In Silico Analysis: Anti-Inflammatory and α-Glucosidase Inhibitory Activity of New α-Methylene-γ-Lactams
Abstract
:1. Introduction
2. Results
2.1. In Silico Results
2.2. Anti-Inflammatory Activity
2.3. α-Glucosidase Inhibition
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Animals
4.3. In Silico Predictions
4.4. In Vivo Anti-Inflammatory Assay
4.5. In Vitro α-Glucosidase Inhibitory Activity
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pan American Health Organization. Available online: https://www.paho.org/en/topics/diabetes (accessed on 3 November 2023).
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021; Available online: https://www.diabetesatlas.org/en (accessed on 3 November 2023).
- World Health Organization. Available online: https://www.who.int/health-topics/diabetes#tab=tab_1 (accessed on 3 November 2023).
- Donath, M.Y.; Shoelson, S.E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 2011, 11, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Tsalamandris, S.; Antonopoulos, A.S.; Oikonomou, E.; Papamikroulis, G.-A.; Vogiatzi, G.; Papaioannou, S.; Defteros, S.; Tousoulis, D. The Role of Inflammationn in Diabetes: Current Concepts and Future Perspectives. Eur. Cardiol. 2019, 14, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Ellulu, M.S.; Samouda, H. Clinical and biological risk factors associated with inflammation in patients with type 2 diabetes mellitus. BMC Endocr. Disord. 2022, 22, 16. [Google Scholar] [CrossRef] [PubMed]
- Katsiki, N.; Ferrannini, E. Anti-inflammatory properties of antidiabetic drugs: A “promised land” in the COVID-19 era? J. Diabetes Complicat. 2020, 34, 107723. [Google Scholar] [CrossRef]
- MacLean, C.D.; Littenberg, B.; Kennedy, A.G. Limitations of diabetes pharmacotherapy: Results from the Vermont Diabetes Information System study. BMC Fam. Pract. 2006, 7, 50. [Google Scholar] [CrossRef] [PubMed]
- Mattishent, K.; Loke, Y.K. Meta-Analysis: Association between Hypoglycemia and Serious Adverse Events in Older Patients Treated with Glucose-Lowering Agents. Front. Endocrinol. 2021, 8, 571568. [Google Scholar] [CrossRef] [PubMed]
- Ou, H.T.; Chang, K.C.; Li, C.Y. Risks of cardiovascular diseases associated with dipeptidyl peptidase-4 inhibitors and other antidiabetic drugs in patients with type 2 diabetes: A nation-wide longitudinal study. Cardiovasc. Diabetol. 2016, 15, 41. [Google Scholar] [CrossRef] [PubMed]
- Goel, R.K.; Mahajan, M.P.; Kulkarni, S.K. Evaluation of anti-hyperglycemic activity of some novel monocyclic beta lactams. J. Pharm. Pharm. Sci. 2004, 7, 80–83. [Google Scholar] [PubMed]
- Troisi, L.; Granito, C.; Pindinelli, E. Novel and Recent Synthesis and Applications of b-Lactams. Heterocycl. Scaffolds I 2010, 22, 101–109. [Google Scholar] [CrossRef]
- Saldívar-González, F.I.; Lenci, E.; Trabocchi, A.; Medina-Franco, J.L. Exploring the chemical space and the bioactivity profile of lactams: A chemoinformatic study. RSC Adv. 2019, 9, 27105–27116. [Google Scholar] [CrossRef]
- Russo, S.; Casazza, E. Ring-Opening Polymerization of Cyclic Amides (Lactams). Polym. Sci. A Compr. Ref. 2012, 4, 331–396. [Google Scholar] [CrossRef]
- Das, A.; Banik, B.K. Dipole moment in medicinal research: Green and sustainable approach. Adv. Green Sustain. Chem. 2020, 921–964. [Google Scholar] [CrossRef]
