Novel Star-Shaped Viologens Containing Phenyl and Triphenylamine Moieties for Electrochromic Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Electrochemical Properties
2.3. Spectroelectrochemistry
2.4. Luminescent Properties
3. Materials and Methods
3.1. General
3.2. 4,4′,4″-(Benzene-1,3,5-Triyl)Tris(1-Hexylpyridin-1-Ium) Tris(Hexafluorophosphate(V)) (1)
3.3. 4,4′,4″-(Nitrilotris(Benzene-4,1-Diyl))Tris(1-Hexylpyridin-1-Ium) Tris(Hexafluorophosphate(V)) (2)
3.4. Tris(4-Bromophenyl)Amine (TPA)Br3
3.5. 1,3,5-Tri(Pyridine-4-yl)Benzene (A)
3.6. Tris(4-(Pyridine-4-yl)Phenyl)Amine) (B)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Striepe, L.; Baumgartner, T. Viologens and Their Application as Functional Materials. Chem. Eur. J. 2017, 23, 16924–16940. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Zheng, C.; Wang, L.; Lu, C.; Zhang, B.; Chen, Y.; Li, M.; Zhai, G.; Zhuang, X. Viologen-inspired functional materials: Synthetic strategies and applications. J. Mater. Chem. A 2019, 7, 23337–23360. [Google Scholar] [CrossRef]
- Zhou, X.-H.; Fan, Y.; Li, W.-X.; Zhang, X.; Liang, R.-R.; Lin, F.; Zhan, T.-G.; Cui, J.; Liu, L.-J.; Zhao, X.; et al. Viologen derivatives with extended π-conjugation structures: From supra-/molecular building blocks to organic porous materials. Chin. Chem. Lett. 2020, 31, 1757–1767. [Google Scholar] [CrossRef]
- Madasamy, K.; Velayutham, D.; Suryanarayanan, V.; Kathiresan, M.; Ho, K.-C. Viologen-based electrochromic materials and devices. J. Mater. Chem. C 2019, 7, 4622–4637. [Google Scholar] [CrossRef]
- Banasz, R.; Wałęsa-Chorab, M. Photolithographic patterning of viologens containing styrene groups. RSC Adv. 2023, 13, 16206–16210. [Google Scholar] [CrossRef] [PubMed]
- Vedernikov, A.I.; Lobova, N.A.; Kuz’mina, L.G.; Howard, J.A.K.; Strelenko, Y.A.; Alfimov, M.V.; Gromov, S.P. Pseudorotaxane complexes between viologen vinylogues and cucurbit [7]uril: New prototype of photocontrolled molecular machine. J. Mol. Struct. 2011, 989, 114–121. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, J.; Liu, Z.; Nassar, M.S.; Botros, Y.Y.; Stoddart, J.F. Radically promoted formation of a molecular lasso. Chem. Sci. 2017, 8, 2562–2568. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Yao, Y.; Wang, Z.; Lu, Y.-C. Viologen radical stabilization by molecular spectators for aqueous organic redox flow batteries. Nano Energy 2021, 84, 105897. [Google Scholar] [CrossRef]
- Kumar, A.; Tripathi, B.P. A high-capacity viologen-based anolyte for high energy density neutral pH aqueous redox-flow batteries. J. Energy Chem. 2023, 78, 222–231. [Google Scholar] [CrossRef]
- Trabolsi, A.; Das, G.; Prakasam, T.; Nuryyeva, S.; Han, D.S.; Abdel-Wahab, A.; Olsen, J.-C.; Polychronopoulou, K.; Platas-Iglesias, C.; Jouiad, M.; et al. Multifunctional redox-tuned viologen-based covalent organic polymers. J. Mater. Chem. A 2016, 4, 15361–15369. [Google Scholar] [CrossRef]
- Wu, W.; Guo, S.; Bian, J.; He, X.; Li, H.; Li, J. Viologen-based flexible electrochromic devices. J. Energy Chem. 2024, 93, 453–470. [Google Scholar] [CrossRef]
- Stolar, M. Organic electrochromic molecules: Synthesis, properties, applications and impact. Pure Appl. Chem. 2020, 92, 717–731. [Google Scholar] [CrossRef]
- Geraskina, M.R.; Dutton, A.S.; Juetten, M.J.; Wood, S.A.; Winter, A.H. The Viologen Cation Radical Pimer: A Case of Dispersion-Driven Bonding. Angew. Chem. 2017, 129, 9563–9567. [Google Scholar] [CrossRef]
