Adenosine Encapsulation and Characterization through Layer-by-Layer Assembly of Hydroxypropyl-β-Cyclodextrin and Whey Protein Isolate as Wall Materials
Abstract
:1. Introduction
2. Results and Discussion
2.1. Molecular Modeling
2.2. Isothermal Titration Calorimetry (ITC)
2.3. 1H NMR Studies
2.4. Fourier Transform Infrared (FTIR) Spectroscopy
2.5. Morphology and Size Distribution of Microcapsules
2.6. Embedding Rate of Adenosine
2.7. Release Behavior Test of Microcapsules
3. Experiment
3.1. Materials
3.2. Synthesis of Microcapsules
3.3. Characterization of Microcapsules
3.3.1. Molecular Modeling
3.3.2. Isothermal Titration Calorimetry (ITC)
3.3.3. 1H NMR Studies
3.3.4. Fourier Transform Infrared (FTIR) Spectroscopy
3.3.5. Morphology and Size Distribution of Microcapsules
3.3.6. Determination of Embedding Rate
3.3.7. Release Behavior Test of Microcapsules
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kazemzadeh-Narbat, M.; Annabi, N.; Tamayol, A.; Oklu, R.; Ghanem, A.; Khademhosseini, A. Adenosine-associated delivery systems. J. Drug Target. 2015, 23, 580–596. [Google Scholar] [CrossRef]
- Vaid, V.; Jindal, R. RSM-CCD optimized in air synthesis of novel kappa-carrageenan/tamarind kernel powder hybrid polymer network incorporated with inclusion complex of (2-hydroxypropyl)-β-cyclodextrin and adenosine for controlled drug delivery. J. Drug Deliv. Sci. Technol. 2022, 67, 102976. [Google Scholar] [CrossRef]
- Xia, B.; Wang, J. Adenosine inhibits ovarian cancer growth through regulating rhogdi2 protein expression. Drug Des. Dev. Ther. 2019, 2019, 3837–3844. [Google Scholar] [CrossRef]
- Yeo, S.; Kim, D.; Park, M.; Woo, H.R.; Yun, J.M.; Lee, J. Improved Transport of Adenosine Incorporated in Lipid Nanoparticles across Reconstructed Human Epidermis. Bull. Korean Chem. Soc. 2020, 41, 969–972. [Google Scholar] [CrossRef]
- Rouquette, M.; Lepetre-Mouelhi, S.; Couvreur, P. Adenosine and lipids: A forced marriage or a love match? Adv. Drug Deliv. Rev. 2019, 151, 233–244. [Google Scholar] [CrossRef]
- Jijie, R.; Barras, A.; Boukherroub, R.; Szunerits, S. Nanomaterials for transdermal drug delivery: Beyond the state of the art of liposomal structures. J. Mater. Chem. B 2017, 5, 8653–8675. [Google Scholar] [CrossRef]
- Cavalcanti, I.D.L.; Junior, F.H.X.; Magalhães, N.S.S.; Nogueira, M.C.d.B.L. Isothermal titration calorimetry (ITC) as a promising tool in pharmaceutical nanotechnology. Int. J. Pharm. 2023, 641, 123063. [Google Scholar] [CrossRef]
- Gaudin, A.; Lepetre-Mouelhi, S.; Mougin, J.; Parrod, M.; Pieters, G.; Garcia-Argote, S.; Loreau, O.; Goncalves, J.; Chacun, H.; Courbebaisse, Y.; et al. Pharmacokinetics, biodistribution and metabolism of squalenoyl adenosine nanoparticles in mice using dual radio-labeling and radio-HPLC analysis. J. Control. Release 2015, 212, 50–58. [Google Scholar] [CrossRef]
- Chen, W.; Zeng, W.; Wu, Y.; Wen, C.; Li, L.; Liu, G.; Shen, L.; Yang, M.; Tan, J.; Zhu, C. The Construction of Tissue-Engineered Blood Vessels Crosslinked with Adenosine-Loaded Chitosan/β-Cyclodextrin Nanoparticles using a Layer-by-Layer Assembly Method. Adv. Healthc. Mater. 2014, 3, 1776–1781. [Google Scholar] [CrossRef]
- Gaudin, A.; Yemisci, M.; Eroglu, H.; Lepetre-Mouelhi, S.; Turkoglu, O.F.; Dönmez-Demir, B.; Caban, S.; Sargon, M.F.; Garcia-Argote, S.; Pieters, G.; et al. Squalenoyl adenosine nanoparticles provide neuroprotection after stroke and spinal cord injury. Nat. Nanotechnol. 2014, 9, 1054–1062. [Google Scholar] [CrossRef]
- Rouquette, M.; Lepetre-Mouelhi, S.; Dufrançais, O.; Yang, X.; Mougin, J.; Pieters, G.; Garcia-Argote, S.; IJzerman, A.P.; Couvreur, P. Squalene-adenosine nanoparticles: Ligands of adenosine receptors or adenosine prodrug? J. Pharmacol. Exp. Ther. 2019, 369, 144–151. [Google Scholar] [CrossRef]