- Caruano, J.; Muccioli, G.G.; Robiette, R. Biologically active g-lactams: Synthesis and natural sources. Org. Biomol. Chem. 2016, 14, 10134–10156. [Google Scholar] [CrossRef] [PubMed]
- López-Francés, A.; del Corte, X.; Serna-Burgos, Z.; Martínez de Marigorta, E.; Palacios, F.; Vicario, J. Exploring the Synthetic Potential of g-Lactam Derivatives Obtained from a Multicomponent Reaction—Applications as Antiproliferative Agents. Molecules 2022, 27, 3624. [Google Scholar] [CrossRef] [PubMed]
- Del Corte Solaguren-Beascoa, X. Multicomponent Synthesis of g-Lactam Derivatives and Applications as Anticancer Agents. Ph.D. Thesis, Universidad del País Vasco, Lejona, Spain, 2022. [Google Scholar]
- Harper, A.D.; Aitken, R.A. The Chemistry of thieno [b] pyrrolones, dihydrothieno [b] pyrrolones, and their fused derivatives. Adv. Heterocycl. Chem. 2020, 131, 165–283. [Google Scholar] [CrossRef]
- Jang, D.S.; Lee, G.Y.; Lee, Y.M.; Kim, Y.S.; Sun, H.; Kim, D.H.; Kim, J.S. Flavan-3-ols having a gamma-lactam from the roots of Actinidia arguta inhibit the formation of advanced glycation end products in vitro. Chem. Pharm. Bull. 2009, 57, 397–400. [Google Scholar]
- Hernández-Guadarrama, A.; Cuevas, F.; Montoya-Balbás, I.J.; Román-Bravo, P.; Linzaga-Elizalde, I. Synthesis of β-mono-and β, γ-di-substituted α-methylene-γ-lactams. Tetrahedron Lett. 2022, 107, 154105. [Google Scholar] [CrossRef]
- Woods, J.R.; Mo, H.; Bieberich, A.A.; Alavanja, T.; Colby, D.A. Amino-derivatives of the sesquiterpene lactone class of natural products as prodrugs. Med. Chem. Com. 2013, 4, 27–33. [Google Scholar] [CrossRef]
- Neidle, S. Design Principles for Quadruplex-binding Small Molecules. Ther. Appl. Quadruplex Nucleic Acids 2012, 151–174. [Google Scholar] [CrossRef]
- Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the Biological Activity Spectra of Organic Compounds Using the Pass Online Web Resource. Chem. Heterocycl. Compd. 2014, 50, 444–457. [Google Scholar] [CrossRef]
- Dhankhar, S.; Chauhan, S.; Metha, D.K.; Saini, K.; Saini, M.; Das, R.; Gupta, S.; Gautam, V. Novel targets for potential therapeutic use in Diabetes mellitus. Diabetol. Metab. Syndr. 2023, 15, 17. [Google Scholar] [CrossRef] [PubMed]
- Yousef, H.; Khandoker, A.H.; Feng, S.F.; Helf, C.; Jelinek, H.F. Inflammation, oxidative stress and mitochondrial dysfunction in the progression of type II diabetes mellitus with coexisting hypertension. Front. Endocrinol. 2023, 14, 1173402. [Google Scholar]
- Nedosugova, L.V.; Markina, Y.V.; Bochkareva, L.A.; Kuzina, I.A.; Petunina, N.A.; Yudina, I.Y.; Kirichenko, T.V. Inflammatory Mechanisms of Diabetes and Its Vascular Complications. Biomedicines 2022, 10, 1168. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhong, J.; Zhang, Q.; Zhang, J. Effects of anti-inflammatory therapies on glycemic control in type 2 diabetes mellitus. Front. Immunol. 2023, 14, 1125116. [Google Scholar] [CrossRef] [PubMed]
- Pollack, R.M.; Donath, M.Y.; LeRoith, D.; Leibowitz, G. Anti-inflammatory Agents in the Treatmet of Diabetes and Its Vascular Complications. Diabetes Care 2016, 39, S244–S252. [Google Scholar] [CrossRef] [PubMed]
- Theofilis, P.; Sagris, M.; Oikonomou, E.; Antonopoulos, A.S.; Siasos, G.; Tsioufis, K.; Tousoulis, D. The Anti-Inflammatory Effect of Novel Antidiabetic Agents. Life 2022, 12, 1829. [Google Scholar] [CrossRef] [PubMed]
