A Review of Quantitative and Topical Analysis of Anthocyanins in Food
Abstract
:1. Introduction
2. Comparison of Quantitative and Topical Anthocyanin Analyses
3. Quantitative Anthocyanin Analysis
3.1. High-Performance Liquid Chromatography (HPLC)
Sample | Flow Rate mL/min | Column | Mobile Phase | Detector | Reference |
---|---|---|---|---|---|
Seedless grape | 0.2 | Zorbax Eclipse XDB-C18 column (3.5 μm, 2.1 × 150 mm) Agilent | 3:88.5:8.5 (v/v/v) ACN/water/FA (A) 50:41.5:8.5 (v/v/v) ACN/water/FA (B) 90:1.5:8.5 (v/v/v) MeOH/water/FA (C) | ESI-MS/MS | [44] |
Wines | 2.2 | Poroshell 120 C18 (2.7 µm, 4.6 × 50 mm) Phenomenex | 95:5 (v/v) water/FA (A) 95:5 (v/v) MeOH/FA (A) | DAD-QqQ-MS/MS | [45] |
Edible wild fruits | 0.2 | Varian Pursuit C18 (3 μm,150 × 2.0 mm) Agilent | 0.1% FA in MeOH (A), in water (B) | DAD-ESI-HRMS | [46] |
Red grape | 1 | Pinnacle II C18 (4 μm, 250 mm × 4.6 mm) Restek | 0.1% FA (A), MeOH (B) | UV-vis | [47] |
Dry red wines | 0.2 | Poroshell 120 EC-C18 core–shell (2.7 μm, 2.1 × 150 mm) Agilent | 0.1% FA in water (A), in 1:1 MeOH-ACN (B) | ESI-QqQ-MS/MS | [48] |
Wine | 0.3 | Poroshell 120 EC-C18 (2.7 μm, 2.1 × 150 mm) Agilent | 0.1% FA in water (A), in 1:1 MeOH-ACN (B) | QqQ-MS/MS | [49] |
Bilberry | 1 | Hedera ODS-2 C18 (5 µm, 4.6 mm × 250 mm) Nacilai Tesque Inc. | 85% FA (A), 22.5:22.5:8.5:41.5 (v/v/v/v) ACN/MeOH/FA/H2O (B) | UV | [35] |
Soybean | 0.8 | C18 core–shell (5 μm, 250 mm × 4.6 mm) | 18:82 0.4% TFA in ACN-0.4% TFC in water * | DAD | [50] |
Raspberry wine residues | 2 | Zorbax Eclipse XDB-C18 (5 μm, 4.6 mm × 150 mm) Agilent | 5% FA (A), 1% FA in ACN (B) | DAD-MS/MS | [51] |
Black chokeberry | 1 | Zorbax Eclipse XDB-C18 (5 µm, 4.6 × 150 mm) Agilent | 2.5% AA (A), ACN (B) | PDA-ESI-MS | [52] |
Berries | 0.8 | Sunfire-C18 (5 µm, 4.6 × 250 mm) Waters | 0.1% FA in 10% ACN (A) and 90% ACN (B) | DAD-ESI-QTOF-MS | [53] |
Blueberry | 1 | Zorbax Stablebond SB-C18 (4.6 µm, 250 × 5 mm) Agilent | ACN (A), 0.3% phosphoric acid (B) | UV | [54] |
Cranberry | 2 | ZORBAX Eclipse XDB-C18 (5 μm, 4.6 mm × 150 mm) Agilent | 5% FA (A), 1% FA in ACN (B) | UV-MS/MS | [55] |
Blackcurrant | 0.8 | Ascentis Express C18 (2.7 µm, 150 × 4.6 mm) Supelco | 2% FA (A), MeOH (B) | UV | [32] |
Purple corn | NR | Discovery HS C18 (5 µm, 250 × 4.6 mm) Supelco | 0.2% FA in water (A), in 69% MeOH (B) | UV | [56] |
Purple carrots | NR | UFLC Aqueous C18 (3 μm, 2.1 × 150 mm) RESTEK | 1% FA (A), MeOH (B) | UV-ESI-MS/MS | [57] |
Blueberry and strawberry | 0.8 | Synergi Polar–RP C18 (4 µm, 4.6 × 250 mm) Phenomenex | 0.1% FA in water (A), MeOH (B) | ESI-MS/MS | [58] |
Grape skins | 2.3 | Nucleosil 100-5 C18 (5 µm, 4.6 × 250 mm) Macherey–Nagel | 5% FA (A), MeOH (B) | DAD | [59] |
Roselle | 0.8 | Zorbax Eclipse plus® C18 (5 μm, 4.6 × 250 mm) Agilent | 0.2% FA (A), ACN (B) | UV | [60] |
Açaí | 2 | XBridge BEH C18 (3.5 μm, 4.6 × 50 mm) Waters | 2.5% AA in water (A), in ACN (B) | PDA | [61] |
Black grape skin and blackberries | 1 | Zorbax 300 Extended-C18 (5 µm, 4.6 × 150 mm) Agilent | 1% FA in water (A), in 80% ACN (B) | DAD-QTOF-MS | [62] |
Black beans | 1 | Intertsil® ODS-3 (5 µm, 4.6 × 250 mm) CPS Analitica | 2.5% AA (A), ACN (B) | UV | [63] |
Red cabbage, sweet potato, and Tradescantia pallida | 0.3 | Kinetex C18 (2.6 µm, 4.6 × 150 mm) Phenomenex | 10% FA (A), MeOH (B) | DAD-ESI-QTOF-MS/MS | [64] |
Colored potato tubers | 0.35 | Acquity HPLC HSS T3 C18 (1.8 µm, 2.1 × 100 mm) Waters | 0.04% AA in water (A), in ACN (B) | MS | [65] |
Black rice | 0.8 | XBridge BEH C18 (5 μm, 4.6 × 50 mm) Waters | 0.1% FA in ACN (A), in 5:95 ACN-water (B) | PDA | [66] |
Blackcurrant Pomace | 1 | Luna C18 (5 µm, 250 × 4.6 mm) Phenomenex | 50:35:415 FA-ACN-water * | UV | [67] |
Gynura bicolor DC | 0.8 | Ultimate AQ C18 (5 μm, 4.6 × 250 mm) Welch Technologies. | 1% FA (A), ACN (B) | HRMS | [68] |
3.2. Ultra-High-Performance Liquid Chromatography (UHPLC)
Sample | Flow Rate mL/min | Column | Mobile Phase | Detector | Reference |
---|---|---|---|---|---|
Rapeseed | 0.3 | ACQUITY UPLC BEH C18 (1.7 µm; 2.1 × 150 mm) Waters | 0.1% FA n water (A), in ACN (B) | HESI-MS/MS | [98] |
Jambolan fruit | 0.4 | ACQUITY UPLC BEH C18 (1.7 µm; 2.1 × 150 mm) Waters | 0.1% FA in water (A), in ACN (B) | QTOF-MS | [71] |
Rapeseed | NR | ACQUITY UPLC BEH C18 (1.7 µm; 2.1 × 150 mm) Waters | 0.1% FA in water (A), in ACN (B) | HESI-MS/MS | [72] |
Pomegranate peel | 0.4 | ACQUITY UPLC BEH C18 (1.7 µm; 2.1 × 150 mm) Waters | 2% FA (A), ACN (B) | QTOF-MS | [73] |
Blueberry | NR | ACQUITY UPLC BEH C18 (1.7 µm; 2.1 × 150 mm) Waters | 1:1 MeOH-ACN (A), 2% FA (B) | MS/MS | [49] |
Rhododendron arboreum | 0.25 | ACQUITY UPLC BEH C18 (1.7 µm; 2.1 × 150 mm) Waters | 5% FA (A), ACN (B) | UV-ESI-IMS-MS/MS | [75] |
Cowpea | NR | ACQUITY UPLC BEH C18 (1.7 µm; 2.1 × 150 mm) Waters | 0.1% TFA (A), ACN (B) | PDA-QTOF-MS | [77] |
Corn kernels | 2 | ACQUITY UPLC BEH C18 (1.7 µm; 2.1 × 150 mm) Waters | 92:7:1 (v/v/v) ACN/water/FA (A) 1% FA in ACN (B) | DAD-ESI-MS/MS | [76] |
Black berry | NR | ACQUITY UPLC BEH C18 (1.7 μm, 2.1 × 100 mm) Waters | 0.01% FA in water (A), in MeOH (B) | ESI-QTOF-MS/MS | [78] |
Malvaceae | 0.4 | ACQUITY UPLC BEH C18 (1.7 μm, 2.1 × 100 mm) Waters | 0.1% FA in water (A), in ACN (B) | HRMS | [79] |
