Abietane-Type Diterpenoids from the Arils of Torreya grandis
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General
3.2. Plant Materials
3.3. Extraction and Isolation
3.4. Structural Elucidation
3.5. Crystal Data for Compounds 2 and 4
3.6. ECD Calculation
3.7. Antibacterial Assay
3.8. Cytotoxicity and Anti-Inflammatory Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Majeed, A.; Singh, A.; Choudhary, S.; Bhardwaj, P. RNAseq-based phylogenetic reconstruction of Taxaceae and Cephalotaxaceae. Cladistics 2019, 35, 461–468. [Google Scholar] [CrossRef]
- Zhou, W.; Harris, A.J.; Xiang, Q.Y. Phylogenomics and biogeography of Torreya (Taxaceae)—Integrating data from three organelle genomes, morphology, and fossils and a practical method for reducing missing data from RAD-seq. J. Syst. Evol. 2022, 60, 1241–1262. [Google Scholar] [CrossRef]
- Miao, Z.P.; Niu, X.N.; Wang, R.B.; Huang, L.; Ma, B.B.; Li, J.H.; Hong, X. Study of the genus Torreya (Taxaceae) based on chloroplast genomes. Front. Biosci. 2022, 27, 009. [Google Scholar] [CrossRef]
- Shi, L.K.; Mao, J.H.; Zheng, L.; Zhao, C.W.; Jin, Q.Z.; Wang, X.G. Chemical characterization and free radical scavenging capacity of oils obtained from Torreya grandis Fort. ex. Lindl. and Torreya grandis Fort. var. Merrillii: A comparative study using chemometrics. Ind. Crops Prod. 2018, 115, 250–260. [Google Scholar] [CrossRef]
- Song, L.; Meng, X.; Song, H.; Gao, L.; Gao, Y.; Chen, W.; Huan, W.; Suo, J.; Yu, W.; Wang, X.H.; et al. Bioactive ellagitannins and phenylpropanoid glycosides from the seed of Torreya grandis. Phytochem. Lett. 2023, 57, 172–176. [Google Scholar]
- Cui, J.J.; Li, W.J.; Wang, C.L.; Huang, Y.Q.; Lin, W.; Zhou, B.; Yue, J.M. Antimicrobial abietane-type diterpenoids from Torreya grandis. Phytochemistry 2022, 201, 113278. [Google Scholar] [CrossRef]
- Beatrice, G.; Francesco, G.; Virginia, L.; Domenico, M.; Raffaele, R.; Claudio, V.; He, G.F.; Ma, Z.W.; Yin, W.F. Grandione, a new heptacyclic dimeric diterpene from Torreya grandis Fort. Tetrahedron 1999, 55, 11385–11394. [Google Scholar]
- Saeed, M.K.; Khan, M.N.; Ahmad, I.; Hussain, N.; Ali, S.; Deng, Y.; Dai, R. Isolation, identification and antioxidant potential of major flavonoids from ethyl acetate fraction of Torreya grandis. Asian J. Chem. 2013, 25, 2459–2464. [Google Scholar] [CrossRef]
- Shi, H.; Wang, H.; Wang, M.; Li, X. Antioxidant activity and chemical composition of Torreya grandis cv. Merrillii seed. Nat. Prod. Commun. 2009, 4, 1565–1570. [Google Scholar] [CrossRef]