- Montoya-Balbas, I.J.; Valentin-Guevara, B.; López-Mendoza, E.; Linzaga-Elizalde, I.; Ordoñez, M.; Román-Bravo, P. Efficient Synthesis of β-Aryl-γ-lactams and Their Resolution with (S)-Naproxen: Preparation of (R)-and (S)-Baclofen. Molecules 2015, 20, 22028–22043. [Google Scholar] [CrossRef] [PubMed]
- Malykh, A.G.; Sadaie, M.R. Piracetam and piracetam-like drugs. Drugs 2010, 70, 287–312. [Google Scholar] [CrossRef]
- Kim, H.K.; Hwang, S.-H.; Oh, E.; Abdi, S. Rolipram, a Selective Phosphodiesterase 4 Inhibitor, Ameliorates Mechanical Hyperalgesia in a Rat Model of Chemotherapy-Induced Neuropathic Pain through Inhibition of Inflammatory Cytokines in the Dorsal Root Ganglion. Front. Pharmacol. 2017, 8, 885. [Google Scholar] [CrossRef]
- Navarro, S.A.; Serafim, K.G.G.; Mizokami, S.S.; Hohmann, M.S.N.; Casagrande, R.; Verri, W. Analgesic activity of piracetam: Effect on cytokine production and oxidative stress. Pharmacol. Biochem. Behav. 2013, 105, 183–192. [Google Scholar] [CrossRef]
- Youn, D.H.; Han, S.W.; Kim, J.-T.; Choi, H.; Lee, A.; Kim, N.; Jung, H.; Hong, E.P.; Park, C.H.; Lee, Y.; et al. Oxiracetam alleviates anti-inflammatory activity and ameliorates cognitive impairment in the early phase of traumatic brain injury. Acta Neurochir. 2023, 165, 2201–2210. [Google Scholar] [CrossRef]
- Zhu, J.; Mix, E.; Winblad, B. The Antidepressant and Antiinflammatory Effects of Rolipram in the Central Nervous System. CNS Drug Rev. 2001, 7, 387–398. [Google Scholar] [CrossRef]
- Ikuta, H.; Shirota, H.; Kobayashi, S.; Yamagishi, Y.; Yamada, Y.; Yamatsu, I.; Katayama, K. Synthesis and anti-inflammatory activities of 33-(3,5-di-tert-butyl-4-hydroxybenzylidene) pyrrolidine-2-ones. J. Med. Chem. 1987, 30, 1995–1998. [Google Scholar] [CrossRef] [PubMed]
- Brindisi, M.; Frattaruolo, L.; Mancuso, R.; Piccionello, A.P.; Ziccarelli, I.; Catto, M.; Nicolotti, O.; Altommare, C.D.; Gabriele, B.; Cappello, A.R. Anticancer potential of novel α,β-unsaturated g-lactam derivatives targeting the PI3K/AKT signaling pathway. Biochem. Pharmacol. 2021, 190, 114659. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhuang, Z.; Qiao, J.X.; Yeung, K.-S.; Su, S.; Cherney, E.C.; Ruan, Z.; Ewing, W.R.; Poss, M.A.; Yu, J.-Q. Ligand Enabled Pd(II)-Catalyzed g-C(sp3)-H Lactamization of Native Amides. J. Am. Chem. Soc. 2021, 143, 21657–21666. [Google Scholar] [CrossRef] [PubMed]
- Erbay, T.G.; Dempe, D.P.; Godugu, B.; Liu, P.; Brummond, K.M. Thiol Reactivity of N-Aryl-a-methylene-g-lactams: A Reactive Group for Targeted Covalent Inhibitor Design. J. Org. Chem. 2021, 86, 11926–11936. [Google Scholar] [CrossRef] [PubMed]
- Pieber, B.; Gilmore, K.; Seeberger, P.H. Integrated Flow Processing—Challenges in Continuous Multistep Synthesis. J. Flow Chem. 2017, 7, 129–136. [Google Scholar] [CrossRef]
- del Corte, X.; López-Francés, A.; Maestro, A.; Villate-Beitia, I.; Sainz-Ramos, M.; Martínez de Marigorta, E.; Pedraz, J.L.; Palacios, F.; Vicario, J. A Multicomponent Protocol for the Synthesis of Highly Functionalized g-Lactam Derivatives and Their Applications as Antiproliferative Agents. Pharmaceuticals 2021, 14, 782. [Google Scholar] [CrossRef]
- Bian, M.; Ma, Q.-Q.; Wu, Y.; Du, H.-H.; Guo-Hua, G. Small molecule compounds with good anti-inflammatory activity reported in the literature from 01/2009 to 05/2021: A review. J. Enzym. Inhib. Med. Chem. 2021, 36, 2139–2159. [Google Scholar] [CrossRef]
