
1.4.2. Enhanced Metallic Properties
1.4.3. Enhanced Electrical Properties
1.4.4. Enhanced Biological Properties
1.4.5. Three-Dimensional and Four-Dimensional Nano Printing
1.4.6. Selective Cell Attachment
1.4.7. Advanced Nanocomposite in Tissue Engineering
1.4.8. Smart Scaffolds
1.5. Nanomedicine in Vaccine’s Developments
1.5.1. Encapsulation and Protection of Vaccine Antigens
1.5.2. Co-Delivery of Antigens and Adjuvants
1.5.3. Targeted Delivery to Immune Cells
2. Challenges and Future Perspective
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Haleem, A.; Javaid, M.; Singh, R.P.; Rab, S.; Suman, R. Applications of nanotechnology in medical field: A brief review. Glob. Health J. 2023, 7, 70–77. [Google Scholar] [CrossRef]
- Greish, K. Recent and future advances in anticancer drug delivery: An interview with Khaled Greish. Ther. Deliv. 2018, 9, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Ramos, A.P.; Cruz, M.A.E.; Tovani, C.B.; Ciancaglini, P. Biomedical applications of nanotechnology. Biophys. Rev. 2017, 9, 79–89. [Google Scholar] [CrossRef]
- Park, W.; Heo, Y.-J.; Han, D.K. New opportunities for nanoparticles in cancer immunotherapy. Biomater. Res. 2018, 22, 24. [Google Scholar] [CrossRef] [PubMed]
- Debele, T.A.; Yeh, C.F.; Su, W.P. Cancer Immunotherapy and Application of Nanoparticles in Cancers Immunotherapy as the Delivery of Immunotherapeutic Agents and as the Immunomodulators. Cancers 2020, 12, 3773. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986, 46, 6387–6392. [Google Scholar] [PubMed]
- Fang, J.; Islam, W.; Maeda, H. Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers. Adv. Drug Deliv. Rev. 2020, 157, 142–160. [Google Scholar] [CrossRef] [PubMed]
- Islam, R.; Maeda, H.; Fang, J. Factors affecting the dynamics and heterogeneity of the EPR effect: Pathophysiological and pathoanatomic features, drug formulations and physicochemical factors. Expert Opin. Drug Deliv. 2022, 19, 199–212. [Google Scholar] [CrossRef]
- Maeda, H. Tumor-selective delivery of macromolecular drugs via the EPR effect: Background and future prospects. Bioconjugate Chem. 2010, 21, 797–802. [Google Scholar] [CrossRef] [PubMed]
- Maeda, H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv. Drug Deliv. Rev. 2015, 91, 3–6. [Google Scholar] [CrossRef]
- Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 2013, 65, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Maeda, H.; Tsukigawa, K.; Fang, J. A retrospective 30 years after discovery of the enhanced permeability and retention effect of solid tumors: Next-generation chemotherapeutics and photodynamic therapy—Problems, solutions, and prospects. Microcirculation 2016, 23, 173–182. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Xu, Y.; Yang, W.; Niu, P.; Li, X.; Chen, Y.; Li, Z.; Liu, Y.; An, Y.; Liu, Y. Investigating the EPR effect of nanomedicines in human renal tumors via ex vivo perfusion strategy. Nano Today 2020, 35, 100970. [Google Scholar] [CrossRef]
- Lee, H.; Shields, A.F.; Siegel, B.A.; Miller, K.D.; Krop, I.; Ma, C.X.; LoRusso, P.M.; Munster, P.N.; Campbell, K.; Gaddy, D.F. 64Cu-MM-302 positron emission tomography quantifies variability of enhanced permeability and retention of nanoparticles in relation to treatment response in patients with metastatic breast cancer. Clin. Cancer Res. 2017, 23, 4190–4202. [Google Scholar] [CrossRef] [PubMed]
- Maeda, H.; Sawa, T.; Konno, T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J. Control. Release 2001, 74, 47–61. [Google Scholar] [CrossRef] [PubMed]
- Germain, M.; Caputo, F.; Metcalfe, S.; Tosi, G.; Spring, K.; Åslund, A.K.; Pottier, A.; Schiffelers, R.; Ceccaldi, A.; Schmid, R. Delivering the power of nanomedicine to patients today. J. Control. Release 2020, 326, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Lammers, T.; Ferrari, M. The success of nanomedicine. Nano Today 2020, 31, 100853. [Google Scholar] [CrossRef] [PubMed]
- Martins, J.P.; Das Neves, J.; de la Fuente, M.; Celia, C.; Florindo, H.; Günday-Türeli, N.; Popat, A.; Santos, J.L.; Sousa, F.; Schmid, R. The solid progress of nanomedicine. Drug Deliv. Transl. Res. 2020, 10, 726–729. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Song, X.; Dong, X.; Li, B. Nano-photosensitizers for enhanced photodynamic therapy. Photodiagnosis Photodyn. Ther. 2021, 36, 102597. [Google Scholar] [CrossRef]
- Islam, W.; Matsumoto, Y.; Fang, J.; Harada, A.; Niidome, T.; Ono, K.; Tsutsuki, H.; Sawa, T.; Imamura, T.; Sakurai, K. Polymer-conjugated glucosamine complexed with boric acid shows tumor-selective accumulation and simultaneous inhibition of glycolysis. Biomaterials 2021, 269, 120631. [Google Scholar] [CrossRef]
- Kim, A.; Suzuki, M.; Matsumoto, Y.; Fukumitsu, N.; Nagasaki, Y. Non-isotope enriched phenylboronic acid-decorated dual-functional nano-assembles for an actively targeting BNCT drug. Biomaterials 2021, 268, 120551. [Google Scholar] [CrossRef] [PubMed]
- Cross, R. Without these lipid shells, there would be no mRNA vaccines for COVID-19. Chem. Eng. News 2021, 99, 144. [Google Scholar]
- Amaravadi, R.K.; Kimmelman, A.C.; Debnath, J. Targeting Autophagy in Cancer: Recent Advances and Future Directions. Cancer Discov. 2019, 9, 1167–1181. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jiang, C.; Figueiro Longo, J.P.; Azevedo, R.B.; Zhang, H.; Muehlmann, L.A. An updated overview on the development of new photosensitizers for anticancer photodynamic therapy. Acta Pharm. Sin. B 2018, 8, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Alsaab, H.O.; Alghamdi, M.S.; Alotaibi, A.S.; Alzhrani, R.; Alwuthaynani, F.; Althobaiti, Y.S.; Almalki, A.H.; Sau, S.; Iyer, A.K. Progress in Clinical Trials of Photodynamic Therapy for Solid Tumors and the Role of Nanomedicine. Cancers 2020, 12, 2793. [Google Scholar] [CrossRef] [PubMed]
- Pham, T.C.; Nguyen, V.N.; Choi, Y.; Lee, S.; Yoon, J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem. Rev. 2021, 121, 13454–13619. [Google Scholar] [CrossRef] [PubMed]