Fruits | 0.35 | ACQUITY UPLC BEH C18 (1.7 μm, 2.1 × 100 mm) Waters | 0.1% FA in water (A), in MeOH (B) | ESI-MS/MS | [80] |
Black seed-coated adzuki bean | 0.3 | ACQUITY UPLC BEH C18 (1.7 μm, 2.1 × 100 mm) Waters | 0.1% FA in water (A), in ACN (B) | HRMS | [99] |
Grapes | 0.3 | ACQUITY UPLC BEH C18 (1.7 μm, 2.1 × 100 mm) Waters | 1% FA (A), ACN (B) | Q-TOF-MS | [85] |
Red wines | 0.6 | ACQUITY UPLC BEH C18 (1.7 μm, 2.1 × 100 mm) Waters | 2% FA in water (A), in 40% ACN (B) | PDA-MS/MS | [100] |
Nectarine and peach | 1 | ACQUITY UPLC BEH C18 (1.7 μm, 2.1 × 100 mm) Waters | 0.04% AA in water (A), in MeOH (B) | ESI-QTOF-MS | [82] |
Ipomoea nil | NR | ACQUITY UPLC BEH C18 (1.7 μm, 2.1 × 100 mm) Waters | 0.3% phosphoric acid (A), ACN (B) | ESI-MS/MS | [83] |
Hibiscus sabdariffa | 0.4 | ACQUITY UPLC BEH C18 (1.7 µm, 2.1 × 50 mm) Waters. | 0.5% FA (A), ACN (B) | DAD-MS | [84] |
Grapes juice | 0.45 | ACQUITY UPLC BEH C18 (5 µm; 2.1 × 50 mm) Waters | 2% FA (A), 90:2:8 (v/v/v) MeOH/FA/water (B) | ESI-MS | [85] |
Liquidambar formosana | 0.4 | ACQUITY UPLC HSS T3 C18 (1.8 µm, 2.1 mm × 100 mm) Waters | 0.04% AA in water (A), 0.04% AA in ACN (B) | ESI-MS/MS | [101] |
Grape skins | 0.35 | ACQUITY UPLC HSS T3 C18 (1.8 µm, 2.1 mm × 100 mm) Waters | 0.1% FA (A), ACN (B) | ESI-MS/MS | [86] |
Perillae Folium | 1 | ZORBAX XDB-Phenyl (5 μm, 4.6 × 250 mm) Agilent | 0.1% FA in ACN (A), in water (B) | ESI-QTOF-MS/MS | [87] |
Pomegranate pomances | 0.2 | Zorbax 300 Extended-C18 (5 µm, 4.6 × 150 mm) Agilent | 0.1% FA in water (A), in ACN (B) | HRMS | [88] |
Tibetan hulless barley | 0.8 | ZORBAX eclipse Plus (1.8 μm, 4.6 × 100 mm) Agilent | 0.1% FA in water (A), in ACN (B) | QTOF-MS | [102] |
Butterfly Pea Flowers | 0.3 | Zorbax Eclipse C18 (1.8 µm, 2.1 × 50.0 mm,) Agilent | 0.1% FA in water (A), in ACN (B) | UV-MS | [23] |
Sugarcane | 0.2 | ZORBAX RRHD SB-C18 (1.8 µm, 2.1 × 50 mm) Agilent | 0.1% TFA (A), ACN (B) | ESI-QTOF-MS/MS | [89] |
Rhododendron liliiflorum | 0.35 | UPLC SB-C18 column (1.8 µm, 2.1 mm × 100 mm) Agilent | 0.1% FA in water (A), in ACN (B) | ESI-QTrap-MS/MS | [90] |
Rapeseed Petals | 0.35 | UPLC SB-C18 column (1.8 µm, 2.1 mm × 100 mm) Agilent | 0.1% FA in water (A), in ACN (B) | HESI-MS/MS | [91] |
Mangosteen Peel | 0.5 | Gemini C18 (5 µm, 4.6 × 250 mm) Phenomenex | 2% FA in water (A), in ACN (B) | ESI-HRMS | [92] |
Bilberry & Blueberry Liqueurs | NR | Gemini C18 (3 µm, 4.6 × 150 mm) Phenomenex | 0.1% FA in 3% ACN (A), in 97% ACN (B) | HESI-MS/MS | [93] |
Clitoria ternatea | 0.5 | Aqua C18 (5 μm, 4.6 × 150 mm) Waters | 0.1% TFA (A), ACN (B) | DAD-ESI-MS | [103] |
Prunus fruit | 0.5 | Kinetex Biphenyl C-18 (2.6 µm, 2.1 × 100 mm) Phenomenex | 0.1% FA in water (A), in MeOH (B) | DAD-ESI-HRMS | [94] |
Black grape, blueberry, blackberry, strawberry, pomegranate, Brazilian berry, eggplant, red onion and red cabbage | 0.5 | Kinetex C18 (2.6 µm, 4.6 × 100 mm) Phenomenex | 0.25 M citric acid (A), EtOH (B) | PDA | [97] |
Black chokeberry | 1 | Intertsil ODS-SP C18 (5 µm, 4.6 × 250 mm) GL Sciences Inc. HSS T3 column (2.1 mm × 100 mm, 1.8 µm). | 10% AA + 1% Phosphoric acid in water (A), ACN (B) 0.2% FA in water (A), in ACN (B) | PDA QTOF-MS | [96] |
3.3. Thin-Layer Chromatography
Sample | TLC Plate | Developing Solvent | Detector | Reference |
---|---|---|---|---|
Red sorghum | Silica gel 60 F254 (20 × 10 cm; 100–200 µm) Merck | EtOAc/Water/FA (85:8:6 v/v) | UV light | [108] |
Pigmented rice | Silica gel 60 F254 (20 × 10 cm; 100–200 µm) Merck | n-butanol/AA/water (3:1:1 v/v) | UV light | [109] |
Basil | Silica gel 60 F254 (20 × 10 cm; 100–200 µm) Merck | EtOAc /FA/AA/Water (100:11:11:27 v/v) | UV light | [110] |
Radish | Silica gel 60 ADAMANT (20 × 20 cm; 250 µm) Merck | Butanol/HCl/water (6:1:3 v/v) | UV light | [111] |
4. Topical Anthocyanin Analysis
4.1. Innovative Spectroscopic Techniques for Food Quality Assurance
4.2. IR Characterization and Identification of Anthocyanins
4.3. Advanced Applications and Future Perspectives
5. Challenges and Future Directions
5.1. Overview of Current Challenges in Both Quantitative and Topical Methods
5.2. Potential Advancements and Innovations in the Field of Anthocyanins Analysis
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cappellini, F.; Marinelli, A.; Toccaceli, M.; Tonelli, C.; Petroni, K. Anthocyanins: From Mechanisms of Regulation in Plants to Health Benefits in Foods. Front. Plant Sci. 2021, 12, 748049. [Google Scholar] [CrossRef] [PubMed]
- Krga, I.; Milenkovic, D. Anthocyanins: From Sources and Bioavailability to Cardiovascular-Health Benefits and Molecular Mechanisms of Action. J. Agric. Food Chem. 2019, 67, 1771–1783. [Google Scholar] [CrossRef] [PubMed]
- Shih, P.-H.; Yeh, C.-T.; Yen, G.-C. Anthocyanins Induce the Activation of Phase II Enzymes through the Antioxidant Response Element Pathway against Oxidative Stress-Induced Apoptosis. J. Agric. Food Chem. 2007, 55, 9427–9435. [Google Scholar] [CrossRef] [PubMed]