- Carrasco-Serrano, C.; Viniegra, S.; Ballesta, J.J.; Criado, M. Phorbol ester activation of the neuronal nicotinic acetylcholine receptor alpha7 subunit gene: Involvement of transcription factor Egr-1. J. Neurochem. 2000, 74, 932–939. [Google Scholar] [CrossRef]
- Carlini, V.; Noonan, D.M.; Abdalalem, E.; Goletti, D.; Sansone, C.; Calabrone, L.; Albini, A. The multifaceted nature of IL-10: Regulation, role in immunological homeostasis and its relevance to cancer, COVID-19 and post-COVID conditions. Front. Immunol. 2023, 14, 1161067. [Google Scholar] [CrossRef] [PubMed]
- Di Paolo, N.C.; Shayakhmetov, D.M. Interleukin 1α and the inflammatory process. Nat. Immunol. 2016, 17, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zheng, S.G. Hall of Fame among Pro-inflammatory Cytokines: Interleukin-6 Gene and Its Transcriptional Regulation Mechanisms. Front. Immunol. 2016, 7, 604. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Mathieu, S.L.; Harris, R.; Ji, J.; Anderson, D.J.; Malysz, J.; Bunnelle, W.H.; Waring, J.F.; Marsh, K.C.Ç.; Murtaza, A.; et al. Role of a7 nicotinic acetylcholine receptors in regulating tumor necrosis factor-α (TNF-α) as revealed by subtype selective agonist. J. Neuroimmunol. 2011, 239, 337–343. [Google Scholar] [CrossRef]
- Fernández-Cabezudo, M.J.; George, J.A.; Bashir, G.; Mohamed, Y.A.; AI-Mansori, A.; Qureshi, M.M.; Lorke, D.E.; Petroianu, G.; Ramadi, B.K. Involvement of Aceylcholine Receptors in Cholinergic Pathway-Mediated Protection Against Autoimmune Diabetes. Front. Immunol. 2019, 10, 1038. [Google Scholar] [CrossRef] [PubMed]
- Ganic, E.; Singh, T.; Luan, C.; Fadista, J.; Johansson, J.K.; Cyphert, H.A.; Bennet, H.; Storm, P.; Prost, G.; Ahlenius, H.; et al. MafA-Controlled Nicotinic Receptor Expression Is Essential for Insulin Secretion and Is Impaired in Patients with Type 2 Diabetes. Cell Rep. 2016, 14, 1991–2002. [Google Scholar] [CrossRef] [PubMed]
- Gausserès, B.; Liu, J.; Foppen, E.; Tourrel-Cuzin, C.; Rodriguez Sanchez-Archidona, A.; Delangre, E.; Cruciani-Guglielmacci, C.; Pons, S.; Maskos, U.; Thorens, B.; et al. The Constitutive Lack of α7 Nicotinic Receptor Leads to Metabolic Disorders in Mouse. Biomolecules 2020, 10, 1057. [Google Scholar] [CrossRef]
- Tomasik, P.; Horton, D. Chapter 2—Enzymatic Conversions of Starch. In Advances in Carbohydrate Chemistry and Biochemistry; Academic Press: Cambridge, MA, USA, 2012; Volume 68, pp. 59–436. [Google Scholar] [CrossRef]
- Khoo, C.M. Diabetes Mellitus Treatment. In International Encyclopedia of Public Health; Academic Press: Cambridge, MA, USA, 2017; Volume 2, pp. 288–293. [Google Scholar] [CrossRef]
- Tseng, P.; Ande, C.; Moremen, K.W.; Crich, D. Influence of Side Chain Conformation on the Activity of Glycosidase Inhibitors. Angew. Chem. Int. Ed. 2023, 62, e202217809. [Google Scholar] [CrossRef]
- Trapero, A.; Llebaria, A. A Prospect for Pyrrolidine Iminosugars as Antidiabetic α-Glucosidase Inhibitors. J. Med. Chem. 2012, 55, 10345–10346. [Google Scholar] [CrossRef]
- Norma Oficial Mexicana NOM-062-ZOO-1999. Diario Oficial de la Federación, México. 15. Organización Munndial de Sanidad Animal. Available online: https://www.gob.mx/cms/uploads/attachment/file/203498/NOM-062-ZOO-1999_220801.pdf. (accessed on 1 January 2024).