- Islam, R.; Kotalik, K.; Subr, V.; Gao, S.; Zhou, J.R.; Yokomizo, K.; Etrych, T.; Fang, J. HPMA copolymer conjugated 5-aminolevulinic acid exhibits superior efficacy for photodynamic therapy with tumor-responsive and targeting properties. Nanomedicine 2023, 48, 102636. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Zheng, S.; Yuan, S.; Wang, J.; Wu, Y.; Zhu, X. Near-infrared mediated orthogonal bioimaging and intracellular tracking of upconversion nanophotosensitizers. Mikrochim. Acta 2022, 189, 120. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.H.; Kim, K.H.; Song, K.H. Effect of Methyl Aminolevulinate Photodynamic Therapy With and Without Ablative Fractional Laser Treatment in Patients With Microinvasive Squamous Cell Carcinoma: A Randomized Clinical Trial. JAMA Dermatol. 2017, 153, 289–295. [Google Scholar] [CrossRef]
- Chi, Y.F.; Qin, J.J.; Li, Z.; Ge, Q.; Zeng, W.H. Enhanced anti-tumor efficacy of 5-aminolevulinic acid-gold nanoparticles-mediated photodynamic therapy in cutaneous squamous cell carcinoma cells. Braz. J. Med. Biol. Res. 2020, 53, e8457. [Google Scholar] [CrossRef]
- Shi, H.; Sadler, P.J. How promising is phototherapy for cancer? Br. J. Cancer 2020, 123, 871–873. [Google Scholar] [CrossRef] [PubMed]
- Van Doeveren, T.E.M.; Karakullukcu, M.B.; van Veen, R.L.P.; Lopez-Yurda, M.; Schreuder, W.H.; Tan, I.B. Adjuvant photodynamic therapy in head and neck cancer after tumor-positive resection margins. Laryngoscope 2018, 128, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Ericson, M.B.; Wennberg, A.M.; Larkö, O. Review of photodynamic therapy in actinic keratosis and basal cell carcinoma. Ther. Clin. Risk Manag. 2008, 4, 1–9. [Google Scholar]
- Leon, D.; Buchegger, K.; Silva, R.; Riquelme, I.; Viscarra, T.; Mora-Lagos, B.; Zanella, L.; Schafer, F.; Kurachi, C.; Roa, J.C.; et al. Epigallocatechin Gallate Enhances MAL-PDT Cytotoxic Effect on PDT-Resistant Skin Cancer Squamous Cells. Int. J. Mol. Sci. 2020, 21, 3327. [Google Scholar] [CrossRef] [PubMed]
- Akopov, A.; Papayan, G. Photodynamic theranostics of central lung cancer: Present state and future prospects. Photodiagnosis Photodyn. Ther. 2021, 33, 102203. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.M.; MacRobert, A.J.; Mosse, C.A.; Periera, B.; Bown, S.G.; Keshtgar, M.R.S. Photodynamic therapy: Inception to application in breast cancer. Breast 2017, 31, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Yang, H.; Shao, X.X.; Yin, Q.; Fu, X.J.; Wei, Q. Research Progress on Nanoplatforms and Nanotherapeutic Strategies in Treating Glioma. Mol. Pharm. 2022, 19, 1927–1951. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Lee, D.Y. Nanomedicine in Clinical Photodynamic Therapy for the Treatment of Brain Tumors. Biomedicines 2022, 10, 96. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Zhang, Z.; Chen, M.; Zhang, Y.; Amagat, J.; Kang, S.; Zheng, Y.; Hu, B.; Chen, M. Co-Immobilization of Ce6 Sono/Photosensitizer and Protonated Graphitic Carbon Nitride on PCL/Gelation Fibrous Scaffolds for Combined Sono-Photodynamic Cancer Therapy. ACS Appl. Mater. Interfaces 2020, 12, 40728–40739. [Google Scholar] [CrossRef]
- Zhuo, X.; Liu, Z.; Aishajiang, R.; Wang, T.; Yu, D. Recent Progress of Copper-Based Nanomaterials in Tumor-Targeted Photothermal Therapy/Photodynamic Therapy. Pharmaceutics 2023, 7, 2293. [Google Scholar] [CrossRef]
- Luo, H.; Gao, S. Recent advances in fluorescence imaging-guided photothermal therapy and photodynamic therapy for cancer: From near-infrared-I to near-infrared-II. J. Control. Release 2023, 362, 425–445. [Google Scholar] [CrossRef] [PubMed]
- Di Corato, R.; Béalle, G.; Kolosnjaj-Tabi, J.; Espinosa, A.; Clément, O.; Silva, A.K.A.; Ménager, C.; Wilhelm, C. Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes. ACS Nano 2015, 24, 2904–2916. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.; Cai, M.; Zhu, R.; Fu, T.; Du, Y.; Kong, J.; Zhang, Y.; Qu, C.; Dong, X.; Ni, J.; et al. Antitumor Effect of Photodynamic Therapy/Sonodynamic Therapy/Sono-Photodynamic Therapy of Chlorin e6 and Other Applications. Mol. Pharm. 2023, 20, 875–885. [Google Scholar] [CrossRef] [PubMed]
- Xin, J.; Wang, S.; Wang, J.; Fu, L.; Zhang, Z.; Yao, C. A Nucleus-Targeted Nanosystem Integrated with Photodynamic Therapy and Chemotherapy. J. Biomed. Nanotechnol. 2022, 18, 837–848. [Google Scholar] [CrossRef] [PubMed]
- Babic, A.; Herceg, V.; Bastien, E.; Lassalle, H.P.; Bezdetnaya, L.; Lange, N. 5-Aminolevulinic Acid-Squalene Nanoassemblies for Tumor Photodetection and Therapy: In Vitro Studies. Nanoscale Res. Lett. 2018, 13, 10. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Wang, W.; Li, C.; Zhang, Y.; Yu, T.; Wu, R.; Zhao, J.; Liu, Z.; Liu, J.; Yu, H. Reactive Oxygen Species–Activatable Liposomes Regulating Hypoxic Tumor Microenvironment for Synergistic Photo/Chemodynamic Therapies. Adv. Funct. Mater. 2019, 29, 1905013. [Google Scholar] [CrossRef]
- Xu, X.; Zeng, Z.; Huang, Z.; Sun, Y.; Huang, Y.; Chen, J.; Ye, J.; Yang, H.; Yang, C.; Zhao, C. Near-infrared light-triggered degradable hyaluronic acid hydrogel for on-demand drug release and combined chemo-photodynamic therapy. Carbohydr. Polym. 2020, 229, 115394. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Sun, W.; Feng, Y.; Qin, R.; Zhang, J.; Ding, D.; Shi, T.; Liu, X.; Chen, X.; Chen, H. Conjugation of a Scintillator Complex and Gold Nanorods for Dual-Modal Image-Guided Photothermal and X-ray-Induced Photodynamic Therapy of Tumors. ACS Appl. Mater. Interfaces 2020, 12, 12591–12599. [Google Scholar] [CrossRef]
- Guo, X.; Wen, C.; Xu, Q.; Ruan, C.; Shen, X.C.; Liang, H. A full-spectrum responsive B-TiO2@SiO2-HA nanotheranostic system for NIR-II photoacoustic imaging-guided cancer phototherapy. J. Mater. Chem. B 2021, 9, 2042–2053. [Google Scholar] [CrossRef]
- Murakami, T.; Nakatsuji, H.; Inada, M.; Matoba, Y.; Umeyama, T.; Tsujimoto, M.; Isoda, S.; Hashida, M.; Imahori, H. Photodynamic and photothermal effects of semiconducting and metallic-enriched single-walled carbon nanotubes. J. Am. Chem. Soc. 2012, 134, 17862–17865. [Google Scholar] [CrossRef]
- Ding, Y.; Zhou, L.; Chen, X.; Wu, Q.; Song, Z.; Wei, S.; Zhou, J.; Shen, J. Mutual sensitization mechanism and self-degradation property of drug delivery system for in vitro photodynamic therapy. Int. J. Pharm. 2016, 498, 335–346. [Google Scholar] [CrossRef]