- Aboonabi, A.; Singh, I. Chemopreventive Role of Anthocyanins in Atherosclerosis via Activation of Nrf2–ARE as an Indicator and Modulator of Redox. Biomed. Pharmacother. 2015, 72, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Aboonabi, A.; Aboonabi, A. Anthocyanins Reduce Inflammation and Improve Glucose and Lipid Metabolism Associated with Inhibiting Nuclear Factor-KappaB Activation and Increasing PPAR-γ Gene Expression in Metabolic Syndrome Subjects. Free. Radic. Biol. Med. 2020, 150, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, R.; Francioso, A.; Mosca, L.; Silva, P. Anthocyanins: A Comprehensive Review of Their Chemical Properties and Health Effects on Cardiovascular and Neurodegenerative Diseases. Molecules 2020, 25, 3809. [Google Scholar] [CrossRef] [PubMed]
- Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C. The Influence of Supplementation of Anthocyanins on Obesity-Associated Comorbidities: A Concise Review. Foods. 2020, 9, 687. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Giusti, M.M. Anthocyanins: Natural Colorants with Health-Promoting Properties. Annu. Rev. Food Sci. Technol. 2010, 1, 163–187. [Google Scholar] [CrossRef] [PubMed]
- Leonarski, E.; Cesca, K.; de Oliveira, D.; Zielinski, A.A.F. A Review on Enzymatic Acylation as a Promising Opportunity to Stabilizing Anthocyanins. Crit. Rev. Food Sci. Nutr. 2023, 63, 6777–6796. [Google Scholar] [CrossRef]
- Chen, B.-H.; Stephen Inbaraj, B. Nanoemulsion and Nanoliposome Based Strategies for Improving Anthocyanin Stability and Bioavailability. Nutrients 2019, 11, 1052. [Google Scholar] [CrossRef]
- El-Mesery, H.S.; Mao, H.; Abomohra, A.E.-F. Applications of Non-Destructive Technologies for Agricultural and Food Products Quality Inspection. Sensors 2019, 19, 846. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Sharifi-Rad, J.; Cappellini, F.; Reiner, Ž.; Zorzan, D.; Imran, M.; Sener, B.; Kilic, M.; El-Shazly, M.; Fahmy, N.M.; et al. The Therapeutic Potential of Anthocyanins: Current Approaches Based on Their Molecular Mechanism of Action. Front. Pharmacol. 2020, 11, 567172. [Google Scholar] [CrossRef]
- Skogerson, K.; Wohlgemuth, G.; Barupal, D.K.; Fiehn, O. The Volatile Compound BinBase Mass Spectral Database. BMC Bioinform. 2011, 12, 321. [Google Scholar] [CrossRef] [PubMed]
- Amanah, H.Z.; Joshi, R.; Masithoh, R.E.; Choung, M.-G.; Kim, K.-H.; Kim, G.; Cho, B.-K. Nondestructive Measurement of Anthocyanin in Intact Soybean Seed Using Fourier Transform Near-Infrared (FT-NIR) and Fourier Transform Infrared (FT-IR) Spectroscopy. Infrared Phys. Technol. 2020, 111, 103477. [Google Scholar] [CrossRef]
- Rodriguez-Saona, L.E.; Allendorf, M.E. Use of FTIR for Rapid Authentication and Detection of Adulteration of Food. Annu. Rev. Food Sci. Technol. 2011, 2, 467–483. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Sun, D.-W. Advanced Applications of Hyperspectral Imaging Technology for Food Quality and Safety Analysis and Assessment: A Review—Part I: Fundamentals. Innov. Food Sci. Emerg. Technol. 2013, 19, 1–14. [Google Scholar] [CrossRef]
- Manzoor, M.F.; Hussain, A.; Naumovski, N.; Ranjha, M.M.A.N.; Ahmad, N.; Karrar, E.; Xu, B.; Ibrahim, S.A. A Narrative Review of Recent Advances in Rapid Assessment of Anthocyanins in Agricultural and Food Products. Front. Nutr. 2022, 9, 901342. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.J.; Liu, Z.T.; Chen, X.Q.; Zhang, T.T.; Zhang, Y. Deep Eutectic Solvent Combined with Ultrasound Technology: A Promising Integrated Extraction Strategy for Anthocyanins and Polyphenols from Blueberry Pomace. Food Chem. 2023, 422, 136224. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.G.; Fraga, M.; Oliveira, P.G.; Jimenez-Lopez, C.; Lourenço-Lopes, C.; Barros, L.; Ferreira, I.C.F.R.; Prieto, M.A.; Simal-Gandara, J. Identification, Quantification, and Method Validation of Anthocyanins. Chem. Proc. 2021, 5, 43. [Google Scholar] [CrossRef]
- Lasoń -Rydel, M.; Olejnik, T.P.; Ławińska, K.; Niculescu, M.-D.; Krepska, M.; Sieczyńska, K. Methods of Purification of Raw Polyphenol Extract for Chromatographic Analysis Metody Oczyszczania Surowego Ekstraktu Polifenoli Do Analizy Chromatograficznej. Technol. I Jakość Wyr. 2021, 66, 2021. [Google Scholar]
- Fibigr, J.; Šatínský, D.; Solich, P. A UHPLC Method for the Rapid Separation and Quantification of Anthocyanins in Acai Berry and Dry Blueberry Extracts. J. Pharm. Biomed. Anal. 2017, 143, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.F.; Jiang, C.L.; Kong, Y.S.; Luo, J.L.; Yin, P.; Guo, G.Y. Recent Advances in Analytical Methods for Determination of Polyphenols in Tea: A Comprehensive Review. Foods 2022, 11, 1425. [Google Scholar] [CrossRef] [PubMed]
- Thuy, N.M.; Minh, V.Q.; Ben, T.C.; Nguyen, M.T.T.; Ha, H.T.N.; Van Tai, N. Identification of Anthocyanin Compounds in Butterfly Pea Flowers (Clitoria ternatea L.) by Ultra Performance Liquid Chromatography/Ultraviolet Coupled to Mass Spectrometry. Molecules 2021, 26, 4539. [Google Scholar] [CrossRef] [PubMed]
- Chandra Singh, M.; Kelso, C.; Price, W.E.; Probst, Y. Validated Liquid Chromatography Separation Methods for Identification and Quantification of Anthocyanins in Fruit and Vegetables: A Systematic Review. Food Res. Int. 2020, 138, 109754. [Google Scholar] [CrossRef] [PubMed]
- Avula, B.; Katragunta, K.; Osman, A.G.; Ali, Z.; John Adams, S.; Chittiboyina, A.G.; Khan, I.A. Advances in the Chemistry, Analysis and Adulteration of Anthocyanin Rich-Berries and Fruits: 2000–2022. Molecules 2023, 28, 2000–2022. [Google Scholar] [CrossRef]