- Molinspiration Cheminformatics Free Web Services, Slovensky Grob, Slovakia. Available online: https://www.molinspiration.com (accessed on 1 January 2024).
- García-Argáez, A.N.; Ramírez-Apan, T.O.; Parra-Delgado, H.; Velázquez, G.; Martínez-Vázquez, M. Anti-inflammatory Activity of Coumarins from Decatropis bicolor on TPA Ear Mice Model. Plant Med. 2000, 66, 279–281. [Google Scholar] [CrossRef]
- Ramírez, G.; Zavala, M.; Pérez, J.; Zamilpa, A. In vitro screening of medicinal plants used in Mexico as antidiabetics with glucosidase and lipase inhibitory activities. Evid. Based Complement. Alternat. Med. 2012, 2012, 701261. [Google Scholar] [CrossRef] [PubMed]
Compound | SMILES |
---|---|
1 | C=C1C(=O)NCC1c2ccccc2 |
2 | C=C1C(=O)NCC1c2ccc(C)cc2 |
3 | C=C1C(=O)NCC1c2ccc(Cl)cc2 |
4 | C=C1C(=O)NCC1c2ccccc2Cl |
5 | C=C1C(=O)NC(CC)C1c2ccccc2 |
6 | C=C1C(=O)NC(CC)C1c2ccc(C)cc2 |
7 | C=C1C(=O)NC(CC)C1c2ccc(Cl)cc2 |
α-Methylene-γ-lactams | |||||||
---|---|---|---|---|---|---|---|
Data | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
MiLogP | 1.93 | 2.38 | 2.61 | 2.09 | 2.80 | 3.24 | 3.47 |
TPSA | 29.10 | 29.10 | 29.10 | 29.10 | 29.10 | 29.10 | 29.10 |
Natoms | 13 | 14 | 14 | 14 | 15 | 16 | 16 |
MW | 173.22 | 187.24 | 207.66 | 207.66 | 201.27 | 215.30 | 235.71 |
Volume | 165.95 | 182.51 | 179.48 | 179.48 | 199.34 | 215.90 | 212.87 |
nON | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
nOHNH | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
α-Methylene-γ-lactams | |||||||
---|---|---|---|---|---|---|---|
Anti-Inflammatory | |||||||
Data | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
(Pa) (%) | 25.0 | - | 20.0 | 16.0 | 31.0 | 32.0 | 16.0 |
(Pi) (%) | 11.0 | - | 18.0 | 13.0 | 15.0 | 14.0 | 13.0 |
Inhibition of α-glucosidase | |||||||
(Pa) (%) | 6.8 | 16.0 | 11.0 | 13.0 | 21.0 | 13.0 | 17.0 |
(Pi) (%) | 6.6 | 11.0 | 7.0 | 11.0 | 7.0 | 12.0 | 10.0 |
Receptor | Compound | Specificity | Pa (%) | Pi (%) |
---|---|---|---|---|
Interleukin 10 | 1 | Agonist | 27.9 | 2.4 |
2 | Agonist | 24.4 | 4.6 | |
3 | Agonist | 22.0 | 6.9 | |
4 | Agonist | 24.7 | 4.3 | |
5 | Agonist | 24.9 | 4.2 | |
6 | Agonist | 21.0 | 8.0 | |
7 | Agonist | 18.9 | 10.8 | |
Interkeukin-1α | 1 | Antagonist | 8.5 | 5.6 |
2 | Antagonist | 8.6 | 5.3 | |
3 | Antagonist | 9.9 | 2.8 | |
4 | Antagonist | 8.9 | 4.6 | |
5 | Antagonist | 8.6 | 5.4 | |
6 | Antagonist | 8.5 | 5.6 | |
7 | Antagonist | 10.0 | 2.6 | |
Interleukin 6 | 1 | - | - | - |
2 | - | - | - | |
3 | - | - | - | |
4 | Antagonist | 19.9 | 8.1 | |
5 | Antagonist | 24.3 | 4.3 | |
6 | Antagonist | 25.0 | 3.9 | |
7 | Antagonist | 25.8 | 3.4 |
Receptor | Compound | Specificity | Pa | Pi |
---|---|---|---|---|