- Kuo, W.S.; Shao, Y.T.; Huang, K.S.; Chou, T.M.; Yang, C.H. Antimicrobial Amino-Functionalized Nitrogen-Doped Graphene Quantum Dots for Eliminating Multidrug-Resistant Species in Dual-Modality Photodynamic Therapy and Bioimaging under Two-Photon Excitation. ACS Appl. Mater. Interfaces 2018, 10, 14438–14446. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Guo, Y.; Zhu, L.; Yang, L.; Shi, W.; Wang, K.; Zhang, H. Photodynamic Therapy of Human Hepatoma Using Semiconductor Quantum Dots as Sole Photosensitizer. Part. Part. Syst. Charact. 2017, 34, 1600413. [Google Scholar] [CrossRef]
- Zhang, Z.; Jayakumar, M.K.G.; Shikha, S.; Zhang, Y.; Zheng, X.; Zhang, Y. Modularly Assembled Upconversion Nanoparticles for Orthogonally Controlled Cell Imaging and Drug Delivery. ACS Appl. Mater. Interfaces 2020, 12, 12549–12556. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, Y.M.; Li, Y.H.; Cai, S.J.; Yin, X.B.; He, X.W.; Zhang, Y.K. Fluorescent Imaging-Guided Chemotherapy-and-Photodynamic Dual Therapy with Nanoscale Porphyrin Metal-Organic Framework. Small 2017, 13, 1603459. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S.; Zhou, Y.; Wang, C.; Zhang, X.Z.; Deng, H. Covalent Organic Frameworks as Favorable Constructs for Photodynamic Therapy. Angew. Chem. Int. Ed. Engl. 2019, 58, 14213–14218. [Google Scholar] [CrossRef]
- Niidome, T.; Yamagata, M.; Okamoto, Y.; Akiyama, Y.; Takahashi, H.; Kawano, T.; Katayama, Y.; Niidome, Y. PEG-modified gold nanorods with a stealth character for in vivo applications. J. Control Release 2006, 114, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lu, W.; Huang, Q.; Li, C.; Chen, W. Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine 2010, 5, 1161–1171. [Google Scholar] [CrossRef]
- Elbialy, N.S.; Fathy, M.M.; Al-Wafi, R.; Darwesh, R.; Abdel-Dayem, U.A.; Aldhahri, M.; Noorwali, A.; Al-Ghamdi, A.A. Multifunctional magnetic-gold nanoparticles for efficient combined targeted drug delivery and interstitial photothermal therapy. Int. J. Pharm. 2019, 554, 256–263. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Y.; Liu, P.; Xu, S.; Luo, X. Core-Shell Multifunctional Nanomaterial-Based All-in-One Nanoplatform for Simultaneous Multilayer Imaging of Dual Types of Tumor Biomarkers and Photothermal Therapy. Anal. Chem. 2020, 92, 15169–15178. [Google Scholar] [CrossRef]
- Mun, S.G.; Choi, H.W.; Lee, J.M.; Lim, J.H.; Ha, J.H.; Kang, M.J.; Kim, E.J.; Kang, L.; Chung, B.G. rGO nanomaterial-mediated cancer targeting and photothermal therapy in a microfluidic co-culture platform. Nano Converg. 2020, 7, 10. [Google Scholar] [CrossRef]
- Wang, K.; Cai, Z.; Fan, R.; Yang, Q.; Zhu, T.; Jiang, Z.; Ma, Y. A tumor-microenvironment-responsive nanomaterial for cancer chemo-photothermal therapy. RSC Adv. 2020, 10, 22091–22101. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.; Wang, C.; Zhang, S.; Feng, L.; Liu, Z. Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS Nano 2011, 27, 7000–7009. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.; Thakur, M.; Mewada, A.; Anjarlekar, D.; Mishra, N.; Sharon, M. Carbon dots functionalized gold nanorod mediated delivery of doxorubicin: Tri-functional nano-worms for drug delivery, photothermal therapy and bioimaging. J. Mater. Chem. B 2013, 1, 4972–4982. [Google Scholar] [CrossRef]
- Zhou, F.; Xing, D.; Ou, Z.; Wu, B.; Resasco, D.E.; Chen, W.R. Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J. Biomed. Opt. 2009, 14, 021009. [Google Scholar] [CrossRef]
- Sun, Z.; Xie, H.; Tang, S.; Yu, X.F.; Guo, Z.; Shao, J.; Zhang, H.; Huang, H.; Wang, H.; Chu, P.K. Ultrasmall Black Phosphorus Quantum Dots: Synthesis and Use as Photothermal Agents. Angew. Chem. Int. Ed. Engl. 2015, 54, 11526–11530. [Google Scholar] [CrossRef]
- Simelane, N.W.N.; Kruger, C.A.; Abrahamse, H. Targeted Nanoparticle Photodynamic Diagnosis and Therapy of Colorectal Cancer. Int. J. Mol. Sci. 2021, 10, 9779. [Google Scholar] [CrossRef]
- Guan, Q.; Li, Y.A.; Li, W.Y.; Dong, Y.B. Photodynamic Therapy Based on Nanoscale Metal-Organic Frameworks: From Material Design to Cancer Nanotherapeutics. Chem. Asian J. 2018, 13, 3122–3149. [Google Scholar] [CrossRef]
- Velcheti, V.; Schalper, K. Basic overview of current immunotherapy approaches in cancer. Am. Soc. Clin. Oncol. Educ. Book 2016, 36, 298–308. [Google Scholar] [CrossRef]
- Lakshmanan, V.-K.; Jindal, S.; Packirisamy, G.; Ojha, S.; Lian, S.; Kaushik, A.; Alzarooni, A.I.M.A.; Metwally, Y.A.F.; Thyagarajan, S.P.; Do Jung, Y. Nanomedicine-based cancer immunotherapy: Recent trends and future perspectives. Cancer Gene Ther. 2021, 28, 911–923. [Google Scholar] [CrossRef]
- Dogheim, G.M.; Nourhan, E.; Abd El-Maksod, E.A.; Amer, S.S.; El-Gizawy, S.A.; Abd Elhamid, A.S.; Elzoghby, A.O. Nanomedicines as enhancers of tumor immunogenicity to augment cancer immunotherapy. Drug Discov. Today 2024, 29, 103905. [Google Scholar] [CrossRef]
- Shi, Y.; Lammers, T. Combining Nanomedicine and Immunotherapy. Acc. Chem. Res. 2019, 52, 1543–1554. [Google Scholar] [CrossRef]
- Yang, M.; Li, J.; Gu, P.; Fan, X. The application of nanoparticles in cancer immunotherapy: Targeting tumor microenvironment. Bioact. Mater. 2021, 6, 1973–1987. [Google Scholar] [CrossRef]
- Chen, Q.; Feng, L.; Liu, J.; Zhu, W.; Dong, Z.; Wu, Y.; Liu, Z. Intelligent albumin–MnO2 nanoparticles as pH-/H2O2-responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv. Mater. 2016, 28, 7129–7136. [Google Scholar] [CrossRef]
- Basak, U.; Sarkar, T.; Mukherjee, S.; Chakraborty, S.; Dutta, A.; Dutta, S.; Nayak, D.; Kaushik, S.; Das, T.; Sa, G. Tumor-associated macrophages: An effective player of the tumor microenvironment. Front. Immunol. 2023, 14, 1295257. [Google Scholar] [CrossRef]
- Lee, N.K.; Kim, S.-N.; Park, C.G. Immune cell targeting nanoparticles: A review. Biomater. Res. 2021, 25, 44. [Google Scholar] [CrossRef]
- Ramishetti, S.; Kedmi, R.; Goldsmith, M.; Leonard, F.; Sprague, A.G.; Godin, B.; Gozin, M.; Cullis, P.R.; Dykxhoorn, D.M.; Peer, D. Systemic Gene Silencing in Primary T Lymphocytes Using Targeted Lipid Nanoparticles. ACS Nano 2015, 9, 6706–6716. [Google Scholar] [CrossRef]