- Badawy, M.E.I.; El-Nouby, M.A.M.; Kimani, P.K.; Lim, L.W.; Rabea, E.I. A Review of the Modern Principles and Applications of Solid-Phase Extraction Techniques in Chromatographic Analysis; Springer Nature: Singapore, 2022; Volume 38. [Google Scholar] [CrossRef]
- Drabińska, N.; Marcinkowska, M.A.; Wieczorek, M.N.; Jeleń, H.H. Application of Sorbent-Based Extraction Techniques in Food Analysis. Molecules 2023, 28, 7985. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Sadistap, S. Data Processing Approaches and Strategies for Non-Destructive Fruits Quality Inspection and Authentication: A Review. J. Food Meas. Charact. 2018, 12, 2758–2794. [Google Scholar] [CrossRef]
- Johnson, J.B.; Walsh, K.B.; Naiker, M.; Ameer, K. The Use of Infrared Spectroscopy for the Quantification of Bioactive Compounds in Food: A Review. Molecules 2023, 28, 3215. [Google Scholar] [CrossRef] [PubMed]
- Jubb, A.M.; Rebecca Stokes, M.; McAleer, R.J.; Hackley, P.C.; Dillon, E.; Qu, J. Mapping Ancient Sedimentary Organic Matter Molecular Structure at Nanoscales Using Optical Photothermal Infrared Spectroscopy. Org. Geochem. 2023, 177, 104569. [Google Scholar] [CrossRef]
- Duan, C.; Xiao, X.; Yu, Y.; Xu, M.; Zhang, Y.; Liu, X.; Dai, H.; Pi, F.; Wang, J. In Situ Raman Characterization of the Stability of Blueberry Anthocyanins in Aqueous Solutions under Perturbations in Temperature, UV, PH. Food Chem. 2024, 431, 137155. [Google Scholar] [CrossRef]
- Šimerdová, B.; Bobríková, M.; Lhotská, I.; Kaplan, J.; Křenová, A.; Šatínský, D. Evaluation of Anthocyanin Profiles in Various Blackcurrant Cultivars over a Three-Year Period Using a Fast Hplc-Dad Method. Foods 2021, 10, 1745. [Google Scholar] [CrossRef] [PubMed]
- Tziolas, N.; Ordoudi, S.A.; Tavlaridis, A.; Karyotis, K.; Zalidis, G.; Mourtzinos, I. Rapid Assessment of Anthocyanins Content of Onion Waste through Visible-Near-Short-Wave and Mid-Infrared Spectroscopy Combined with Machine Learning Techniques. Sustainability 2021, 13, 6588. [Google Scholar] [CrossRef]
- Martemucci, G.; Costagliola, C.; Mariano, M.; D’andrea, L.; Napolitano, P.; D’Alessandro, A.G. Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen 2022, 2, 48–78. [Google Scholar] [CrossRef]
- Liu, B.; Hu, T.; Yan, W. Authentication of the Bilberry Extracts by an HPLC Fingerprint Method Combining Reference Standard Extracts. Molecules 2020, 25, 2514. [Google Scholar] [CrossRef]
- Rusli, H.; Putri, R.M.; Alni, A. Recent Developments of Liquid Chromatography Stationary Phases for Compound Separation: From Proteins to Small Organic Compounds. Molecules 2022, 27, 907. [Google Scholar] [CrossRef] [PubMed]
- Yabré, M.; Ferey, L.; Somé, I.T.; Gaudin, K. Greening Reversed-Phase Liquid Chromatography Methods Using Alternative Solvents for Pharmaceutical Analysis. Molecules 2018, 23, 1065. [Google Scholar] [CrossRef] [PubMed]
- Klimczak, I.; Gliszczyńska-Świgło, A. Comparison of UPLC and HPLC Methods for Determination of Vitamin C. Food Chem. 2015, 175, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Bele, A.A.; Khale, A. An Overview on Thin Layer Chromatography Archana A. Bele* and Anubha Khale H. K. College of Pharmacy, Jogeshwari (W), Mumbai, Maharashtra, India. J. Pharm. Sci. 2011, 2, 256–267. [Google Scholar]
- Tuzimski, T. Thin-Layer Chromatography (TLC) as Pilot Technique for HPLC. Utilization of Retention Database (RF) vs. Eluent Composition of Pesticides. Chromatographia 2002, 56, 379–381. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, K.; Yan, C.; Wu, M.; Wang, Y. Revealing the Differences in Phenolics in Different Parts of Taraxacum Mongolicum Using UPLC-MS/MS. Phytochem. Lett. 2023, 56, 13–18. [Google Scholar] [CrossRef]
- Pereira, C.; In, M.; Petrovi, J.; Sokovi, M.; Calhelha, R.C.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R.; Barros, L. Valorization of Rambutan (Nephelium lappaceum L.) Peel: Chemical Composition, Biological Activity, and Optimized Recovery of Anthocyanins. Food Res. Int. 2023, 165, 112574. [Google Scholar] [CrossRef]
- Pereira, J.; Zhou, G.; Zhang, W. Effects of Rice Flour on Emulsion Stability, Organoleptic Characteristics and Thermal Rheology of Emulsified Sausage. J. Food Nutr. Res. 2020, 4, 216–222. [Google Scholar] [CrossRef]
- Colombo, R.C.; Roberto, S.R.; Nixdorf, S.L.; Pérez-Navarro, J.; Gómez-Alonso, S.; Mena-Morales, A.; García-Romero, E.; Azeredo Gonçalves, L.S.; da Cruz, M.A.; de Carvalho, D.U.; et al. Analysis of the Phenolic Composition and Yield of ‘BRS Vitoria’ Seedless Table Grape under Different Bunch Densities Using HPLC–DAD–ESI-MS/MS. Food Res. Int. 2020, 130, 108955. [Google Scholar] [CrossRef] [PubMed]
- Tsiakkas, O.; Escott, C.; Loira, I.; Morata, A.; Rauhut, D.; Suárez-Lepe, J.A. Determination of Anthocyanin and Volatile Profile of Wines from Varieties Yiannoudi and Maratheftiko from the Island of Cyprus. Beverages 2020, 6, 4. [Google Scholar] [CrossRef]
- Zorzi, M.; Gai, F.; Medana, C.; Aigotti, R.; Peiretti, P.G. Identification of Polyphenolic Compounds in Edible Wild Fruits Grown in the North-West of Italy by Means of HPLC-DAD-ESI HRMS. Plant Foods Hum. Nutr. 2020, 75, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Kyraleou, M.; Kallithraka, S.; Gkanidi, E.; Koundouras, S.; Mannion, D.T.; Kilcawley, K.N. Discrimination of Five Greek Red Grape Varieties According to the Anthocyanin and Proanthocyanidin Profiles of Their Skins and Seeds. J. Food Compos. Anal. 2020, 92, 103547. [Google Scholar] [CrossRef]