- He, Z.; Zhu, H.; Li, W.; Zeng, M.; Wu, S.; Chen, S.; Qin, F.; Chen, J. Chemical components of cold pressed kernel oils from different Torreya grandis cultivars. Food Chem. 2016, 209, 196–202. [Google Scholar] [CrossRef]
- Saeed, M.K.; Deng, Y.; Dai, R.; Li, W.; Yu, Y.; Iqbal, Z. Appraisal of antinociceptive and anti-inflammatory potential of extract and fractions from the leaves of Torreya grandis Fort Ex. Lindl. J. Ethnopharmacol. 2010, 127, 414–418. [Google Scholar] [CrossRef]
- Ma, J.; Yuan, T.; Gao, Y.; Zeng, X.; Liu, Z.; Gao, J. Torreya grandis oil attenuates cognitive impairment in scopolamine-induced mice. Food Funct. 2023, 14, 10520–10534. [Google Scholar] [CrossRef]
- Yu, Y.J.; Ni, S.; Wu, F.; Sang, W.G. Chemical composition and antioxidant activity of essential oil from Torreya grandis cv. merrillii Arils. J. Essent. Oil Bear. Plants 2016, 19, 1170–1180. [Google Scholar] [CrossRef]
- Zhou, D.Z.; Yi, Y.H.; Mao, S.L.; Lu, T.S.; Tang, H.F.; Zou, Z.R.; Zhang, S.Y. The lignins from Torreya grandis cv. Merrilli. Acta Pharm. Sin. 2004, 39, 269–271. [Google Scholar]
- Tang, J.J.; Huang, L.F.; Deng, J.L.; Wang, Y.M.; Guo, C.; Peng, X.N.; Liu, Z.; Gao, J.M. Cognitive enhancement and neuroprotective effects of OABL, a sesquiterpene lactone in 5xFAD Alzheimer’s disease mice model. Redox Biol. 2022, 50, 102229. [Google Scholar] [CrossRef]
- Xie, J.Y.; Wang, Z.X.; Liu, W.Y.; Liu, H.W.; Li, D.; Sang, Y.F.; Yang, Z.; Gao, J.M.; Yan, X.T. Hyperelatolides A–D, antineuroinflammatory constituents with unusual carbon skeletons from Hypericum elatoides. J. Nat. Prod. 2023, 86, 1910–1918. [Google Scholar] [CrossRef]
- Xie, J.Y.; Li, P.; Yan, X.T.; Gao, J.M. Discovery from Hypericum elatoides and synthesis of hyperelanitriles as α-aminopropionitrile-containing polycyclic polyprenylated acylphloroglucinols. Commun. Chem. 2024, 7, 1. [Google Scholar] [CrossRef]
- Cheung, H.T.; Miyase, T.; Lenguyen, M.P.; Smal, M.A. Further acidic constituents and neutral components of Pinus massoniana Resin. Tetrahedron 1993, 49, 7903–7915. [Google Scholar] [CrossRef]
- Harrison, L.J.; Asakawa, Y. 18-Oxoferruginol from the leaf of Torreya nucifera. Phytochemistry 1987, 26, 1211–1212. [Google Scholar] [CrossRef]
- Yang, Z.; Luo, W.; Yang, Z.; Zhang, M.; Dong, M.; Guo, D.; Gu, J.; Sun, C.; Xiao, S. Diterpenoids from Torreya grandis and their cytotoxic activities. Phytochemistry 2024, 221, 114036. [Google Scholar] [CrossRef]
- Yang, X.W.; Li, S.M.; Feng, L.; Shen, Y.H.; Tian, J.M.; Liu, X.H.; Zeng, H.W.; Zhang, C.; Zhang, W.D. Abiesanordines A–N: Fourteen new norditerpenes from Abies georgei. Tetrahedron 2008, 64, 4354–4362. [Google Scholar] [CrossRef]