- Nawaz, W.; Xu, S.; Li, Y.; Huang, B.; Wu, X.; Wu, Z. Nanotechnology and immunoengineering: How nanotechnology can boost CAR-T therapy. Acta Biomater. 2020, 109, 21–36. [Google Scholar] [CrossRef]
- Siemaszko, J.; Marzec-Przyszlak, A.; Bogunia-Kubik, K. NKG2D natural killer cell receptor—A short description and potential clinical applications. Cells 2021, 10, 1420. [Google Scholar] [CrossRef]
- Thakur, N.; Thakur, S.; Chatterjee, S.; Das, J.; Sil, P.C. Nanoparticles as smart carriers for enhanced cancer immunotherapy. Front. Chem. 2020, 8, 597806. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Chan, M.F.; Li, J.; King, M.R. Super natural killer cells that target metastases in the tumor draining lymph nodes. Biomaterials 2016, 77, 66–76. [Google Scholar] [CrossRef]
- Gao, S.; Li, T.; Guo, Y.; Sun, C.; Xianyu, B.; Xu, H. Selenium-containing nanoparticles combine the NK cells mediated immunotherapy with radiotherapy and chemotherapy. Adv. Mater. 2020, 32, 1907568. [Google Scholar] [CrossRef]
- Mitarotonda, R.; Giorgi, E.; Eufrasio-da-Silva, T.; Dolatshahi-Pirouz, A.; Mishra, Y.K.; Khademhosseini, A.; Desimone, M.F.; De Marzi, M.; Orive, G. Immunotherapeutic nanoparticles: From autoimmune disease control to the development of vaccines. Biomater. Adv. 2022, 135, 212726. [Google Scholar] [CrossRef] [PubMed]
- Murugan, D.; Murugesan, V.; Panchapakesan, B.; Rangasamy, L. Nanoparticle Enhancement of Natural Killer (NK) Cell-Based Immunotherapy. Cancers 2022, 14, 5438. [Google Scholar] [CrossRef]
- Tan, L.; Han, S.; Ding, S.; Xiao, W.; Ding, Y.; Qian, L.; Wang, C.; Gong, W. Chitosan nanoparticle-based delivery of fused NKG2D–IL-21 gene suppresses colon cancer growth in mice. Int. J. Nanomed. 2017, 12, 3095–3107. [Google Scholar] [CrossRef]
- Wu, M.-R.; James Cook, W.; Zhang, T.; Sentman, C.L. Targeting multiple types of tumors using NKG2D-coated iron oxide nanoparticles. Nanotechnology 2014, 25, 475101. [Google Scholar] [CrossRef]
- Melgoza-González, E.A.; Bustamante-Córdova, L.; Hernández, J. Recent advances in antigen targeting to antigen-presenting cells in veterinary medicine. Front. Immunol. 2023, 14, 1080238. [Google Scholar] [CrossRef]
- El-Sayed, N.; Korotchenko, E.; Scheiblhofer, S.; Weiss, R.; Schneider, M. Functionalized multifunctional nanovaccine for targeting dendritic cells and modulation of immune response. Int. J. Pharm. 2021, 593, 120123. [Google Scholar] [CrossRef]
- Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front. Mol. Biosci. 2020, 7, 193. [Google Scholar] [CrossRef]
- Kiaie, S.H.; Salehi-Shadkami, H.; Sanaei, M.J.; Azizi, M.; Shokrollahi Barough, M.; Nasr, M.S.; Sheibani, M. Nano-immunotherapy: Overcoming delivery challenge of immune checkpoint therapy. J. Nanobiotechnology 2023, 21, 339. [Google Scholar] [CrossRef]
- Shan, X.; Gong, X.; Li, J.; Wen, J.; Li, Y.; Zhang, Z. Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharm. Sin. B 2022, 12, 3028–3048. [Google Scholar] [CrossRef]
- Yu, M.; Yang, W.; Yue, W.; Chen, Y. Targeted Cancer Immunotherapy: Nanoformulation Engineering and Clinical Translation. Adv. Sci. 2022, 9, 2204335. [Google Scholar] [CrossRef]
- Mundekkad, D.; Cho, W.C. Nanoparticles in Clinical Translation for Cancer Therapy. Int. J. Mol. Sci. 2022, 23, 1685. [Google Scholar] [CrossRef]
- Franco, R.; Rivas-Santisteban, R.; Navarro, G.; Reyes-Resina, I. Adenosine Receptor Antagonists to Combat Cancer and to Boost Anti-Cancer Chemotherapy and Immunotherapy. Cells 2021, 10, 2831. [Google Scholar] [CrossRef]
- Miguel, R.D.A.; Hirata, A.S.; Jimenez, P.C.; Lopes, L.B.; Costa-Lotufo, L.V. Beyond Formulation: Contributions of Nanotechnology for Translation of Anticancer Natural Products into New Drugs. Pharmaceutics 2022, 14, 1722. [Google Scholar] [CrossRef]
- D’haese, S.; Lacroix, C.; Garcia, F.; Plana, M.; Ruta, S.; Vanham, G.; Verrier, B.; Aerts, J.L. Off the beaten path: Novel mRNA-nanoformulations for therapeutic vaccination against HIV. J. Control. Release 2021, 330, 1016–1033. [Google Scholar] [CrossRef]
- Lin, C.J.; Lin, Y.L.; Luh, F.; Yen, Y.; Chen, R.M. Preclinical effects of CRLX101, an investigational camptothecin-containing nanoparticle drug conjugate, on treating glioblastoma multiforme via apoptosis and antiangiogenesis. Oncotarget 2016, 7, 42408–42421. [Google Scholar] [CrossRef] [PubMed]
- Tada, R.; Hidaka, A.; Iwase, N.; Takahashi, S.; Yamakita, Y.; Iwata, T.; Muto, S.; Sato, E.; Takayama, N.; Honjo, E.; et al. Intranasal Immunization with DOTAP Cationic Liposomes Combined with DC-Cholesterol Induces Potent Antigen-Specific Mucosal and Systemic Immune Responses in Mice. PLoS ONE 2015, 10, e0139785. [Google Scholar] [CrossRef]
- Doonan, B.; Shaw, C.; Lee, J.-H.; Manso, E.; Mendez-Gomez, H.; Roemeling, C.V.; Mitchell, D.A.; Sayour, E. 772 Novel RNA-nanoparticle vaccine for the treatment of early melanoma recurrence following adjuvant anti-PD-1 antibody therapy. J. ImmunoTherapy Cancer 2023, 11 (Suppl. 1), A867–A869. [Google Scholar] [CrossRef]
- Borodovsky, A.; Barbon, C.M.; Wang, Y.; Ye, M.; Prickett, L.; Chandra, D.; Shaw, J.; Deng, N.; Sachsenmeier, K.; Clarke, J.D.; et al. Small molecule AZD4635 inhibitor of A(2A)R signaling rescues immune cell function including CD103(+) dendritic cells enhancing anti-tumor immunity. J. Immunother. Cancer 2020, 8, e000417. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Zhang, Y.; Xin, Y.; Jiang, C.; Yan, B.; Zhai, S. Interactions between nanoparticles and dendritic cells: From the perspective of cancer immunotherapy. Front. Oncol. 2018, 8, 404. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, G.A.R.; Paiva, R.M.A. Gene therapy: Advances, challenges and perspectives. Einstein (Sao Paulo) 2017, 15, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.H.; Li, D.; Wang, N.; Gruber, J.; Lo, A.W.; Conti, R.M. The estimated annual financial impact of gene therapy in the United States. Gene Ther. 2023, 30, 761–773. [Google Scholar] [CrossRef] [PubMed]
- Scheller, E.L.; Krebsbach, P.H. Gene therapy: Design and prospects for craniofacial regeneration. J. Dent. Res. 2009, 88, 585–596. [Google Scholar] [CrossRef] [PubMed]
- Trafton, A. Nanoparticles for Gene Therapy Improve. 6 November 2009. Available online: https://news.mit.edu/2009/nanoparticles-gene (accessed on 13 February 2024).
