Probing the Immunoreceptor Tyrosine-Based Inhibition Motif Interaction Protein Partners with Proteomics
Abstract
:1. Introduction
2. Results and Discussion
2.1. Workflow
2.2. Preparation of Affinity Agarose Beads
2.3. Affinity Pulldown of the Interaction Partners
2.4. Identification of the Unknown Binding Partners by Proteomics
2.5. Gene Ontology Analysis
2.6. PZR–ITIM Interaction Proteins
3. Materials and Methods
3.1. Cell Lines and Cell Culture
3.2. Synthesis of the ITIM-Agarose Affinity Beads
3.3. Cell Lysis
3.4. Affinity Pull-Down
3.5. Western Blot Analyses
3.6. Protein Digestion
3.7. LC-MS/MS Analyses
3.8. Data Processing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frankson, R.; Yu, Z.H.; Bai, Y.P.; Li, Q.L.; Zhang, R.Y.; Zhang, Z.Y. Therapeutic Targeting of Oncogenic Tyrosine Phosphatases. Cancer Res. 2017, 77, 5701–5705. [Google Scholar] [CrossRef] [PubMed]
- Östman, A.; Hellberg, C.; Böhmer, F.D. Protein-tyrosine phosphatases and cancer. Nat. Rev. Cancer 2006, 6, 307–320. [Google Scholar] [CrossRef] [PubMed]
- Alonso, A.; Sasin, J.; Bottini, N.; Friedberg, I.; Friedberg, I.; Osterman, A.; Godzik, A.; Hunter, T.; Dixon, J.; Mustelin, T. Protein tyrosine phosphatases in the human genome. Cell 2004, 117, 699–711. [Google Scholar] [CrossRef] [PubMed]
- Tautz, L.; Critton, D.A.; Grotegut, S. Protein tyrosine phosphatases: Structure, function, and implication in human disease. Methods Mol. Biol. 2013, 1053, 179–221. [Google Scholar] [CrossRef] [PubMed]
- Tonks, N.K. Protein tyrosine phosphatases: From genes, to function, to disease. Nat. Rev. Mol. Cell Biol. 2006, 7, 833–846. [Google Scholar] [CrossRef] [PubMed]
- Van Huijsduijnen, R.H.; Bombrun, A.; Swinnen, D. Selecting protein tyrosine phosphatases as drug targets. Drug Discov. Today 2002, 7, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Barrow, A.D.; Trowsdale, J. You say ITAM and I say ITIM, let’s call the whole thing off: The ambiguity of immunoreceptor signalling. Eur. J. Immunol. 2006, 36, 1646–1653. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.Z.; Masubuchi, T.; Cai, Q.X.; Zhao, Y.; Hui, E.F. Molecular features underlying differential SHP1/SHP2 binding of immune checkpoint receptors. eLife 2021, 10, e74276. [Google Scholar] [CrossRef] [PubMed]
- Raasakka, A.; Kursula, P. How Does Protein Zero Assemble Compact Myelin? Cells 2020, 9, 1832. [Google Scholar] [CrossRef] [PubMed]
- Roubelakis, M.G.; Tsaknakis, G.; Lyu, F.J.; Trohatou, O.; Zannettino, A.C.W.; Watt, S.M. P0-Related Protein Accelerates Human Mesenchymal Stromal Cell Migration by Modulating VLA-5 Interactions with Fibronectin. Cells 2020, 9, 1100. [Google Scholar] [CrossRef] [PubMed]
- Zannettino, A.C.W.; Roubelakis, M.; Welldon, K.J.; Jackson, D.E.; Simmons, P.J.; Bendall, L.J.; Henniker, A.; Harrison, K.L.; Niutta, S.; Bradstock, K.F.; et al. Novel mesenchymal and haematopoietic cell isoforms of the SHP-2 docking receptor, PZR: Identification, molecular cloning and effects on cell migration. Biochem. J. 2003, 370, 537–549. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.J.; Zhao, R. Purification and cloning of PZR, a binding protein and putative physiological substrate of tyrosine phosphatase SHP-2. J. Biol. Chem. 1998, 273, 29367–29372. [Google Scholar] [CrossRef] [PubMed]
- Hui, E.F.; Cheung, J.; Zhu, J.; Su, X.L.; Taylor, M.J.; Wallweber, H.A.; Sasmal, D.K.; Huang, J.; Kim, J.M.; Mellman, I.; et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 2017, 355, 1428–1433. [Google Scholar] [CrossRef] [PubMed]