- Pritchard, E.M.; Szybala, C.; Boison, D.; Kaplan, D.L. Silk fibroin encapsulated powder reservoirs for sustained release of adenosine. J. Control. Release 2010, 144, 159–167. [Google Scholar] [CrossRef]
- Davis, M.E.; Brewster, M.E. Cyclodextrin-based pharmaceutics: Past, present and future. Nat. Rev. Drug Discov. 2004, 3, 1023–1035. [Google Scholar] [CrossRef]
- Truzzi, E.; Rustichelli, C.; de Oliveira Junior, E.R.; Ferraro, L.; Maretti, E.; Graziani, D.; Botti, G.; Beggiato, S.; Iannuccelli, V.; Lima, E.M.; et al. Nasal biocompatible powder of Geraniol oil complexed with cyclodextrins for neurodegenerative diseases: Physicochemical characterization and in vivo evidences of nose to brain delivery. J. Control. Release 2021, 335, 191–202. [Google Scholar] [CrossRef]
- Radu, C.D.; Parteni, O.; Ochiuz, L. Applications of cyclodextrins in medical textiles. J. Control. Release 2016, 224, 146–157. [Google Scholar] [CrossRef]
- Gao, S.; Liu, Y.; Jiang, J.; Ji, Q.; Fu, Y.; Zhao, L.; Li, C.; Ye, F. Physicochemical properties and fungicidal activity of inclusion complexes of fungicide chlorothalonil with β-cyclodextrin and hydroxypropyl-β-cyclodextrin. J. Mol. Liq. 2019, 293, 111513. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Zhang, Z.; Li, H. Advances in controllable release essential oil microcapsules and their promising applications. Molecules 2023, 28, 4979. [Google Scholar] [CrossRef]
- Chang, C.; Song, M.; Ma, M.; Song, J.; Cao, F.; Qin, Q. Preparation, Characterization and Molecular Dynamics Simulation of Rutin–Cyclodextrin Inclusion Complexes. Molecules 2023, 28, 955. [Google Scholar] [CrossRef]
- Qiu, N.; Li, X.; Liu, J. Application of cyclodextrins in cancer treatment. J. Incl. Phenom. Macrocycl. Chem. 2017, 89, 229–246. [Google Scholar] [CrossRef]
- Xiao, Z.; Zhang, Y.; Niu, Y.; Ke, Q.; Kou, X. Cyclodextrins as carriers for volatile aroma compounds: A review. Carbohydr. Polym. 2021, 269, 118292. [Google Scholar] [CrossRef]
- Kellici, T.F.; Chatziathanasiadou, M.V.; Diamantis, D.; Chatzikonstantinou, A.V.; Andreadelis, I.; Christodoulou, E.; Valsami, G.; Mavromoustakos, T.; Tzakos, A.G. Mapping the interactions and bioactivity of quercetin–(2-hydroxypropyl)-β-cyclodextrin complex. Int. J. Pharm. 2016, 511, 303–311. [Google Scholar] [CrossRef]
- Ntountaniotis, D.; Andreadelis, I.; Kellici, T.F.; Karageorgos, V.; Leonis, G.; Christodoulou, E.; Kiriakidi, S.; Becker-Baldus, J.; Stylos, E.K.; Chatziathanasiadou, M.V.; et al. Host–Guest Interactions between Candesartan and Its Prodrug Candesartan Cilexetil in Complex with 2-Hydroxypropyl-β-cyclodextrin: On the Biological Potency for Angiotensin II Antagonism. Mol. Pharm. 2019, 16, 1255–1271. [Google Scholar] [CrossRef]
- Liossi, A.S.; Ntountaniotis, D.; Kellici, T.F.; Chatziathanasiadou, M.V.; Megariotis, G.; Mania, M.; Becker-Baldus, J.; Kriechbaum, M.; Krajnc, A.; Christodoulou, E.; et al. Exploring the interactions of irbesartan and irbesartan–2-hydroxypropyl-β-cyclodextrin complex with model membranes. Biochim. Biophys. Acta (BBA)-Biomembr. 2017, 1859, 1089–1098. [Google Scholar] [CrossRef]
- Hsu, C.M.; Yu, S.C.; Tsai, F.J.; Tsai, Y. Characterization of in vitro and in vivo bioactivity of a ferulic acid-2-Hydroxypropyl-β-cyclodextrin inclusion complex. Colloids Surf. B Biointerfaces 2019, 180, 68–74. [Google Scholar] [CrossRef]
- Huang, X.; Guo, H.; Xie, Q.; Jin, W.; Zeng, R.; Hong, Z.; Zhang, Y.; Zhang, Y. Preparation and Embedding Characterization of Hydroxypropyl-β-cyclodextrin/Menthyl Acetate Microcapsules with Enhanced Stability. Pharmaceutics 2023, 15, 1979. [Google Scholar] [CrossRef]