- Hamimed, S.; Jabberi, M.; Chatti, A. Nanotechnology in drug and gene delivery. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2022, 395, 769–787. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhan, Q.; Wu, C.; Liao, N.; Jiang, Z.; Ding, H.; Wang, K.; Li, Y. Trends and Hotspots in Nanoparticles for the Targeted Delivery of Nucleic Acids: A Ten-Year Bibliometric Study. Front. Pharmacol. 2022, 13, 868398. [Google Scholar] [CrossRef] [PubMed]
- Roma-Rodrigues, C.; Rivas-García, L.; Baptista, P.V.; Fernandes, A.R. Gene Therapy in Cancer Treatment: Why Go Nano? Pharmaceutics 2020, 12, 233. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Guo, Z.; Tian, H.; Chen, X. Production and clinical development of nanoparticles for gene delivery. Mol. Ther. Methods Clin. Dev. 2016, 3, 16023. [Google Scholar] [CrossRef] [PubMed]
- McBain, S.C.; Yiu, H.H.; Dobson, J. Magnetic nanoparticles for gene and drug delivery. Int. J. Nanomed. 2008, 3, 169–180. [Google Scholar]
- Jin, L.; Wang, Q.; Chen, J.; Wang, Z.; Xin, H.; Zhang, D. Efficient delivery of therapeutic siRNA by Fe3O4 magnetic nanoparticles into oral cancer cells. Pharmaceutics 2019, 11, 615. [Google Scholar] [CrossRef]
- Ryou, S.-M.; Kim, J.-M.; Yeom, J.-H.; Hyun, S.; Kim, S.; Han, M.S.; Kim, S.W.; Bae, J.; Rhee, S.; Lee, K. Gold nanoparticle-assisted delivery of small, highly structured RNA into the nuclei of human cells. Biochem. Biophys. Res. Commun. 2011, 416, 178–183. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-M.; Yoon, T.-J.; Cho, Y.-S. Recent developments in nanoparticle-based siRNA delivery for cancer therapy. BioMed Res. Int. 2013, 2013, 782041. [Google Scholar] [CrossRef] [PubMed]
- Taghavi, S.; Nia, A.H.; Abnous, K.; Ramezani, M. Polyethylenimine-functionalized carbon nanotubes tagged with AS1411 aptamer for combination gene and drug delivery into human gastric cancer cells. Int. J. Pharm. 2017, 516, 301–312. [Google Scholar] [CrossRef] [PubMed]
- Bhakta, G.; Sharma, R.K.; Gupta, N.; Cool, S.; Nurcombe, V.; Maitra, A. Multifunctional silica nanoparticles with potentials of imaging and gene delivery. Nanomed. Nanotechnol. Biol. Med. 2011, 7, 472–479. [Google Scholar] [CrossRef]
- Carvalho, A.M.; Cordeiro, R.A.; Faneca, H. Silica-based gene delivery systems: From design to therapeutic applications. Pharmaceutics 2020, 12, 649. [Google Scholar] [CrossRef] [PubMed]
- Mirón-Barroso, S.; Domènech, E.B.; Trigueros, S. Nanotechnology-based strategies to overcome current barriers in gene delivery. Int. J. Mol. Sci. 2021, 22, 8537. [Google Scholar] [CrossRef] [PubMed]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Erviti, L.; Seow, Y.; Yin, H.; Betts, C.; Lakhal, S.; Wood, M.J. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 2011, 29, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Cheraghi, R.; Nazari, M.; Alipour, M.; Majidi, A.; Hosseinkhani, S. Development of a targeted anti-HER2 scFv chimeric peptide for gene delivery into HER2-positive breast cancer cells. Int. J. Pharm. 2016, 515, 632–643. [Google Scholar] [CrossRef]
- Jiang, Z.; Thayumanavan, S. Noncationic material design for nucleic acid delivery. Adv. Ther. 2020, 3, 1900206. [Google Scholar] [CrossRef]
- Choi, Y.S.; Lee, M.Y.; David, A.E.; Park, Y.S. Nanoparticles for gene delivery: Therapeutic and toxic effects. Mol. Cell. Toxicol. 2014, 10, 1–8. [Google Scholar] [CrossRef]
- Duan, L.; Ouyang, K.; Xu, X.; Xu, L.; Wen, C.; Zhou, X.; Qin, Z.; Xu, Z.; Sun, W.; Liang, Y. Nanoparticle Delivery of CRISPR/Cas9 for Genome Editing. Front. Genet. 2021, 12, 673286. [Google Scholar] [CrossRef]
- Jürgens, D.C.; Deßloch, L.; Porras-Gonzalez, D.; Winkeljann, J.; Zielinski, S.; Munschauer, M.; Hörner, A.L.; Burgstaller, G.; Winkeljann, B.; Merkel, O.M. Lab-scale siRNA and mRNA LNP manufacturing by various microfluidic mixing techniques—An evaluation of particle properties and efficiency. OpenNano 2023, 12, 100161. [Google Scholar] [CrossRef]
- Zhu, Y.; Shen, R.; Vuong, I.; Reynolds, R.A.; Shears, M.J.; Yao, Z.-C.; Hu, Y.; Cho, W.J.; Kong, J.; Reddy, S.K.; et al. Multi-step screening of DNA/lipid nanoparticles and co-delivery with siRNA to enhance and prolong gene expression. Nat. Commun. 2022, 13, 4282. [Google Scholar] [CrossRef] [PubMed]
- Khademi, Z.; Ramezani, M.; Alibolandi, M.; Zirak, M.R.; Salmasi, Z.; Abnous, K.; Taghdisi, S.M. A novel dual-targeting delivery system for specific delivery of CRISPR/Cas9 using hyaluronic acid, chitosan and AS1411. Carbohydr. Polym. 2022, 292, 119691. [Google Scholar] [CrossRef]
- Casadidio, C.; Hartman, J.E.M.; Mesquita, B.S.; Haegebaert, R.; Remaut, K.; Neumann, M.; Hak, J.; Censi, R.; Di Martino, P.; Hennink, W.E.; et al. Effect of Polyplex Size on Penetration into Tumor Spheroids. Mol. Pharm. 2023, 20, 5515–5531. [Google Scholar] [CrossRef]
- Xue, C.; Hu, S.; Gao, Z.-H.; Wang, L.; Luo, M.-X.; Yu, X.; Li, B.-F.; Shen, Z.; Wu, Z.-S. Programmably tiling rigidified DNA brick on gold nanoparticle as multi-functional shell for cancer-targeted delivery of siRNAs. Nat. Commun. 2021, 12, 2928. [Google Scholar] [CrossRef] [PubMed]
- Rohiwal, S.S.; Nguyen, T.D.; Kamenna, E.; Klima, J.; Vaskovicova, M.; Sekac, D.; Slouf, M.; Pavlova, E.; Stepanek, P.; Babuka, D.; et al. Iron Oxide Nanoparticle-Mediated siRNA Delivery System for Huntington’s Disease Treatment. ACS Appl. Nano Mater. 2023, 6, 5106–5116. [Google Scholar] [CrossRef]
- Liu, C.; Wan, T.; Wang, H.; Zhang, S.; Ping, Y.; Cheng, Y. A boronic acid-rich dendrimer with robust and unprecedented efficiency for cytosolic protein delivery and CRISPR-Cas9 gene editing. Sci. Adv. 2019, 5, eaaw8922. [Google Scholar] [CrossRef]
- Crivianu-Gaita, V.; Thompson, M. Aptamers, antibody scFv, and antibody Fab’fragments: An overview and comparison of three of the most versatile biosensor biorecognition elements. Biosens. Bioelectron. 2016, 85, 32–45. [Google Scholar] [CrossRef]