- Zhang, L.; Fan, G.; Khan, M.A.; Yan, Z.; Beta, T. Ultrasonic-Assisted Enzymatic Extraction and Identification of Anthocyanin Components from Mulberry Wine Residues. Food Chem. 2020, 323, 126714. [Google Scholar] [CrossRef]
- Zhang, X.K.; Lan, Y.B.; Huang, Y.; Zhao, X.; Duan, C.Q. Targeted Metabolomics of Anthocyanin Derivatives during Prolonged Wine Aging: Evolution, Color Contribution and Aging Prediction. Food Chem. 2021, 339, 127795. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, V.; Rani, R.; Pushkar, S.; Lal, S.K.; Srivastava, S.; Kumari, S.; Vinutha, T.; Dahuja, A.; Praveen, S.; Sachdev, A. Anthocyanin Fingerprinting and Dynamics in Differentially Pigmented Exotic Soybean Genotypes Using Modified HPLC–DAD Method. J. Food Meas. Charact. 2020, 14, 1966–1975. [Google Scholar] [CrossRef]
- Xue, H.; Tan, J.; Li, Q.; Tang, J.; Cai, X. Ultrasound-Assisted Enzymatic Extraction of Anthocyanins from Raspberry Wine Residues: Process Optimization, Isolation, Purification, and Bioactivity Determination. Food Anal. Methods 2021, 14, 1369–1386. [Google Scholar] [CrossRef]
- Zhu, F.; Li, J.; Ma, Z.; Li, J.; Du, B. Structural Identification and in Vitro Antioxidant Activities of Anthocyanins in Black Chokeberry (Aronia melanocarpa Lliot). eFood 2021, 2, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.W.; Han, H.A.; Kim, J.K.; Kim, D.H.; Kim, M.K. Comparison of Phytochemicals and Antioxidant Activities of Berries Cultivated in Korea: Identification of Phenolic Compounds in Aronia by HPLC/Q-TOF MS. Prev. Nutr. Food Sci. 2021, 26, 459–468. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Long, S.; Xu, Q.; Yan, C.; Yang, J.; Zhou, Y. Optimization and Application of HPLC for Simultaneous Separation of Six Well-Known Major Anthocyanins in Blueberry. Prep. Biochem. Biotechnol. 2021, 51, 961–970. [Google Scholar] [CrossRef]
- Xue, H.; Tan, J.; Li, Q.; Cai, X.; Tang, J. Optimization Ultrasound-Assisted Extraction of Anthocyanins from Cranberry Using Response Surface Methodology Coupled with Genetic Algorithm and Identification Anthocyanins with HPLC-MS2. J. Food Process. Preserv. 2021, 45, e15378. [Google Scholar] [CrossRef]
- Barba, F.J.; Rajha, H.N.; Debs, E.; Abi-Khattar, A.M.; Khabbaz, S.; Dar, B.N.; Simirgiotis, M.J.; Castagnini, J.M.; Maroun, R.G.; Louka, N. Optimization of Polyphenols’ Recovery from Purple Corn Cobs Assisted by Infrared Technology and Use of Extracted Anthocyanins as a Natural Colorant in Pickled Turnip. Molecules 2022, 27, 5222. [Google Scholar] [CrossRef] [PubMed]
- Perez, M.B.; Da Peña Hamparsomian, M.J.; Gonzalez, R.E.; Denoya, G.I.; Dominguez, D.L.E.; Barboza, K.; Iorizzo, M.; Simon, P.W.; Vaudagna, S.R.; Cavagnaro, P.F. Physicochemical Properties, Degradation Kinetics, and Antioxidant Capacity of Aqueous Anthocyanin-Based Extracts from Purple Carrots Compared to Synthetic and Natural Food Colorants. Food Chem. 2022, 387, 132893. [Google Scholar] [CrossRef]
- Mustafa, A.M.; Angeloni, S.; Abouelenein, D.; Acquaticci, L.; Xiao, J.; Sagratini, G.; Maggi, F.; Vittori, S.; Caprioli, G. A New HPLC-MS/MS Method for the Simultaneous Determination of 36 Polyphenols in Blueberry, Strawberry and Their Commercial Products and Determination of Antioxidant Activity. Food Chem. 2022, 367, 130743. [Google Scholar] [CrossRef] [PubMed]
- Kalogiouri, N.P.; Karadimou, C.; Avgidou, M.S.; Petsa, E.; Papadakis, E.N.; Theocharis, S.; Mourtzinos, I.; Menkissoglu-Spiroudi, U.; Koundouras, S. An Optimized HPLC-DAD Methodology for the Determination of Anthocyanins in Grape Skins of Red Greek Winegrape Cultivars (Vitis vinifera L.). Molecules 2022, 27, 7107. [Google Scholar] [CrossRef]
- Khan, N.H.; Abdulbaqi, I.M.; Darwis, Y.; Aminu, N.; Chan, S.Y. A Stability-Indicating HPLC-UV Method for the Quantification of Anthocyanin in Roselle (Hibiscus sabdariffa L.) Spray-Dried Extract, Oral Powder, and Lozenges. Heliyon 2022, 8, e09177. [Google Scholar] [CrossRef]
- Maciel-Silva, F.W.; Viganó, J.; Castro, L.E.N.; Sganzerla, W.G.; Buller, L.S.; Martínez, J.; Rostagno, M.A.; Forster-Carneiro, T. Pressurized Liquid Extraction Coupled In-Line with SPE and on-Line with HPLC (PLE-SPExHPLC) for the Recovery and Purification of Anthocyanins from SC-CO2 Semi-Defatted Açaí (Euterpe oleracea). Food Res. Int. 2022, 160, 111711. [Google Scholar] [CrossRef]
- Paun, N.; Botoran, O.R.; Niculescu, V.C. Total Phenolic, Anthocyanins HPLC-DAD-MS Determination and Antioxidant Capacity in Black Grape Skins and Blackberries: A Comparative Study. Appl. Sci. 2022, 12, 936. [Google Scholar] [CrossRef]
- Melini, V.; Melini, F.; Luziatelli, F.; Ruzzi, M. Development of an Ultrasound-Assisted Extraction Procedure for the Simultaneous Determination of Anthocyanins and Phenolic Acids in Black Beans. Foods 2023, 12, 3566. [Google Scholar] [CrossRef] [PubMed]
- Steingass, C.B.; Burkhardt, J.; Bäumer, V.; Kumar, K.; Mibus-Schoppe, H.; Zinkernagel, J.; Esquivel, P.; Jiménez, V.M.; Schweiggert, R. Characterisation of Acylated Anthocyanins from Red Cabbage, Purple Sweet Potato, and Tradescantia Pallida Leaves as Natural Food Colourants by HPLC-DAD-ESI(+)-QTOF-MS/MS and ESI(+)-MSn Analysis. Food Chem. 2023, 416, 135601. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.; Wang, W.; Liu, Z.; Niu, N.; Li, Z.; Chen, L.; Zhu, J.; Li, D.; Liu, Y. Anthocyanin Profiles in Colored Potato Tubers at Different Altitudes by HPLC–MS Analysis with Optimized Ultrasound-Assisted Extraction. Foods 2023, 12, 4175. [Google Scholar] [CrossRef] [PubMed]