- Li, H.F.; Seeram, N.P.; Liu, C.; Ma, H. Further investigation of blockade effects and binding affinities of selected natural compounds to immune checkpoint PD-1/PD-L1. Front. Oncol. 2022, 12, 995461. [Google Scholar] [CrossRef] [PubMed]
- Kleffel, S.; Posch, C.; Barthel, S.R.; Mueller, H.; Schlapbach, C.; Guenova, E.; Elco, C.P.; Lee, N.; Juneja, V.R.; Zhan, Q.; et al. Melanoma Cell-Intrinsic PD-1 Receptor Functions Promote Tumor Growth. Cell 2015, 162, 1242–1256. [Google Scholar] [CrossRef] [PubMed]
- Brown, K.E.; Freeman, G.J.; Wherry, E.J.; Sharpe, A.H. Role of PD-1 in regulating acute infections. Curr. Opin. Immunol. 2010, 22, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.N.; Zhao, A.; Xiao, S.; Li, H.H.; Li, M.H.; Guo, W.; Han, Q.J. PD-1: A critical player and target for immune normalization. Immunology 2024, in press. [Google Scholar] [CrossRef] [PubMed]
- Bentires-Alj, M.; Paez, J.G.; David, F.S.; Keilhack, H.; Halmos, B.; Naoki, K.; Maris, J.M.; Richardson, A.; Bardelli, A.; Sugarbaker, D.J.; et al. Activating mutations of the Noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Res. 2004, 64, 8816–8820. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.P.; Chiu, H.Y.; Hsiao, T.L.; Hsiao, C.H.; Lin, C.C.; Liao, Y.H. Scalp melanoma in a woman with LEOPARD syndrome: Possible implication of PTPN11 signaling in melanoma pathogenesis. J. Am. Acad. Dermatol. 2013, 69, E186–E187. [Google Scholar] [CrossRef] [PubMed]
- Kusano, K.I.; Thomas, T.N.; Fujiwara, K. Phosphorylation and localization of protein-zero related (PZR) in cultured endothelial cells. Endothelium 2008, 15, 127–136. [Google Scholar] [CrossRef]
- Van Vliet, C.; Bukczynska, P.E.; Puryer, M.A.; Sadek, C.M.; Shields, B.J.; Tremblay, M.L.; Tiganis, T. Selective regulation of tumor necrosis factor-induced Erk signaling by Src family kinases and the T cell protein tyrosine phosphatase. Nat. Immunol. 2005, 6, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Hof, P.; Pluskey, S.; Dhe-Paganon, S.; Eck, M.J.; Shoelson, S.E. Crystal structure of the tyrosine phosphatase SHP-2. Cell 1998, 92, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.N.P.; LaMarche, M.J.; Chan, H.M.; Fekkes, P.; Garcia-Fortanet, J.; Acker, M.G.; Antonakos, B.; Chen, C.H.T.; Chen, Z.L.; Cooke, V.G.; et al. Allosteric inhibition of SHP2 phosphatase inhibits cancers driven by receptor tyrosine kinases. Nature 2016, 535, 148–152. [Google Scholar] [CrossRef]
- Neel, B.G.; Gu, H.H.; Pao, L. The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem. Sci. 2003, 28, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Barford, D.; Neel, B.G. Revealing mechanisms for SH2 domain mediated regulation of the protein tyrosine phosphatase SHP-2. Structure 1998, 6, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Ouyang, W.W.; Liu, L.; Tang, L.K.; Zhang, Z.G.; Yue, X.R.; Liang, L.; Hu, J.P.; Luo, T. Molecular recognition of ITIM/ITSM domains with SHP2 and their allosteric effect. Phys. Chem. Chem. Phys. 2024, 26, 9155–9169. [Google Scholar] [CrossRef] [PubMed]
- Marasco, M.; Berteotti, A.; Weyershaeuser, J.; Thorausch, N.; Sikorska, J.; Krausze, J.; Brandt, H.J.; Kirkpatrick, J.; Rios, P.; Schamel, W.W.; et al. Molecular mechanism of SHP2 activation by PD-1 stimulation. Sci. Adv. 2020, 6, eaay4458. [Google Scholar] [CrossRef] [PubMed]
- Chai, X.; Zhang, X.R.; Li, W.Q.; Chai, J. Small cell lung cancer transformation during antitumor therapies: A systematic review. Open Med. 2021, 16, 1160–1167. [Google Scholar] [CrossRef] [PubMed]