- Roacho-Perez, J.A.; Gallardo-Blanco, H.L.; Sanchez-Dominguez, M.; Garcia-Casillas, P.E.; Chapa-Gonzalez, C.; Sanchez-Dominguez, C.N. Nanoparticles for death-induced gene therapy in cancer (Review). Mol. Med. Rep. 2018, 17, 1413–1420. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Liu, C.; Wang, Y.; Koivisto, O.; Zhou, J.; Shu, Y.; Zhang, H. Nanotechnology-based delivery of CRISPR/Cas9 for cancer treatment. Adv. Drug Deliv. Rev. 2021, 176, 113891. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Yang, Y.; Qi, H.; Cui, W.; Zhang, L.; Fu, X.; He, X.; Liu, M.; Li, P.-f.; Yu, T. CRISPR/Cas9 therapeutics: Progress and prospects. Signal Transduct. Target. Ther. 2023, 8, 36. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zhao, K.; Wang, C.; Zhang, Z.; Zheng, C.; Zhao, Y.; Zheng, Y.; Liu, C.; An, Y.; Shi, L. Multistage delivery nanoparticle facilitates efficient CRISPR/dCas9 activation and tumor growth suppression in vivo. Adv. Sci. 2019, 6, 1801423. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zhou, X.; Wei, M.; Gao, X.; Zhao, L.; Shi, R.; Sun, W.; Duan, Y.; Yang, G.; Yuan, L. In vitro and in vivo RNA inhibition by CD9-HuR functionalized exosomes encapsulated with miRNA or CRISPR/dCas9. Nano Lett. 2018, 19, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Gessner, I.; Neundorf, I. Nanoparticles Modified with Cell-Penetrating Peptides: Conjugation Mechanisms, Physicochemical Properties, and Application in Cancer Diagnosis and Therapy. Int. J. Mol. Sci. 2020, 21, 2536. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.-f.; Tian, M.-m.; Wang, T.-x.; Ren, L.; Wang, D.; Shen, L.-h.; Shang, T. Synergistic effects of cell-penetrating peptide Tat and fusogenic peptide HA2-enhanced cellular internalization and gene transduction of organosilica nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2012, 8, 833–841. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.E.; Zahid, M. Cell Penetrating Peptides, Novel Vectors for Gene Therapy. Pharmaceutics 2020, 12, 225. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Shao, K.; Liu, Y.; Kuang, Y.; Li, J.; An, S.; Guo, Y.; Ma, H.; Jiang, C. Tumor-targeting and microenvironment-responsive smart nanoparticles for combination therapy of antiangiogenesis and apoptosis. ACS Nano 2013, 7, 2860–2871. [Google Scholar] [CrossRef] [PubMed]
- Davis, M.E.; Zuckerman, J.E.; Choi, C.H.J.; Seligson, D.; Tolcher, A.; Alabi, C.A.; Yen, Y.; Heidel, J.D.; Ribas, A. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 2010, 464, 1067–1070. [Google Scholar] [CrossRef] [PubMed]
- Ikada, Y. Challenges in tissue engineering. J. R. Soc. Interface 2006, 3, 589–601. [Google Scholar] [CrossRef] [PubMed]
- Olson, J.L.; Atala, A.; Yoo, J.J. Tissue engineering: Current strategies and future directions. Chonnam Med. J. 2011, 47, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sudhakar, C.K.; Upadhyay, N.; Verma, A.; Jain, A.; Narayana Charyulu, R.; Jain, S. Chapter 1—Nanomedicine and Tissue Engineering. In Nanotechnology Applications for Tissue Engineering; Thomas, S., Grohens, Y., Ninan, N., Eds.; William Andrew Publishing: Oxford, UK, 2015; pp. 1–19. [Google Scholar]
- Fathi-Achachelouei, M.; Knopf-Marques, H.; Ribeiro da Silva, C.E.; Barthès, J.; Bat, E.; Tezcaner, A.; Vrana, N.E. Use of Nanoparticles in Tissue Engineering and Regenerative Medicine. Front. Bioeng. Biotechnol. 2019, 7, 113. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Votruba, A.R.; Farokhzad, O.C.; Langer, R. Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Lett. 2010, 10, 3223–3230. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Wang, K.; Liu, Y.; Zhang, C.; Wang, B. Using Wet Electrospun PCL/Gelatin/CNT Yarns to Fabricate Textile-Based Scaffolds for Vascular Tissue Engineering. ACS Biomater. Sci. Eng. 2021, 7, 2627–2637. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wiley, B.; Chan, I.; Panchot, A.; Zong, X.; Cao, Y.; Offit, K.; Stadler, Z.; Link, D.; Bolton, K. 43. Association between Clonal Hematopoiesis and Inherited Cancer Susceptibility Genes. Cancer Genet. 2022, 268–269, 15. [Google Scholar] [CrossRef]
- Boguslavsky, Y.; Shemesh, M.; Friedlander, A.; Rutenberg, R.; Filossof, A.M.; Buslovich, A.; Poverenov, E. Eliminating the Need for Biocidal Agents in Anti-Biofouling Polymers by Applying Grafted Nanosilica Instead. ACS Omega 2018, 3, 12437–12445. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.; Wang, Y.; Gao, J.; Xiao, Y.; Du, J. Dual Corona Vesicles with Intrinsic Antibacterial and Enhanced Antibiotic Delivery Capabilities for Effective Treatment of Biofilm-Induced Periodontitis. ACS Nano 2019, 13, 13645–13657. [Google Scholar] [CrossRef] [PubMed]
- Aloma, K.K.; Sukaryo, S.; Fahlawati, N.I.; Dahlan, K.; Oemar, S. Synthesis of Nanofibers from Alginate-Polyvinyl Alcohol using Electrospinning Methods. Macromol. Symp. 2020, 391, 1900199. [Google Scholar] [CrossRef]
- He, W.; Ma, Z.; Yong, T.; Teo, W.E.; Ramakrishna, S. Fabrication of collagen-coated biodegradable polymer nanofiber mesh and its potential for endothelial cells growth. Biomaterials 2005, 26, 7606–7615. [Google Scholar] [CrossRef] [PubMed]
- Ragothaman, M.; Villalan, A.K.; Dhanasekaran, A.; Palanisamy, T. Bio-hybrid hydrogel comprising collagen-capped silver nanoparticles and melatonin for accelerated tissue regeneration in skin defects. Mater. Sci. Eng. C 2021, 128, 112328. [Google Scholar] [CrossRef] [PubMed]
- Sang, S.; Cheng, R.; Cao, Y.; Yan, Y.; Shen, Z.; Zhao, Y.; Han, Y. Biocompatible chitosan/polyethylene glycol/multi-walled carbon nanotube composite scaffolds for neural tissue engineering. J. Zhejiang Univ. Sci. B 2022, 23, 58–73. [Google Scholar] [CrossRef] [PubMed]
- Heidari, M.; Bahrami, S.H.; Ranjbar-Mohammadi, M.; Milan, P.B. Smart electrospun nanofibers containing PCL/gelatin/graphene oxide for application in nerve tissue engineering. Mater. Sci. Eng. C 2019, 103, 109768. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Huang, L.; Tai, G.; Yan, F.; Cai, L.; Xin, C.; Al Islam, S. Graphene Oxide-loaded magnetic nanoparticles within 3D hydrogel form High-performance scaffolds for bone regeneration and tumour treatment. Compos. Part A Appl. Sci. Manuf. 2022, 152, 106672. [Google Scholar] [CrossRef]
- Xie, C.; Satake-Ozawa, M.; Rashed, F.; Khan, M.; Ikeda, M.; Hayashi, S.; Sawada, S.; Sasaki, Y.; Ikeda, T.; Mori, Y.; et al. Perforated Hydrogels Consisting of Cholesterol-Bearing Pullulan (CHP) Nanogels: A Newly Designed Scaffold for Bone Regeneration Induced by RANKL-Binding Peptides and BMP-2. Int. J. Mol. Sci. 2022, 23, 7768. [Google Scholar] [CrossRef] [PubMed]
- Borzenkov, M.; Chirico, G.; Collini, M.; Pallavicini, P. Gold nanoparticles for tissue engineering. Environ. Nanotechnol. 2018, 1, 343–390. [Google Scholar]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar] [CrossRef] [PubMed]
- Buyukhatipoglu, K.; Chang, R.; Sun, W.; Clyne, A.M. Bioprinted nanoparticles for tissue engineering. In Proceedings of the 2009 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, Hong Kong, China, 11–13 May 2009; pp. 234–237. [Google Scholar]
- Wen, X.; Shi, D.; Zhang, N. Applications of nanotechnology in tissue engineering. In Handbook of Nanostructured Biomaterials and Their Applications in Nanobiotechnology; American Scientific Publishers: Valencia, CA, USA, 2005; Volume 1, pp. 1–23. [Google Scholar]
- Bhutta, Z.A.; Kulyar, M.F.-e.-A.; Farooq, U.; Ashar, A.; Mahfooz, A.; Kanwal, A.; Akhtar, M.; Asif, M.; Nawaz, S.; Li, K. Chapter 15—Applications of functionalized nanoparticles in tissue engineering. In Antiviral and Antimicrobial Coatings Based on Functionalized Nanomaterials; Ul Islam, S., Hussain, C.M., Shukla, S.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 485–513. [Google Scholar]