- Shah, K.W.; Wang, S.-X.; Soo, D.X.; Xu, J. Viologen-Based Electrochromic Materials: From Small Molecules, Polymers and Composites to Their Applications. Polymers 2019, 11, 1839. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.-C.; Kao, S.-Y.; Yu, H.-F.; Chang, T.-H.; Kung, C.-W.; Ho, K.-C. Achieving Low-Energy Driven Viologens-Based Electrochromic Devices Utilizing Polymeric Ionic Liquids. ACS Appl. Mater. Interfaces 2016, 8, 30351–30361. [Google Scholar] [CrossRef] [PubMed]
- Moon, H.C.; Kim, C.-H.; Lodge, T.P.; Frisbie, C.D. Multicolored, Low-Power, Flexible Electrochromic Devices Based on Ion Gels. ACS Appl. Mater. Interfaces 2016, 8, 6252–6260. [Google Scholar] [CrossRef] [PubMed]
- Abidin, T.; Zhang, Q.; Wang, K.-L.; Liaw, D.-J. Recent advances in electrochromic polymers. Polymer 2014, 55, 5293–5304. [Google Scholar] [CrossRef]
- Ling, H.; Wu, X.; Li, K.; Su, F.; Tian, Y.; Luo, D.; Liu, Y.J.; Sun, X.W. Air-stable, high contrast solution-phase electrochromic device based on an A-D-A viologen derivative. J. Electroanal. Chem. 2019, 851, 113447. [Google Scholar] [CrossRef]
- Cospito, S.; Beneduci, A.; Veltri, L.; Salamonczyk, M.; Chidichimo, G. Mesomorphism and electrochemistry of thienoviologen liquid crystals. Phys. Chem. Chem. Phys. 2015, 17, 17670–17678. [Google Scholar] [CrossRef]
- Woodward, A.N.; Kolesar, J.M.; Hall, S.R.; Saleh, N.-A.; Jones, D.S.; Walter, M.G. Thiazolothiazole Fluorophores Exhibiting Strong Fluorescence and Viologen-Like Reversible Electrochromism. J. Am. Chem. Soc. 2017, 139, 8467–8473. [Google Scholar] [CrossRef]
- Corrente, G.A.; Di Maio, G.; La Deda, M.; Ruiz de Ballesteros, O.; Gabriele, B.; Veltri, L.; Auriemma, F.; Beneduci, A. The Rainbow Arching over the Fluorescent Thienoviologen Mesophases. Nanomaterials 2022, 12, 4284. [Google Scholar] [CrossRef] [PubMed]
- Veltri, L.; Cavallo, G.; Beneduci, A.; Metrangolo, P.; Corrente, G.A.; Ursini, M.; Romeo, R.; Terraneo, G.; Gabriele, B. Synthesis and thermotropic properties of new green electrochromic ionic liquid crystals. New J. Chem. 2019, 43, 18285–18293. [Google Scholar] [CrossRef]
- Pibiri, I.; Beneduci, A.; Carraro, M.; Causin, V.; Casella, G.; Corrente, G.A.; Chidichimo, G.; Pace, A.; Riccobono, A.; Saielli, G. Mesomorphic and electrooptical properties of viologens based on non-symmetric alkyl/polyfluoroalkyl functionalization and on an oxadiazolyl-extended bent core. J. Mater. Chem. C 2019, 7, 7974–7983. [Google Scholar] [CrossRef]
- Hwang, E.; Seo, S.; Bak, S.; Lee, H.; Min, M.; Lee, H. An Electrolyte-Free Flexible Electrochromic Device Using Electrostatically Strong Graphene Quantum Dot–Viologen Nanocomposites. Adv. Mater. 2014, 26, 5129–5136. [Google Scholar] [CrossRef]
- Gadgil, B.; Damlin, P.; Heinonen, M.; Kvarnström, C. A facile one step electrostatically driven electrocodeposition of polyviologen–reduced graphene oxide nanocomposite films for enhanced electrochromic performance. Carbon 2015, 89, 53–62. [Google Scholar] [CrossRef]
- Pichugov, R.D.; Makhaeva, E.E.; Keshtov, M.L. Fast switching electrochromic nanocomposite based on Poly(pyridinium salt) and multiwalled carbon nanotubes. Electrochim. Acta 2018, 260, 139–149. [Google Scholar] [CrossRef]
- Ma, H.; Yang, M.; Zhang, C.; Ma, Y.; Qin, Y.; Lei, Z.; Chang, L.; Lei, L.; Wang, T.; Yang, Y. Aggregation-induced emission (AIE)-active fluorescent probes with multiple binding sites toward ATP sensing and live cell imaging. J. Mater. Chem. B 2017, 5, 8525–8531. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Wang, H.; Dai, X.-Y.; Niu, J.; Liu, Y. Polymerization boosting cascade energy transfer based on opened glucopyranosyl β-cyclodextrin. Chem. Commun. 2023, 59, 1457–1460. [Google Scholar] [CrossRef] [PubMed]