- Hamulić, D.; Stadler, M.; Hering, S.; Padrón, J.M.; Bassett, R.; Rivas, F.; Loza-Mejía, M.A.; Dea-Ayuela, M.A.; González-Cardenete, M.A. Synthesis and biological studies of (+)-liquiditerpenoic acid A (abietopinoic acid) and representative analogues: SAR studies. J. Nat. Prod. 2019, 82, 823–831. [Google Scholar] [CrossRef]
- Fraga, B.M.; Hernández, M.G.; Artega, J.M.; Suárez, S. The microbiological transformation of the diterpenes dehydroabietanol and teideadiol by Mucor plumbeus. Phytochemistry 2003, 63, 663–668. [Google Scholar] [CrossRef]
- van Beek, T.A.; Claassen, F.W.; Dorado, J.; Godejohann, M.; Sierra-Alvarez, R.; Wijnberg, J.B. Fungal biotransformation products of dehydroabietic acid. J. Nat. Prod. 2007, 70, 154–159. [Google Scholar] [CrossRef]
- He, G.; Ma, Z.; Yin, W. A new diterpenoid component torreyagrandate from leaves of Torreya grandis Fort. endemic in China. Acta Bot. Sin. 1985, 27, 300–303. [Google Scholar]
- Zhai, L.L.; Jiang, T.T.; Zhang, R.; Li, J.N.; Zhai, Y.J.; Zhang, Q.; Li, D.; Han, W.B. Ergostane-type sterols and sesquiterpenes with anti-neuroinflammatory activity from a Nigrograna species associated with Clematis shensiensis. Phytochemistry 2023, 211, 113690. [Google Scholar] [CrossRef]
- Tang, D.; Liu, L.L.; He, Q.R.; Yan, W.; Li, D.; Gao, J.M. Ansamycins with antiproliferative and antineuroinflammatory activity from moss-soil-derived Streptomyces cacaoi subsp. asoensis H2S5. J. Nat. Prod. 2018, 81, 1984–1991. [Google Scholar] [CrossRef]
- Han, W.B.; Wang, G.Y.; Tang, J.J.; Wang, W.J.; Liu, H.; Gil, R.R.; Navarro-Vázquez, A.; Lei, X.; Gao, J.M. Herpotrichones A and B, two Intermolecular [4 + 2] adducts with anti-neuroinflammatory activity from a Herpotrichia Species. Org. Lett. 2020, 22, 405–409. [Google Scholar] [CrossRef]
No. | 1 a | 2 b | ||
---|---|---|---|---|
δC Type | δH (J in Hz) | δC Type | δH (J in Hz) | |
1 | 38.1 | 2.24 (m, 1H); 1.77 (m, 1H) | 39.5 | 2.19 (m, 1H); 1.36 (m, 1H) |
2 | 17.8 | 1.71 (m, 2H) | 21.5 | 1.70 (m, 1H); 1.66 (m, 1H) |
3 | 32.2 | 1.40 (m, 1H); 1.27 (m, 1H) | 43.4 | 1.80 (m, 1H); 1.43 (m, 1H) |
4 | 49.9 | 73.2 | ||
5 | 43.0 | 1.79 (m, 1H) | 53.4 | 1.55–1.58 (m, 1H) |
6 | 21.4 | 1.75 (m, 1H); 1.26(m, 1H) | 19.3 | 2.09 (m, 1H); 1.58–1.67 (m, 1H) |
7 | 29.8 | 2.69 (m, 2H) | 30.8 | 2.78 (m, 2H) |
8 | 136.5 | 126.8 | ||
9 | 141.5 | 148.3 | ||
10 | 36.2 | 39.3 | ||
11 | 125.7 | 7.05 (d, 8.6, 1H) | 111.8 | 6.63 (s, 1H) |
12 | 113.3 | 6.56 (dd, 8.6, 3.0, 1H) | 153.4 | |