- Rasheed, A.; Ashok, K.C.K.; Sravanthi, V.V.N.S. Cyclodextrins as drug carrier molecule: A review. Sci. Pharm. 2008, 76, 567–598. [Google Scholar] [CrossRef]
- Sliwinski, E.; Roubos, P.; Zoet, F.; Van Boekel, M.; Wouters, J. Effects of heat on physicochemical properties of whey protein-stabilised emulsions. Colloids Surf. B Biointerfaces 2003, 31, 231–242. [Google Scholar] [CrossRef]
- Bae, E.; Lee, S.J. Microencapsulation of avocado oil by spray drying using whey protein and maltodextrin. J. Microencapsul. 2008, 25, 549–560. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, T. Preparation of enzymolysis porous corn starch composite microcapsules embedding organic sunscreen agents and its UV protection performance and stability. Carbohydr. Polym. 2023, 314, 120903. [Google Scholar] [CrossRef]
- Rodzik, A.; Pomastowski, P.; Sagandykova, G.N.; Buszewski, B. Interactions of whey proteins with metal ions. Int. J. Mol. Sci. 2020, 21, 2156. [Google Scholar] [CrossRef]
- Hundre, S.Y.; Karthik, P.; Anandharamakrishnan, C. Effect of whey protein isolate and β-cyclodextrin wall systems on stability of microencapsulated vanillin by spray–freeze drying method. Food Chem. 2015, 174, 16–24. [Google Scholar] [CrossRef]
- Shalaby, K.S.; Ismail, M.I.; Lamprecht, A. Cyclodextrin complex formation with water-soluble drugs: Conclusions from isothermal titration calorimetry and molecular modeling. AAPS PharmSciTech 2021, 22, 232. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Kim, S.H.; Zhang, J.; Jiang, Y.; Zhou, H.M.; Yan, Y.B. Assisting the reactivation of guanidine hydrochloride-denatured aminoacylase by hydroxypropyl cyclodextrins. Biophys. J. 2006, 91, 686–693. [Google Scholar] [CrossRef]
- Bastos, M.; Abian, O.; Johnson, C.M.; Ferreira-da Silva, F.; Vega, S.; Jimenez-Alesanco, A.; Ortega-Alarcon, D.; Velazquez-Campoy, A. Isothermal titration calorimetry. Nat. Rev. Methods Primers 2023, 3, 17. [Google Scholar] [CrossRef]
- Bouchemal, K.; Mazzaferro, S. How to conduct and interpret ITC experiments accurately for cyclodextrin–guest interactions. Drug Discov. Today 2012, 17, 623–629. [Google Scholar] [CrossRef]
- Bouchemal, K.; Couvreur, P.; Daoud-Mahammed, S.; Poupaert, J.; Gref, R. A comprehensive study on the inclusion mechanism of benzophenone into supramolecular nanoassemblies prepared using two water-soluble associative polymers. J. Therm. Anal. Calorim. 2009, 98, 57–64. [Google Scholar] [CrossRef]
- Daoud-Mahammed, S.; Couvreur, P.; Bouchemal, K.; Chéron, M.; Lebas, G.; Amiel, C.; Gref, R. Cyclodextrin and polysaccharide-based nanogels: Entrapment of two hydrophobic molecules, benzophenone and tamoxifen. Biomacromolecules 2009, 10, 547–554. [Google Scholar] [CrossRef]
- Othman, M.; Bouchemal, K.; Couvreur, P.; Gref, R. Microcalorimetric investigation on the formation of supramolecular nanoassemblies of associative polymers loaded with gadolinium chelate derivatives. Int. J. Pharm. 2009, 379, 218–225. [Google Scholar] [CrossRef]
- Sajeesh, S.; Bouchemal, K.; Marsaud, V.; Vauthier, C.; Sharma, C.P. Cyclodextrin complexed insulin encapsulated hydrogel microparticles: An oral delivery system for insulin. J. Control. Release 2010, 147, 377–384. [Google Scholar] [CrossRef]
- Mazzaferro, S.; Bouchemal, K.; Gallard, J.F.; Iorga, B.I.; Cheron, M.; Gueutin, C.; Steinmesse, C.; Ponchel, G. Bivalent sequential binding of docetaxel to methyl-β-cyclodextrin. Int. J. Pharm. 2011, 416, 171–180. [Google Scholar] [CrossRef]
- Ross, P.D.; Subramanian, S. Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry 1981, 20, 3096–3102. [Google Scholar] [CrossRef]