- Yin, P.; Wang, T.; Yang, Y.; Yin, W.; Zhang, S.; Yang, Z.; Qi, C.; Ma, H. Positive charge-dependent cell targeted staining and DNA detection. New J. Chem. 2019, 43, 18251–18258. [Google Scholar] [CrossRef]
- Guo, M.; Li, G.; Yang, S.; Bu, R.; Piao, X.; Gao, E. Metal-Organic Frameworks with Novel Catenane-like Interlocking: Metal-Determined Photoresponse and Uranyl Sensing. Chem. Eur. J. 2021, 27, 16415–16421. [Google Scholar] [CrossRef]
- Madasamy, K.; Shanmugam, V.M.; Velayutham, D.; Kathiresan, M. Reversible 2D Supramolecular Organic Frameworks encompassing Viologen Cation Radicals and CB [8]. Sci. Rep. 2018, 8, 1354. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Cai, W.; Tan, L.; Li, J.; Wu, D.; Kong, Y. A Liquid–Liquid Interfacial Strategy for Construction of Electroactive Chiral Covalent–Organic Frameworks with the Aim to Enlarge the Testing Scope of Chiral Electroanalysis. Anal. Chem. 2024, 96, 3200–3207. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Fu, X.; Huang, J.; Wu, C.; Wu, L.; Du, Q. Synthesis of a new star-shaped 4,4′-bipyridine derivative and its multicolor solid electrochromic devices. Org. Electron. 2011, 12, 1216–1222. [Google Scholar] [CrossRef]
- Yan, N.; Zhang, S.; Li, G.; Rao, B.; Wei, J.; Wei, Z.; Xu, L.; He, G. Star-shaped thienoviologens for electrochromism and detection of picric acid in aqueous medium. Dyes Pigment. 2020, 178, 108338. [Google Scholar] [CrossRef]
- Mei, J.; Bao, Z. Side Chain Engineering in Solution-Processable Conjugated Polymers. Chem. Mater. 2014, 26, 604–615. [Google Scholar] [CrossRef]
- Inoue, S.; Minemawari, H.; Tsutsumi, J.; Chikamatsu, M.; Yamada, T.; Horiuchi, S.; Tanaka, M.; Kumai, R.; Yoneya, M.; Hasegawa, T. Effects of Substituted Alkyl Chain Length on Solution-Processable Layered Organic Semiconductor Crystals. Chem. Mater. 2015, 27, 3809–3812. [Google Scholar] [CrossRef]
- Li, M.; Leenaers, P.J.; Wienk, M.M.; Janssen, R.A.J. The effect of alkyl side chain length on the formation of two semi-crystalline phases in low band gap conjugated polymers. J. Mater. Chem. C 2020, 8, 5856–5867. [Google Scholar] [CrossRef]
- Wałęsa-Chorab, M.; Tremblay, M.H.; Skene, W.G. Hydrogen-Bond and Supramolecular-Contact Mediated Fluorescence Enhancement of Electrochromic Azomethines. Chem. Eur. J. 2016, 22, 11382–11393. [Google Scholar] [CrossRef]
- Zheng, T.; Li, L. {[Ru(bda)] x L y } n cross-linked coordination polymers: Toward efficient heterogeneous catalysis for water oxidation in an organic solvent-free system. New J. Chem. 2018, 42, 2526–2536. [Google Scholar] [CrossRef]
- Hua, C.; Turner, P.; D’Alessandro, D.M. Electrochemical and optical properties of a redox-active Cu(ii) coordination framework incorporating the tris(4-(pyridin-4-yl)phenyl)amine ligand. Dalton Trans. 2013, 42, 6310. [Google Scholar] [CrossRef]
- Tang, S.; Li, W.; Shen, F.; Liu, D.; Yang, B.; Ma, Y. Highly efficient deep-blue electroluminescence based on the triphenylamine-cored and peripheral blue emitters with segregative HOMO–LUMO characteristics. J. Mater. Chem. 2012, 22, 4401–4408. [Google Scholar] [CrossRef]
- Sullivan, P.T.; Liu, H.; Lv, X.; Jin, S.; Li, W.; Feng, D. Viologen Hydrothermal Synthesis and Structure–Property Relationships for Redox Flow Battery Optimization. Adv. Energy Mater. 2023, 13, 202203919. [Google Scholar] [CrossRef]