13 | 153.4 | 133.5 | ||
14 | 115.2 | 6.43 (d, 3.0, 1H) | 127.4 | 6.75 (s, 1H) |
15 | 27.7 | 3.17 (m, 1H) | ||
16 | 23.2 | 1.16 (d, 7.0, 3H) | ||
17 | 23.2 | 1.17 (d, 7.0, 3H) | ||
18 | 206.6 | 9.20 (s, 1H) | ||
19 | 14.1 | 1.09 (s, 3H) | 22.9 | 1.19 (s, 3H) |
20 | 25.4 | 1.13 (s, 3H) | 24.9 | 1.13 (s, 3H) |
18-OMe |
No. | 3 a | 4 b | ||
---|---|---|---|---|
δC Type | δH (J in Hz) | δC Type | δH (J in Hz) | |
1 | 38.4 | 2.21 (dt, 13.0, 4.0, 1H); 1.42 (m, 1H) | 36.7 | 2.17 (dd, 12.9, 3.5, 1H); 1.60–1.72 (m, 1H) |
2 | 18.6 | 1.62 (m, 2H) | 17.7 | 1.60–1.72 (m, 1H); 1.48 (td, 12.9, 3.8, 1H) |
3 | 40.9 | 1.72 (m, 1H); 1.42 (m, 1H) | 36.1 | 1.76 (t, 12.9, 1H); 1.60–1.72 (m, 1H) |
4 | 72.5 | 46.2 | ||
5 | 48.8 | 1.42 (m, 1H) | 44.0 | 2.45 (dd, 14.1, 3.3, 1H) |
6 | 18.2 | 2.00 (m, 1H); 1.83 (m, 1H) | 37.2 | 2.68 (dd, 17.6, 14.1, 1H); 1.98 (dd, 17.6, 3.3, 1H) |
7 | 28.8 | 2.86 (m, 2H) | 195.6 | |
8 | 127.1 | 122.3 | ||
9 | 147.9 | 2.3 (m, 1H) | 155.3 | |
10 | 37.3 | 37.0 | ||
11 | 110.9 | 6.64 (s, 1H) | 109.3 | 6.79 (s, 1H) |
12 | 150.9 | 160.5 | ||
13 | 131.7 | 132.9 | ||
14 | 126.8 | 6.85 (s, 1H) | 125.1 | 7.64 (s, 1H) |
15 | 27.0 | 3.12 (m, 1H) | 26.1 | 3.13 (m, 1H) |
16 | 22.7 | 1.23 (d, 7.0, 3H) | 22.2 | 1.13 (d, 6.4, 3H) |
17 | 22.9 | 1.24 (d, 7.0, 3H) | 22.4 | 1.14 (d, 6.4, 3H) |
18 | 30.9 | 1.25 (s, 3H) | 177.3 | |
19 | 16.2 | 1.25 (s, 3H) | ||
20 | 24.5 | 1.30 (s, 3H) | 23.2 | 1.18 (s, 3H) |
18-OMe | 52.3 | 3.59 (s, 3H) |
Compound | IC50 (μM) a | Cell Viability (%) b |
---|---|---|
1 | 49.4 ± 0.4 | 81.6 ± 3.5 |
3 | 41.9 ± 1.5 | 85.4 ± 1.3 |
4 | 38.4 ± 0.6 | 87.1 ± 2.3 |
7 | 52.6 ± 2.3 | 96.1 ± 1.0 |
quercetin c | 10.8 ± 1.6 | 99.7 ± 1.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Yang, J.; Zhang, Y.; Gao, L.; Tian, J.; Han, W.; Gao, J. Abietane-Type Diterpenoids from the Arils of Torreya grandis. Molecules 2024, 29, 1905. https://doi.org/10.3390/molecules29091905
Gao Y, Yang J, Zhang Y, Gao L, Tian J, Han W, Gao J. Abietane-Type Diterpenoids from the Arils of Torreya grandis. Molecules. 2024; 29(9):1905. https://doi.org/10.3390/molecules29091905
Chicago/Turabian StyleGao, Yuqi, Jinghui Yang, Yue Zhang, Linlin Gao, Junmian Tian, Wenbo Han, and Jinming Gao. 2024. "Abietane-Type Diterpenoids from the Arils of Torreya grandis" Molecules 29, no. 9: 1905. https://doi.org/10.3390/molecules29091905
APA StyleGao, Y., Yang, J., Zhang, Y., Gao, L., Tian, J., Han, W., & Gao, J. (2024). Abietane-Type Diterpenoids from the Arils of Torreya grandis. Molecules, 29(9), 1905. https://doi.org/10.3390/molecules29091905