- Yao, H.; Ke, H.; Zhang, X.; Pan, S.J.; Li, M.S.; Yang, L.P.; Schreckenbach, G.; Jiang, W. Molecular recognition of hydrophilic molecules in water by combining the hydrophobic effect with hydrogen bonding. J. Am. Chem. Soc. 2018, 140, 13466–13477. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, Y.; Geng, F.; Shen, X. Characterization of Spray-Dried Microcapsules of Paprika Oleoresin Induced by Ultrasound and High-Pressure Homogenization: Physicochemical Properties and Storage Stability. Molecules 2023, 28, 7075. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Park, S.; Sathiyaseelan, A.; Kim, K.N.; Cho, S.H.; Mariadoss, A.V.A.; Wang, M.H. Metabolite profiling of methanolic extract of Gardenia jaminoides by LC-MS/MS and GC-MS and its anti-diabetic, and anti-oxidant activities. Pharmaceuticals 2021, 14, 102. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, R.; Wang, C.; Zhang, X.; Wang, C. Deciphering the non-covalent binding patterns of three whey proteins with rosmarinic acid by multi-spectroscopic, molecular docking and molecular dynamics simulation approaches. Food Hydrocoll. 2022, 132, 107895. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, Y.; Yang, Y.; Li, S.; Wang, C.; Wang, C.; Zhang, T. Comparison of non-covalent binding interactions between three whey proteins and chlorogenic acid: Spectroscopic analysis and molecular docking. Food Biosci. 2021, 41, 101035. [Google Scholar] [CrossRef]
- Chatziathanasiadou, M.V.; Mavromoustakos, T.; Tzakos, A.G. Unveiling the thermodynamic aspects of drug-cyclodextrin interactions through isothermal titration calorimetry. In Supramolecules in Drug Discovery and Drug Delivery: Methods and Protocols; Humana: New York, NY, USA, 2021; pp. 187–198. [Google Scholar] [CrossRef]
- Prozeller, D.; Morsbach, S.; Landfester, K. Isothermal titration calorimetry as a complementary method for investigating nanoparticle–protein interactions. Nanoscale 2019, 11, 19265–19273. [Google Scholar] [CrossRef]
Parameter | AD/Hp--CD | Hp--CD/WPI | Unit |
---|---|---|---|
N | 1.18 | 10 | |
KD | 917 | 451 | M |
H | 1.04 | −0.23 | kJ/mol |
G | −17.36 | −19.13 | kJ/mol |
S | 0.06 | 0.06 | kJ/mol/K |
−TS | −18.40 | −18.90 | kJ/mol |
AD Protons | AD Free (ppm) | AD/Hp--CD Complex | AD/Hp--CD Complex-Free | AD/Hp-- CD/WPI Complex | AD/Hp-- CD/WPI Complex-Free |
---|---|---|---|---|---|
8.2916 | 8.3184 | 0.0268 | 8.3300 | 0.0384 | |
8.1573 | 8.2125 | 0.0552 | 8.2309 | 0.0736 | |
6.7542 | 6.0446 | −0.7096 | 6.0770 | −0.6772 | |
6.0392 | 5.1468 | −0.8924 | 5.1514 | −0.8878 | |
4.4361 | 4.4174 | −0.0187 | 4.4420 | 0.0059 | |
4.3032 | 4.2848 | −0.0184 | 4.2878 | −0.0154 | |
3.9358 | 3.8457 | −0.0901 | 3.8635 | −0.0723 | |
3.8495 | 3.6087 | −0.2408 | 3.6551 | −0.1944 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.; Zhang, S. Adenosine Encapsulation and Characterization through Layer-by-Layer Assembly of Hydroxypropyl-β-Cyclodextrin and Whey Protein Isolate as Wall Materials. Molecules 2024, 29, 2046. https://doi.org/10.3390/molecules29092046
Jin Y, Zhang S. Adenosine Encapsulation and Characterization through Layer-by-Layer Assembly of Hydroxypropyl-β-Cyclodextrin and Whey Protein Isolate as Wall Materials. Molecules. 2024; 29(9):2046. https://doi.org/10.3390/molecules29092046
Chicago/Turabian StyleJin, Yudie, and Suning Zhang. 2024. "Adenosine Encapsulation and Characterization through Layer-by-Layer Assembly of Hydroxypropyl-β-Cyclodextrin and Whey Protein Isolate as Wall Materials" Molecules 29, no. 9: 2046. https://doi.org/10.3390/molecules29092046
APA StyleJin, Y., & Zhang, S. (2024). Adenosine Encapsulation and Characterization through Layer-by-Layer Assembly of Hydroxypropyl-β-Cyclodextrin and Whey Protein Isolate as Wall Materials. Molecules, 29(9), 2046. https://doi.org/10.3390/molecules29092046