- Koumura, N.; Matsumoto, H.; Kawanami, H.; Tamaoki, N.; Yoshida, M. Tuning of solubility and gelation ability of oligomeric electrolyte by anion exchange. Polym. J. 2010, 42, 759–765. [Google Scholar] [CrossRef]
- Bay, L.; West, K.; Wintherjensen, B.; Jacobsen, T. Electrochemical reaction rates in a dye-sensitised solar cell—The iodide/tri-iodide redox system. Sol. Energy Mater. Sol. Cells 2006, 90, 341–351. [Google Scholar] [CrossRef]
- Tang, Y.; Pan, X.; Zhang, C.; Dai, S.; Kong, F.; Hu, L.; Sui, Y. Influence of Different Electrolytes on the Reaction Mechanism of a Triiodide/Iodide Redox Couple on the Platinized FTO Glass Electrode in Dye-Sensitized Solar Cells. J. Phys. Chem. C 2010, 114, 4160–4167. [Google Scholar] [CrossRef]
- Samanta, S.; Mukhopadhyay, N.; Chaudhuri, D. Rapid and Efficient Electrochemical Actuation in a Flexible Perylene Bisimide Dimer. Chem. Mater. 2019, 31, 899–903. [Google Scholar] [CrossRef]
- Banasz, R.; Kubicki, M.; Wałęsa-Chorab, M. Electrochemistry and Electrochromic Performance of a Metallopolymer Formed by Electropolymerization of a Fe(II) Complex with a Triphenylamine-Hydrazone Ligand. ChemPhysChem 2022, 23, e202100780. [Google Scholar] [CrossRef] [PubMed]
- Napierała, S.; Kubicki, M.; Wałęsa-Chorab, M. Toward Electrochromic Metallopolymers: Synthesis and Properties of Polyazomethines Based on Complexes of Transition-Metal Ions. Inorg. Chem. 2021, 60, 14011–14021. [Google Scholar] [CrossRef]
- Wałęsa-Chorab, M.; Skene, W.G. Investigation of an electroactive immobilized azomethine for potential electrochromic use. Sol. Energy Mater. Sol. Cells 2019, 200, 109977. [Google Scholar] [CrossRef]
- Wałęsa-Chorab, M.; Banasz, R.; Kubicki, M.; Patroniak, V. Dipyrromethane functionalized monomers as precursors of electrochromic polymers. Electrochim. Acta 2017, 258, 571–581. [Google Scholar] [CrossRef]
- Sun, Y.; Shi, M.; Zhu, Y.; Perepichka, I.F.; Xing, X.; Liu, Y.; Yan, C.; Meng, H. Multicolored Cathodically Coloring Electrochromism and Electrofluorochromism in Regioisomeric Star-Shaped Carbazole Dibenzofurans. ACS Appl. Mater. Interfaces 2020, 12, 24156–24164. [Google Scholar] [CrossRef]
- Dong, Y.; Luo, F.; Chen, L.; Yuan, F.; Hou, Y.; Li, W.; Yan, S.; Dai, Y.; Ouyang, M.; Zhang, C. Multi-color electrochromism containing green color based on electrochemically polymerized star-shaped phenyl bithiophene. Phys. Chem. Chem. Phys. 2018, 20, 12923–12928. [Google Scholar] [CrossRef]
- Striepe, L.; Vespa, M.; Baumgartner, T. Synthesis and properties of electron accepting star-shaped phosphaviologen oligomers. Org. Chem. Front. 2017, 4, 717–723. [Google Scholar] [CrossRef]
- Zeng, J.; Zhang, X.; Zhu, X.; Liu, P. Synthesis and Electrochromic Properties of Star-Shaped Oligomers with Phenyl Cores. Chem. Asian J. 2017, 12, 2202–2206. [Google Scholar] [CrossRef] [PubMed]
- Alesanco, Y.; Viñuales, A.; Palenzuela, J.; Odriozola, I.; Cabañero, G.; Rodriguez, J.; Tena-Zaera, R. Multicolor Electrochromics: Rainbow-Like Devices. ACS Appl. Mater. Interfaces 2016, 8, 14795–14801. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, X.; Berda, E.B.; Zhao, J.; Liu, X.; Chao, D. Design and synthesis of multicolor electrochromic polymers based on oligoaniline and viologen/phenothiazine groups. Eur. Polym. J. 2020, 138, 109979. [Google Scholar] [CrossRef]
- Huang, Q.; Hu, J.; Yin, M.; Zhu, Y.; Wen, R.-T. Recent progress in transmissive and reflective electrochromic devices for multi-color modulation. Sol. Energy Mater. Sol. Cells 2024, 267, 112706. [Google Scholar] [CrossRef]