- Ganti, A.K.; Klein, A.B.; Cotarla, I.; Seal, B.; Chou, E. Update of Incidence, Prevalence, Survival, and Initial Treatment in Patients With Non-Small Cell Lung Cancer in the US. JAMA Oncol. 2021, 7, 1824–1832. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Sui, Y.; Zhao, Y.M.; Jiang, J.Z.; Wang, X.Y.; Cui, J.R.; Fu, X.Q.; Xing, S.; Zhao, Z.J. PZR promotes tumorigenicity of lung cancer cells by regulating cell migration and invasion via modulating oxidative stress and cell adhesion. Aging 2023, 15, 4949–4962. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.H.; Yang, L.; Lipchik, A.M.; Geahlen, R.L.; Parker, L.L.; Tao, W.A. A Quantitative Proteomics-Based Competition Binding Assay to Characterize pITAM-Protein Interactions. Anal. Chem. 2013, 85, 5071–5077. [Google Scholar] [CrossRef] [PubMed]
- Blake, J.A.; Dolan, M.; Drabkin, H.; Hill, D.P.; Ni, L.; Sitnikov, D.; Bridges, S.; Burgess, S.; Buza, T.; McCarthy, F.; et al. Gene Ontology Annotations and Resources. Nucleic Acids Res. 2013, 41, D530–D535. [Google Scholar] [CrossRef] [PubMed]
- Akira, S. Functional roles of STAT family proteins: Lessons from knockout mice. Stem Cells 1999, 17, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.S.; Perla, S.; Enyenihi, L.; Bennett, A.M. Tyrosyl phosphorylation of PZR promotes hypertrophic cardiomyopathy in PTPN11-associated Noonan syndrome with multiple lentigines. JCI Insight 2020, 5, e137753. [Google Scholar] [CrossRef] [PubMed]
- Zehender, A.; Huang, J.G.; Györfi, A.H.; Matei, A.E.; Thuong, T.M.; Xu, X.H.; Li, Y.N.; Chen, C.W.; Lin, J.P.; Dees, C.; et al. The tyrosine phosphatase SHP2 controls TGFβ-induced STAT3 signaling to regulate fibroblast activation and fibrosis. Nat. Commun. 2018, 9, 3259. [Google Scholar] [CrossRef] [PubMed]
UniProt | Protein Name |
---|---|
P46109 | CRK-like proto-oncogene, adaptor protein (CRKL) |
Q15464 | SH2 domain containing adaptor protein B (SHB) |
P29353 | SHC adaptor protein 1 (SHC1) |
P12931 | SRC proto-oncogene, non-receptor tyrosine kinase (SRC) |
O75815 | Breast cancer anti-estrogen resistance 3 (BCAR3) |
P41240 | c-src tyrosine kinase (CSK) |
P62993 | Growth factor receptor-bound protein 2 (GRB2) |
P19174 | Phospholipase C gamma 1 (PLCG1) |
Q06124 | Protein tyrosine phosphatase, non-receptor type 11 (PTPN11) |
P29350 | Protein tyrosine phosphatase, non-receptor type 6 (PTPN6) |
P40763 | Signal transducer and activator of transcription 3 (STAT3) |
P51692 | Signal transducer and activator of transcription 5B (STAT5B) |
Q68CZ2 | tensin 3 (TNS3) |
P52735 | VAV guanine nucleotide exchange factor 2 (VAV2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Xing, S.; Hu, L. Probing the Immunoreceptor Tyrosine-Based Inhibition Motif Interaction Protein Partners with Proteomics. Molecules 2024, 29, 1977. https://doi.org/10.3390/molecules29091977
Gao Y, Xing S, Hu L. Probing the Immunoreceptor Tyrosine-Based Inhibition Motif Interaction Protein Partners with Proteomics. Molecules. 2024; 29(9):1977. https://doi.org/10.3390/molecules29091977
Chicago/Turabian StyleGao, Yujun, Shu Xing, and Lianghai Hu. 2024. "Probing the Immunoreceptor Tyrosine-Based Inhibition Motif Interaction Protein Partners with Proteomics" Molecules 29, no. 9: 1977. https://doi.org/10.3390/molecules29091977
APA StyleGao, Y., Xing, S., & Hu, L. (2024). Probing the Immunoreceptor Tyrosine-Based Inhibition Motif Interaction Protein Partners with Proteomics. Molecules, 29(9), 1977. https://doi.org/10.3390/molecules29091977