- Sharma, K.; Tharmatt, A.; Chawla, P.A.; Shah, K.; Chawla, V.; Sapra, B.; Bedi, N. An Insight into Advanced Nanoparticles as Multifunctional Biomimetic Systems in Tissue Engineering. In Nanopharmaceuticals in Regenerative Medicine; CRC Press: Boca Raton, FL, USA, 2022; pp. 1–19. [Google Scholar]
- Zheng, X.; Zhang, P.; Fu, Z.; Meng, S.; Dai, L.; Yang, H. Applications of nanomaterials in tissue engineering. RSC Adv. 2021, 11, 19041–19058. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Luo, H.; Han, J.; Chen, Y.; Jiang, J. Assessing the effects of cellulose-inorganic nanofillers on thermo/pH-dual responsive hydrogels. Appl. Surf. Sci. 2020, 528, 146961. [Google Scholar] [CrossRef]
- Yuan, M.; Wang, Y.; Qin, Y.-X. Promoting neuroregeneration by applying dynamic magnetic fields to a novel nanomedicine: Superparamagnetic iron oxide (SPIO)-gold nanoparticles bounded with nerve growth factor (NGF). Nanomed. Nanotechnol. Biol. Med. 2018, 14, 1337–1347. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Guo, Y.; Niu, W.; Chen, M.; Xue, Y.; Ge, J.; Ma, P.X.; Lei, B. Biodegradable multifunctional bioactive glass-based nanocomposite elastomers with controlled biomineralization activity, real-time bioimaging tracking, and decreased inflammatory response. ACS Appl. Mater. Interfaces 2018, 10, 17722–17731. [Google Scholar] [CrossRef] [PubMed]
- Villarreal Gómez, L.J. Electrospun Nanofibers for Tissue Engineering: Desired Properties. Open Biomater. Sci. J. 2022, 1, e266599562209030. [Google Scholar]
- Alizadeh, P.; Soltani, M.; Tutar, R.; Hoque Apu, E.; Maduka, C.V.; Unluturk, B.D.; Contag, C.H.; Ashammakhi, N. Use of electroconductive biomaterials for engineering tissues by 3D printing and 3D bioprinting. Essays Biochem. 2021, 65, 441–466. [Google Scholar] [PubMed]
- Ziv-Polat, O.; Margel, S.; Shahar, A. Application of iron oxide anoparticles in neuronal tissue engineering. Neural Regen. Res. 2015, 10, 189. [Google Scholar] [CrossRef] [PubMed]
- Hasan, A.; Morshed, M.; Memic, A.; Hassan, S.; Webster, T.J.; Marei, H.E. Nanoparticles in tissue engineering: Applications, challenges and prospects. Int. J. Nanomed. 2018, 13, 5637–5655. [Google Scholar] [CrossRef] [PubMed]
- Arulpriya, P.; Krishnaveni, T.; Lakshmi, K.; Kadirvelu, K. Bionanomaterials and Their Recent Advancements in Tissue Engineering Applications. In Nanophytomedicine; CRC Press: Boca Raton, FL, USA, 2022; pp. 151–164. [Google Scholar]
- Loukelis, K.; Helal, Z.A.; Mikos, A.G.; Chatzinikolaidou, M. Nanocomposite Bioprinting for Tissue Engineering Applications. Gels 2023, 9, 103. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Wang, S.; Zhou, C.; Cheng, L.; Gao, X.; Xie, X.; Sun, J.; Wang, H.; Weir, M.D.; Reynolds, M.A.; et al. Advanced smart biomaterials and constructs for hard tissue engineering and regeneration. Bone Res. 2018, 6, 31. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, S. History of vaccination. Proc. Natl. Acad. Sci. USA 2014, 111, 12283–12287. [Google Scholar] [CrossRef] [PubMed]
- Bezbaruah, R.; Chavda, V.P.; Nongrang, L.; Alom, S.; Deka, K.; Kalita, T.; Ali, F.; Bhattacharjee, B.; Vora, L. Nanoparticle-based delivery systems for vaccines. Vaccines 2022, 10, 1946. [Google Scholar] [CrossRef] [PubMed]
- Peiffer-Smadja, N.; Rozencwajg, S.; Kherabi, Y.; Yazdanpanah, Y.; Montravers, P. COVID-19 vaccines: A race against time. Anaesth. Crit. Care Pain Med. 2021, 40, 100848. [Google Scholar] [CrossRef]
- Ramirez, J.E.V.; Sharpe, L.A.; Peppas, N.A. Current state and challenges in developing oral vaccines. Adv. Drug Deliv. Rev. 2017, 114, 116–131. [Google Scholar] [CrossRef] [PubMed]
- Almotairy, A.; Yusuf, A.; Henidi, H.; Alshehri, O.; Aldughaim, M. Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles’ Physicochemical Properties on Responses in Biological Systems. Polymers 2023, 15, 1596. [Google Scholar] [CrossRef] [PubMed]
- Pascolo, S. Synthetic messenger RNA-based vaccines: From scorn to hype. Viruses 2021, 13, 270. [Google Scholar] [CrossRef] [PubMed]
- Arevalo, C.P.; Bolton, M.J.; Le Sage, V.; Ye, N.; Furey, C.; Muramatsu, H.; Alameh, M.-G.; Pardi, N.; Drapeau, E.M.; Parkhouse, K. A multivalent nucleoside-modified mRNA vaccine against all known influenza virus subtypes. Science 2022, 378, 899–904. [Google Scholar] [CrossRef] [PubMed]
- Marrack, P.; McKee, A.S.; Munks, M.W. Towards an understanding of the adjuvant action of aluminium. Nat. Rev. Immunol. 2009, 9, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Niu, L.; Larson, P.; Kucaba, T.A.; Murphy, K.A.; James, B.R.; Ferguson, D.M.; Griffith, T.S.; Panyam, J. Polymeric nanoparticles encapsulating novel TLR7/8 agonists as immunostimulatory adjuvants for enhanced cancer immunotherapy. Biomaterials 2018, 164, 38–53. [Google Scholar] [CrossRef] [PubMed]
- Stickdorn, J.; Stein, L.; Arnold-Schild, D.; Hahlbrock, J.; Medina-Montano, C.; Bartneck, J.; Ziß, T.; Montermann, E.; Kappel, C.; Hobernik, D. Systemically administered TLR7/8 agonist and antigen-conjugated nanogels govern immune responses against tumors. ACS Nano 2022, 16, 4426–4443. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Chapman, D.V.; Saltzman, W.M. Nanoparticle targeting with antibodies in the central nervous system. BME Front. 2023, 4, 0012. [Google Scholar] [CrossRef] [PubMed]
- Park, K.S.; Bazzill, J.D.; Son, S.; Nam, J.; Shin, S.W.; Ochyl, L.J.; Stuckey, J.A.; Meagher, J.L.; Chang, L.; Song, J. Lipid-based vaccine nanoparticles for induction of humoral immune responses against HIV-1 and SARS-CoV-2. J. Control. Release 2021, 330, 529–539. [Google Scholar] [CrossRef] [PubMed]
- Sia, Z.R.; He, X.; Zhang, A.; Ang, J.C.; Shao, S.; Seffouh, A.; Huang, W.-C.; D’Agostino, M.R.; Teimouri Dereshgi, A.; Suryaprakash, S. A liposome-displayed hemagglutinin vaccine platform protects mice and ferrets from heterologous influenza virus challenge. Proc. Natl. Acad. Sci. USA 2021, 118, e2025759118. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Zaks, T.; Langer, R.; Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 2021, 6, 1078–1094. [Google Scholar] [CrossRef] [PubMed]
- Linkov, I.; Satterstrom, F.K.; Corey, L.M. Nanotoxicology and nanomedicine: Making hard decisions. Nanomed. Nanotechnol. Biol. Med. 2008, 4, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.R.; Poland, C.A. Nanotoxicology: The need for a human touch? Small 2020, 16, 2001516. [Google Scholar] [CrossRef] [PubMed]
- Feliu, N.; Fadeel, B. Nanotoxicology: No small matter. Nanoscale 2010, 2, 2514–2520. [Google Scholar] [CrossRef] [PubMed]