- Banasz, R.; Kubicki, M.; Wałȩsa-Chorab, M. Yellow-to-brown and yellow-to-green electrochromic devices based on complexes of transition metal ions with a triphenylamine-based ligand. Dalton Trans. 2020, 49, 15041–15053. [Google Scholar] [CrossRef] [PubMed]
- Wałęsa-Chorab, M.; Skene, W.G. Leveraging reversible bonds for property modification of electrochromes and their immobilization by dual modes: Thermal and electrochemical polymerization. Prog. Org. Coatings 2024, 187, 108113. [Google Scholar] [CrossRef]
- Muras, K.; Kubicki, M.; Wałęsa-Chorab, M. Benzochalcodiazole-based donor-acceptor-donor non-symmetric small molecules as dual-functioning electrochromic and electrofluorochromic materials. Dyes Pigment. 2023, 212, 111098. [Google Scholar] [CrossRef]
- Raveendran, A.V.; P, C.A.S. Fine-tuning the acceptor–donor ability of star shaped triarylborane–triphenylamine conjugates: Synthesis, characterization and anion binding studies. New J. Chem. 2022, 46, 20299–20310. [Google Scholar] [CrossRef]
- Monk, P.M.S. The Viologens: Physicochemical Properties, Synthesis and Applications of the Salts of 4,4′-Bipyridine; Wiley: Chichester, UK, 1998. [Google Scholar]
- Clennan, E. Viologen embedded zeolites. Coord. Chem. Rev. 2004, 248, 477–492. [Google Scholar] [CrossRef]
- Freitag, M.; Gundlach, L.; Piotrowiak, P.; Galoppini, E. Fluorescence Enhancement of Di- p -tolyl Viologen by Complexation in Cucurbit [7]uril. J. Am. Chem. Soc. 2012, 134, 3358–3366. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Tsarevsky, N.V. Well-defined polymers containing a single mid-chain viologen group: Synthesis, environment-sensitive fluorescence, and redox activity. Polym. Chem. 2016, 7, 4402–4410. [Google Scholar] [CrossRef]
- Chen, Y.; Freunberger, S.A.; Peng, Z.; Fontaine, O.; Bruce, P.G. Charging a Li–O2 battery using a redox mediator. Nat. Chem. 2013, 5, 489–494. [Google Scholar] [CrossRef]
- Mozhzhukhina, N.; Calvo, E.J. Perspective—The Correct Assessment of Standard Potentials of Reference Electrodes in Non-Aqueous Solution. J. Electrochem. Soc. 2017, 164, A2295–A2297. [Google Scholar] [CrossRef]
Solvent | λabs [nm] | λem [nm] | Stokes Shift [cm−1] | QY [%] |
---|---|---|---|---|
Ethyl acetate | 432 nm | 550 nm | 4966 cm−1 | 5% |
THF | 433 nm | 557 nm | 5141 cm−1 | 7% |
Dichloromethane | 450 nm | 558 nm | 4301 cm−1 | 14% |
Acetonitrile | 427 nm | 577 nm | 6088 cm−1 | <1% |
Methanol | 429 nm | 572 nm | 5828 cm−1 | 4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banasz, R.; Wałęsa-Chorab, M. Novel Star-Shaped Viologens Containing Phenyl and Triphenylamine Moieties for Electrochromic Applications. Molecules 2024, 29, 2006. https://doi.org/10.3390/molecules29092006
Banasz R, Wałęsa-Chorab M. Novel Star-Shaped Viologens Containing Phenyl and Triphenylamine Moieties for Electrochromic Applications. Molecules. 2024; 29(9):2006. https://doi.org/10.3390/molecules29092006
Chicago/Turabian StyleBanasz, Radosław, and Monika Wałęsa-Chorab. 2024. "Novel Star-Shaped Viologens Containing Phenyl and Triphenylamine Moieties for Electrochromic Applications" Molecules 29, no. 9: 2006. https://doi.org/10.3390/molecules29092006
APA StyleBanasz, R., & Wałęsa-Chorab, M. (2024). Novel Star-Shaped Viologens Containing Phenyl and Triphenylamine Moieties for Electrochromic Applications. Molecules, 29(9), 2006. https://doi.org/10.3390/molecules29092006