- Mackon, E.; Jeazet Dongho Epse Mackon, G.C.; Yao, Y.; Guo, Y.; Ma, Y.; Dai, X.; Jandan, T.H.; Liu, P. Integrative HPLC Profiling and Transcriptome Analysis Revealed Insights into Anthocyanin Accumulation and Key Genes at Three Developmental Stages of Black Rice (Oryza sativa. L) Caryopsis. Front. Plant Sci. 2023, 14, 1211326. [Google Scholar] [CrossRef] [PubMed]
- Kruszewski, B.; Boselli, E. Blackcurrant Pomace as a Rich Source of Anthocyanins: Ultrasound-Assisted Extraction under Different Parameters. Appl. Sci. 2024, 14, 821. [Google Scholar] [CrossRef]
- Jia, Z.; Liu, H.; Chen, W.; Tao, F. Characterization of Anthocyanins in Gynura Bicolor DC Using HPLC-Q-Orbitrap MS and Its Stability during Microwave Vacuum Drying. LWT 2024, 192, 115721. [Google Scholar] [CrossRef]
- Zhang, X.K.; Li, S.Y.; Zhao, X.; Pan, Q.H.; Shi, Y.; Duan, C.Q. HPLC-MS/MS-Based Targeted Metabolomic Method for Profiling of Malvidin Derivatives in Dry Red Wines. Food Res. Int. 2020, 134, 109226. [Google Scholar] [CrossRef]
- Li, S.; Zhang, R.; Lei, D.; Huang, Y.; Cheng, S.; Zhu, Z.; Wu, Z.; Cravotto, G. Impact of Ultrasound, Microwaves and High-Pressure Processing on Food Components and Their Interactions. Trends Food Sci. Technol. 2021, 109, 1–15. [Google Scholar] [CrossRef]
- Sabino, L.B.d.S.; Filho, E.G.A.; Fernandes, F.A.N.; de Brito, E.S.; Júnior, I.J.d.S. Optimization of Pressurized Liquid Extraction and Ultrasound Methods for Recovery of Anthocyanins Present in Jambolan Fruit (Syzygium cumini L.). Food Bioprod. Process. 2021, 127, 77–89. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, S.; Yin, N.; Liu, H.; Du, D.; Li, J. Comparative Analysis of the Orange versus Yellow Petal of Rapeseed (Brassica napus) Using UPLC-HESI-MS/MS and Transcriptome Analysis. Plant Breed. 2022, 141, 77–87. [Google Scholar] [CrossRef]
- Man, G.; Xu, L.; Wang, Y.; Liao, X.; Xu, Z. Profiling Phenolic Composition in Pomegranate Peel From Nine Selected Cultivars Using UHPLC-QTOF-MS and UPLC-QQQ-MS. Front. Nutr. 2022, 8, 807447. [Google Scholar] [CrossRef]
- Wang, S.; Wang, B.; Dong, K.; Li, J.; Li, Y.; Sun, H. Identification and Quantification of Anthocyanins of 62 Blueberry Cultivars via UPLC-MS. Biotechnol. Biotechnol. Equip. 2022, 36, 587–597. [Google Scholar] [CrossRef]
- Bhatt, V.; Sendri, N.; Swati, K.; Devidas, S.B.; Bhandari, P. Identification and Quantification of Anthocyanins, Flavonoids, and Phenolic Acids in Flowers of Rhododendron Arboreum and Evaluation of Their Antioxidant Potential. J. Sep. Sci. 2022, 45, 2555–2565. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.T.; Netzel, M.E.; O’Hare, T.J. Optimisation of Extraction Procedure and Development of LC–DAD–MS Methodology for Anthocyanin Analysis in Anthocyanin-Pigmented Corn Kernels. Food Chem. 2020, 319, 126515. [Google Scholar] [CrossRef] [PubMed]
- Tsamo, A.T.; Mohammed, H.; Mohammed, M.; Papoh Ndibewu, P.; Dapare Dakora, F. Seed Coat Metabolite Profiling of Cowpea (Vigna Unguiculata L. Walp.) Accessions from Ghana Using UPLC-PDA-QTOF-MS and Chemometrics. Nat. Prod. Res. 2020, 34, 1158–1162. [Google Scholar] [CrossRef]
- D’Angelo, R.W.O.; Gonçalves, M.M.; Fachi, M.M.; Vilhena, R.d.O.; Pontarolo, R.; Maluf, D.F. UPLC–QToF-MS Characterization of Blackberry Extracts of Cultivars ‘Tupy’, ‘Guarani’, and ‘Xavante’: Development of Extract-Loaded Niosomes. Rev. Bras. De Farmacogn. 2020, 30, 519–527. [Google Scholar] [CrossRef]
- Salem, M.A.; Michel, H.E.; Ezzat, M.I.; Okba, M.M.; EL-Desoky, A.M.; Mohamed, S.O.; Ezzat, S.M. Optimization of an Extraction Solvent for Angiotensin-Converting Enzyme Inhibitors from Hibiscus sabdariffa L. Based on Its UPLC-MS/MS Metabolic Profiling. Molecules 2020, 25, 2307. [Google Scholar] [CrossRef]
- Huang, D.; Ming, R.; Yao, S.; Li, L.; Huang, R.; Tan, Y. Identification of Anthocyanins in the Fruits of Kadsura Coccinea Using UPLC-MS/MS-Based Metabolomics. Syst. Ecol. 2021, 98, 104324. [Google Scholar] [CrossRef]
- Li, X.; Wang, W.; Sun, S.; Wang, J.; Zhu, J.; Liang, F.; Zhang, Y.; Hu, G. Quantitative Analysis of Anthocyanins in Grapes by UPLC-Q-TOF MS Combined with QAMS. Separations 2022, 9, 140. [Google Scholar] [CrossRef]
- Guo, C.; Bi, J.; Li, X.; Lyu, J.; Wu, X.; Xu, Y. Polyphenol Metabolic Diversity of Chinese Peach and Nectarine at Thinned and Ripe Stages by UPLC-ESI-Q-TOF-MS Combined with Multivariate Statistical Analysis. J. Food Compos. Anal. 2020, 90, 103502. [Google Scholar] [CrossRef]
- Sendri, N.; Devidas, S.B.; Katoch, S.; Patial, V.; Bhandari, P. Copigmentation and UPLC-ESI-MS/MS of Anthocyanin in Ipomea Nil as Potential Source of Food Colorant. Nat. Prod. Res. 2020, 36, 630–635. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Simon, J.E.; Wu, Q. Determination of Anthocyanins, Organic Acids, and Phenolic Acids in Hibiscus Market Products Using LC/UV/MS. . Food Sci. 2024, 89, 1098–1113. [Google Scholar] [CrossRef] [PubMed]