- Forest, V. Experimental and computational nanotoxicology—Complementary approaches for nanomaterial hazard assessment. Nanomaterials 2022, 12, 1346. [Google Scholar] [CrossRef] [PubMed]
- Domingues, C.; Santos, A.; Alvarez-Lorenzo, C.; Concheiro, A.; Jarak, I.; Veiga, F.; Barbosa, I.; Dourado, M.; Figueiras, A. Where is nano today and where is it headed? A review of nanomedicine and the dilemma of nanotoxicology. ACS Nano 2022, 16, 9994–10041. [Google Scholar] [CrossRef] [PubMed]
Drug Name | Platform | API | Approval and Clinical Trial Status |
---|---|---|---|
SMANCS | Polymer conjugate | Neocarzinostatin | Approved (1993), Japan |
Doxil® | Liposome | Doxorubicin | Approved (1995), USA |
DaunoXome® | Liposome | Doxorubicin | Approved (1996), USA |
Ontak® | Fusion protein | Diphtheria toxin | Approved (1999), USA |
Myocet® | Liposome | Doxorubicin | Approved (2000), Europe |
Zevalin® | Anti-CD20 antibody (ADC#) | Yttrium-90 | Approved (2002), USA |
Abraxane® | Albumin-bound nanoparticle | Paclitaxel | Approved (2005), USA |
Genexol®-PM | Polymeric micelle | Paclitaxel | Approved (2007), Korea |
Marqibo® | Liposome | Vincristine | Approved (2012), USA |
Onivyde® | Liposome | Irinotecan | Approved (2015), USA |
Vyxeos® | Liposome | Daunorubicin and cytarabine | Approved (2017), USA |
Mylotarg® | Anti-CD33 antibody (ADC) | Calicheamicin | Approved (2017), USA |
Hensify® | Nanoparticle | Hafnium oxide | Approved (2019), USA |
CPC634 | Polymeric micelle | Docetaxel | In clinical phase II trial |
NC-4016 | Polymeric micelle | Oxaliplatin | In clinical phase I trial |
NK105 | Micelle | Paclitaxel | In clinical phase III trial |
NC-6004 | Micelle | Cisplatin | In clinical phase II trial |
Category | Mechanism | Subcategory | Typical Examples |
---|---|---|---|
PDT | Specific photosensitizers are used to produce active oxidative substances under light irradiation of specific wavelengths, thereby triggering the death of cancer cells or other abnormal tissues. | PNPSs | HPMA [27] |
Nanoliposomes | RALP@HOC@Fe3O4 [46] | ||
Nanohydrogel particles | HA-ADH-PpIX [47] | ||
MNPSs | GNRs@mSiO2 [48] B-TiO2@SiO2–HA [49] | ||
CNPSs | single-walled carbon nanotubes (SWNTs) [50] HA-TiO2-GO153 [51] amino-N-GQDs [52] | ||
QDPSs | CdTe QDs [53] | ||
UCNPs | OP-UCNPs-C [54] | ||
Organic frameworks | MOFs [55] COFs [56], | ||
PTT | By using nanomaterials that absorb light of specific wavelengths, local heat is generated under light irradiation, thereby triggering thermal damage and the death of cancer cells or abnormal tissues. | Metal nanoparticles | PEG-modified gold nanorods [57] Copper sulfide (CuS) [58] MGNPs [59] Au NBPs@PDA [60] Bi@ZIF-8 [61] LV-TAX/Au@Ag [62] |
Carbon nanoparticles | GO-PEG-Ce6 [63] C-dots@GNR [64] rGO-FA [61] FA-SWCNT [65] | ||
Quantum dots | BPQDs [66] | ||
PDD | Tumors or other lesions are detected using the fluorescent signal produced by a photosensitizer under irradiation with light of a specific wavelength. When the photosensitizer is activated at a specific wavelength, it emits fluorescence, allowing for the diagnosis of lesions. | Metal nanoparticles | ZnPcS4 AuNP-S-PEG5000-NH2 Anti-GCC mAb [67] |
Tissue Engineering Field | NPs Involved in Scaffold | Application and Advantages | References |
---|---|---|---|
Cardiovascular tissue engineering | Carbon nanotubes | Increased the length of cells with improved biocompatibility, making them an ideal option for vessel construction in tissue engineering | [147] |
poly (L-lactide-co-caprolactone) nanofibers | Reduced aortic inflammation and encourage aortic remodeling following the implantation of a stent–graft | [148] | |
Dental tissue engineering | Monodispersed silica NPs (SNPs) | Provided a safe and effective plateform for the creation of sustainable anti-biofouling surfaces for dental implants and other biomedical devices | [149] |
Polycaprolactone (PCL)-based block copolymers | Enhanced the effectiveness of antibiotics’ anti-biofilm properties, addressing the serious risk posed by biofilm-associated infections such as periodontitis. | [150] | |
Skin tissue engineering | Alginate–polyvinyl alcohol (PVA) nanofiber | Showed a fiber diameter of about 172,242–326,244 n with improved tensile strength, thus qualifying the fiber to be used in wound dressing | [151] |
Collagen/poly(l-lactic acid)-co-PCL nanofiber mesh | Improved the cell’s capacity to disseminate, remain viable, and adhere, and could potentially be used as a material for tissue-engineered vascular grafts | [152] | |
AgNPs hydrogel | Accelerated skin tissue regeneration and provide effective care in chronic wounds | [153] | |
Neural tissue engineering | Chitosan/polyethylene glycol/multiwalled carbon nanotube composite | Enhanced the elastic modulus of the scaffold and expressed nerve growth receptor in the scaffold for neural tissue engineering | [154] |
PCL/gelatin nanofibrous scaffold | Could be used as electrically conductive scaffolds along with anti-bacterial properties in neural tissue engineering | [155] | |
Bone tissue engineering | Graphene oxide loaded magnetic nanoparticle | Scaffold promoted the development of bone mesenchymal stem cells and improve biological functions | [156] |
Cholesterol-bearing pullulan (CHP) nanogel | Stimulated bone morphogenetic protein (BMP)-2-induced local bone formation | [157] |
Vaccine Target | Nanoparticle Platform | Delivery Mechanism | Reference |
---|---|---|---|
HIV | Lipid-based | Encapsulate viral antigens and adjuvants for targeted delivery to antigen-presenting cells (APCs) | [186] |
Influenza | Liposomes | Encapsulate viral antigens and adjuvants to promote cellular uptake of the antigen payload | [187] |
COVID-19 | Cationic lipids | Encapsulate mRNA encoding viral antigens; cationic lipids facilitate cellular uptake of the mRNA for translation into viral proteins, triggering an immune response | [188] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehan, F.; Zhang, M.; Fang, J.; Greish, K. Therapeutic Applications of Nanomedicine: Recent Developments and Future Perspectives. Molecules 2024, 29, 2073. https://doi.org/10.3390/molecules29092073
Rehan F, Zhang M, Fang J, Greish K. Therapeutic Applications of Nanomedicine: Recent Developments and Future Perspectives. Molecules. 2024; 29(9):2073. https://doi.org/10.3390/molecules29092073
Chicago/Turabian StyleRehan, Farah, Mingjie Zhang, Jun Fang, and Khaled Greish. 2024. "Therapeutic Applications of Nanomedicine: Recent Developments and Future Perspectives" Molecules 29, no. 9: 2073. https://doi.org/10.3390/molecules29092073
APA StyleRehan, F., Zhang, M., Fang, J., & Greish, K. (2024). Therapeutic Applications of Nanomedicine: Recent Developments and Future Perspectives. Molecules, 29(9), 2073. https://doi.org/10.3390/molecules29092073