Nicotinic α2β2 | 1 | Antagonist | 87.1 | 0.4 |
2 | Antagonist | 77.2 | 1.4 | |
3 | Antagonist | 78.8 | 1.1 | |
4 | Antagonist | 79.2 | 1.1 | |
5 | Antagonist | 79.5 | 1.1 | |
6 | Antagonist | 67.4 | 3.2 | |
7 | Antagonist | 65.2 | 3.7 | |
Nicotinic α6β3β4α5 | 1 | Antagonist | 78.0 | 1.5 |
2 | Antagonist | 66.0 | 4.7 | |
3 | - | - | - | |
4 | Antagonist | 67.3 | 4.3 | |
5 | Antagonist | 75.6 | 2.0 | |
6 | - | - | - | |
7 | Antagonist | 64.5 | 5.3 | |
Nicotinic α6 | 1 | Agonist | 48.6 | 0.3 |
2 | Antagonist | 39.8 | 0.5 | |
3 | Agonist | 37.3 | 0.5 | |
4 | Agonist | 36.9 | 0.5 | |
5 | Agonist | 13.5 | 7.3 | |
6 | - | - | - | |
7 | - | - | - | |
Nicotinic α3β4 | 1 | Agonist | 23.8 | 0.7 |
2 | Agonist | 21.3 | 1.0 | |
3 | Agonist | 45.0 | 11.1 | |
4 | Agonist | 22.1 | 0.9 | |
5 | - | - | - | |
6 | - | - | - | |
7 | - | - | ||
Nicotinic α4β4 | 1 | Agonist | 37.5 | 17.8 |
2 | - | - | - | |
3 | Antagonist | 28.8 | 2.6 | |
4 | Agonist | 42.5 | 13.0 | |
5 | Agonist | 42.3 | 13.2 | |
6 | Agonist | 36.0 | 19.5 | |
7 | - | - | - | |
Nicotinic α4β2 | 1 | Agonist | 4.6 | 1.4 |
2 | Agonist | 4.5 | 1.5 | |
3 | - | - | - | |
4 | Antagonist | 26.9 | 3.2 | |
5 | Antagonist | 22.1 | 5.4 | |
6 | Antagonist | 19.0 | 7.8 | |
7 | - | - | - | |
Nicotinic α7 | 1 | Antagonist | 6.7 | 5.0 |
2 | Agonist | 6.0 | 5.7 | |
3 | - | - | - | |
4 | - | - | - | |
5 | Antagonist | 7.6 | 4.2 | |
6 | Antagonist | 6.6 | 5.1 | |
7 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Guadarrama, A.; Díaz-Román, M.A.; Linzaga-Elizalde, I.; Domínguez-Mendoza, B.E.; Aguilar-Guadarrama, A.B. In Silico Analysis: Anti-Inflammatory and α-Glucosidase Inhibitory Activity of New α-Methylene-γ-Lactams. Molecules 2024, 29, 1973. https://doi.org/10.3390/molecules29091973
Hernández-Guadarrama A, Díaz-Román MA, Linzaga-Elizalde I, Domínguez-Mendoza BE, Aguilar-Guadarrama AB. In Silico Analysis: Anti-Inflammatory and α-Glucosidase Inhibitory Activity of New α-Methylene-γ-Lactams. Molecules. 2024; 29(9):1973. https://doi.org/10.3390/molecules29091973
Chicago/Turabian StyleHernández-Guadarrama, Alexis, Mónica Aideé Díaz-Román, Irma Linzaga-Elizalde, Blanca Eda Domínguez-Mendoza, and A. Berenice Aguilar-Guadarrama. 2024. "In Silico Analysis: Anti-Inflammatory and α-Glucosidase Inhibitory Activity of New α-Methylene-γ-Lactams" Molecules 29, no. 9: 1973. https://doi.org/10.3390/molecules29091973
APA StyleHernández-Guadarrama, A., Díaz-Román, M. A., Linzaga-Elizalde, I., Domínguez-Mendoza, B. E., & Aguilar-Guadarrama, A. B. (2024). In Silico Analysis: Anti-Inflammatory and α-Glucosidase Inhibitory Activity of New α-Methylene-γ-Lactams. Molecules, 29(9), 1973. https://doi.org/10.3390/molecules29091973