- Canedo-Reis, N.A.P.; Guerra, C.C.; da Silva, L.F.; Wetzstein, L.C.; Junges, C.H.; Ferrão, M.F.; Bergold, A.M. Fast Quantitative Determination of Phenolic Compounds in Grape Juice by UPLC-MS: Method Validation and Characterization of Juices Produced with Different Grape Varieties. J. Food Meas. Charact. 2021, 15, 1044–1056. [Google Scholar] [CrossRef]
- Zheng, W.; Yang, X.; Dang, B.; Zhang, W.; Zhang, J.; Feng, Y.; Feng, Z.; Zheng, J. Changes in Secondary Metabolites of Grape Skins in Response to Different Postharvest Dehydration Temperatures as Evaluated by UPLC-Q-TOF-MS. J. Food Meas. Charact. 2023, 18, 125–136. [Google Scholar] [CrossRef]
- Zheng, Y.F.; Li, D.Y.; Sun, J.; Cheng, J.M.; Chai, C.; Zhang, L.; Peng, G.P. Comprehensive Comparison of Two Color Varieties of Perillae Folium Using Rapid Resolution Liquid Chromatography Coupled with Quadruple-Time-of-Flight Mass Spectrometry (RRLC-Q/TOF-MS)-Based Metabolic Profile and In Vivo/ In Vitro Anti-Oxidative Activity. J. Agric. Food Chem. 2020, 68, 14684–14697. [Google Scholar] [CrossRef] [PubMed]
- Yue, Q.; Tian, J.; Dong, L.; Zhou, L. Comparison of an Ultrasound-Assisted Aqueous Two-Phase System Extraction of Anthocyanins from Pomegranate Pomaces by Utilizing the Artificial Neural Network–Genetic Algorithm and Response Surface Methodology Models. Foods 2024, 13, 199. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, C.; Yan, H.; Zhao, Z.; You, L.; Ho, C.T. Influence of Phenolic Acids/Aldehydes on Color Intensification of Cyanidin-3-O-Glucoside, the Main Anthocyanin in Sugarcane (Saccharum officinarum L.). Food Chem. 2022, 373, 131396. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Wang, X.; Meng, X.; Zhang, X.; Zhou, Q.; Zhang, Z.; Zhang, X.; Yi, Y.; Liu, L.; Shen, T. UPLC–MS/MS and Gene Expression Research to Distinguish the Colour Differences of Rhododendron liliiflorum H. Lév. Horticulturae 2023, 9, 1351. [Google Scholar] [CrossRef]
- Zeng, H.; Zheng, T.; Li, Y.; Chen, Q.; Xue, Y.; Tang, Q.; Xu, H.; Chen, M. Characterization Variation of the Differential Coloring Substances in Rapeseed Petals with Different Colors Using UPLC-HESI-MS/MS. Molecules 2023, 28, 5670. [Google Scholar] [CrossRef]
- Li, R.; Inbaraj, B.S.; Chen, B.H. Quantification of Xanthone and Anthocyanin in Mangosteen Peel by UPLC-MS/MS and Preparation of Nanoemulsions for Studying Their Inhibition Effects on Liver Cancer Cells. Int. J. Mol. Sci. 2023, 24, 3934. [Google Scholar] [CrossRef] [PubMed]
- Medic, A.; Smrke, T.; Hudina, M.; Veberic, R.; Zamljen, T. HPLC-Mass Spectrometry Analysis of Phenolics Comparing Traditional Bilberry and Blueberry Liqueurs. Food Res. Int. 2023, 173 Pt 2, 113373. [Google Scholar] [CrossRef] [PubMed]
- Cioni, E.; De Leo, M.; Cacciola, A.; D’Angelo, V.; Germanò, M.P.; Camangi, F.; Ricci, D.; Fabene, E.; Diretto, G.; De Tommasi, N.; et al. Re-Discovering Prunus Fruit Varieties as Antiangiogenic Agents by Metabolomic and Bioinformatic Approach. Food Chem. 2024, 435, 137574. [Google Scholar] [CrossRef] [PubMed]
- de Souza Mesquita, L.M.; Contieri, L.S.; Sosa, F.H.B.; Pizani, R.S.; Chaves, J.; Viganó, J.; Ventura, S.P.M.; Rostagno, M.A. Combining Eutectic Solvents and Pressurized Liquid Extraction Coupled In-Line with Solid-Phase Extraction to Recover, Purify and Stabilize Anthocyanins from Brazilian Berry Waste. Green Chem. 2023, 25, 1884–1897. [Google Scholar] [CrossRef]
- Wen, H.; Cui, H.; Tian, H.; Zhang, X.; Ma, L.; Ramassamy, C.; Li, J. Isolation of Neuroprotective Anthocyanins from Black Chokeberry (Aronia melanocarpa) against Amyloid-β-Induced Cognitive Impairment. Foods 2021, 10, 63. [Google Scholar] [CrossRef] [PubMed]
- de Souza Mesquita, L.M.; Contieri, L.S.; Sanches, V.L.; Kamikawachi, R.; Sosa, F.H.B.; Vilegas, W.; Rostagno, M.A. Fast and Green Universal Method to Analyze and Quantify Anthocyanins in Natural Products by UPLC-PDA. Food Chem. 2023, 428, 136814. [Google Scholar] [CrossRef] [PubMed]
- Qu, C.; Yin, N.; Chen, S.; Wang, S.; Chen, X.; Zhao, H.; Shen, S.; Fu, F.; Zhou, B.; Xu, X.; et al. Comparative Analysis of the Metabolic Profiles of Yellow- versus Black-Seeded Rapeseed Using UPLC-HESI-MS/MS and Transcriptome Analysis. J. Agric. Food Chem. 2020, 68, 3033–3049. [Google Scholar] [CrossRef] [PubMed]
- Ha, T.J.; Park, J.E.; Lee, K.-S.; Seo, W.D.; Song, S.-B.; Lee, M.-H.; Kim, S.; Kim, J.-I.; Oh, E.; Pae, S.-B. Identification of Anthocyanin Compositions in Black Seed Coated Korean Adzuki Bean (Vigna angularis) by NMR and UPLC-Q-Orbitrap-MS/MS and Screening for Their Antioxidant Properties Using Different Solvent Systems. Food Chem. 2021, 346, 128882. [Google Scholar] [CrossRef]
- Stój, A.; Kapusta, I.; Domagała, D. Classification of Red Wines Produced from Zweigelt and Rondo Grape Varieties Based on the Analysis of Phenolic Compounds by UPLC-PDA-MS/MS. Molecules 2020, 25, 1342. [Google Scholar] [CrossRef]
- Lai, J.X.; Lin, F.R.; Huang, P.; Guo, W.Y.; Han, L.B.; Zheng, Y.Q. Seasonal Variation of Flavonoid Metabolites in Leaves of Liquidambar Formosana ‘Nanlinhong’ Trees Revealed by UPLC-ESI–MS/MS. Rev. Bras. De Bot. 2021, 44, 575–586. [Google Scholar] [CrossRef]
- Zhang, T.; Ma, J.; Wu, X.; Hao, Z.; Dun, C.; Chen, C. Qualitative and Semi-Quantitative Assessment of Anthocyanins in Tibetan Hulless Barley from Different Geographical Locations by UPLC-QTOF-MS and Their Antioxidant Capacities. Open Chem. 2021, 19, 1–8. [Google Scholar] [CrossRef]
- Caroline Paz Gonçalves, G.; Lizandra Gomes Rosas, A.; Carneiro de Sousa, R.; Regina Rodrigues Vieira, T.; César de Albuquerque Sousa, T.; Ramires, T.; Ferreira Ferreira da Silveira, T.; Barros, L.; Padilha da Silva, W.; Renato Guerra Dias, Á.; et al. A Green Method for Anthocyanin Extraction from Clitoria Ternatea Flowers Cultivated in Southern Brazil: Characterization, in Vivo Toxicity, and Biological Activity. Food Chem. 2024, 435, 137575. [Google Scholar] [CrossRef] [PubMed]
- Teng, Z.; Jiang, X.; He, F.; Bai, W. Qualitative and Quantitative Methods to Evaluate Anthocyanins. eFood 2020, 1, 339–346. [Google Scholar] [CrossRef]
- Cheng, S.-C.; Huang, M.-Z.; Shiea, J. Thin Layer Chromatography/Mass Spectrometry. J. Chromatogr. A 2011, 1218, 2700–2711. [Google Scholar] [CrossRef] [PubMed]
- Sherma, J. Review of the Determination of the Antioxidant Activity of Foods, Food Ingredients, and Dietary Supplements by Thin Layer Chromatography-Direct Bioautography, Spectrometry, and the Dot-Blot Procedure. J. AOAC Int. 2018, 101, 1285–1294. [Google Scholar] [CrossRef]
- Valverde, J.; This, H.; Vignolle, M. Quantitative Determination of Photosynthetic Pigments in Green Beans Using Thin-Layer Chromatography and a Flatbed Scanner as Densitometer. J. Chem. Educ. 2007, 84, 1505. [Google Scholar] [CrossRef]
- Suganyadevi, P.; Saravanakumar, M.; Mohandas, S. Characterization of Anthocyanin from Red Sorghum (Sorghum bicolor) Bran by Liquid Chromatography-Electron Spray Ionization Mass Spectrometry Analysis. Eur. J. Mass Spectrom. 2021, 27, 107–114. [Google Scholar] [CrossRef]
- Agustin, A.T.; Safitri, A.; Fatchiyah, F. Java Red Rice (Oryza sativa L.) Nutritional Value and Anthocyanin Profiles and Its Potential Role as Antioxidant and Anti-Diabetic. Indones. J. Chem. 2021, 21, 968–978. [Google Scholar] [CrossRef]
- Wulandari, W.P.; Ji, Y.; Erol, Ö.; Choi, Y.H. Identification of Variety-Specific Metabolites of Basil by High Performance Thin Layer Chromatography-Assisted Metabolic Profiling Techniques. J. Chromatogr. A 2023, 1710, 464425. [Google Scholar] [CrossRef]
- Matus-Castillo, D.M.; Moya-Hernández, J.C.; Castillo-Guevara, C.; Cervantes-Rodriguez, M.; Arguelles-Martinez, L.; Aguilar- Paredes, O.A.; Méndez-Iturbide, D. Extraction and Use of Anthocyanins from Radish (Raphanus sativus L. Var Crimson Gigant) as a Natural Colorant in Yogurt. Eur. J. Agric. Food Sci. 2022, 4, 26–33. [Google Scholar] [CrossRef]
- Porep, J.U.; Kammerer, D.R.; Carle, R. On-Line Application of near Infrared (NIR) Spectroscopy in Food Production. Trends Food Sci. Technol. 2015, 46, 211–230. [Google Scholar] [CrossRef]
- Folli, G.S.; Santos, L.P.; Santos, F.D.; Cunha, P.H.P.; Schaffel, I.F.; Borghi, F.T.; Barros, I.H.A.S.; Pires, A.A.; Ribeiro, A.V.F.N.; Romão, W.; et al. Food Analysis by Portable NIR Spectrometer. Food Chem. Adv. 2022, 1, 100074. [Google Scholar] [CrossRef]
- Huang, X.; Zou, X.; Zhao, J.; Shi, J.; Zhang, X.; Holmes, M. Measurement of Total Anthocyanins Content in Flowering Tea Using near Infrared Spectroscopy Combined with Ant Colony Optimization Models. Food Chem. 2014, 164, 536–543. [Google Scholar] [CrossRef]
- Gardana, C.; Scialpi, A.; Fachechi, C.; Simonetti, P. Near-Infrared Spectroscopy and Chemometrics for the Routine Detection of Bilberry Extract Adulteration and Quantitative Determination of the Anthocyanins. J. Spectrosc. 2018, 2018, 4751247. [Google Scholar] [CrossRef]
- Agelet, L.E.; Hurburgh Jr, C.R. A Tutorial on near Infrared Spectroscopy and Its Calibration. Crit. Rev. Anal. Chem. 2010, 40, 246–260. [Google Scholar] [CrossRef]
- Osborne, B.G. Near-Infrared Spectroscopy in Food Analysis. Encycl. Anal. Chem. 2000, 1–14. [Google Scholar] [CrossRef]
- Mecozzi, M.; Sturchio, E. Computer Assisted Examination of Infrared and Near Infrared Spectra to Assess Structural and Molecular Changes in Biological Samples Exposed to Pollutants: A Case of Study. J. Imaging 2017, 3, 11. [Google Scholar] [CrossRef]
- Beltrame, K.K.; Gonçalves, T.R.; Março, P.H.; Gomes, S.; Matsushita, M.; Valderrama, P. Pseudo-Univariate Calibration Based on NIR Spectroscopy in the Determination of Anthocyanins and Antioxidant Activity in Grape Juices. J. Braz. Chem. Soc. 2021, 32, 1131–1136. [Google Scholar] [CrossRef]
- Eguchi, K.; Sawai, A.; Sato, T. Use of Near-Infrared Reflectance Spectroscopy for the Estimation of Antioxidant Activity and Anthocyanin Contents of Corn (Zea mays L.). J. Jpn. Agric. Syst. Soc. 2011, 27, 69–74. [Google Scholar]
- Miramont, C.; Jourdes, M.; Selberg, T.; Juhl, H.V.; Nørgaard, L.; Teissedre, P.-L. Prediction of Anthocyanin Concentrations during Red Wine Fermentation: Development of Fourier Transform Infrared Spectroscopy Partial Least Squares Models. OENO One 2019, 53, 681–694. [Google Scholar] [CrossRef]
- Stuppner, S.; Mayr, S.; Beganovic, A.; Beć, K.; Grabska, J.; Aufschnaiter, U.; Groeneveld, M.; Rainer, M.; Jakschitz, T.; Bonn, G.K.; et al. Near-Infrared Spectroscopy as a Rapid Screening Method for the Determination of Total Anthocyanin Content in Sambucus Fructus. Sensors 2020, 20, 4983. [Google Scholar] [CrossRef]
- Dai, H.; Forbes, A.; Guo, X.; He, L. Prediction of Anthocyanin Color Stability against Iron Co-Pigmentation by Surface-Enhanced Raman Spectroscopy. Foods 2022, 11, 3436. [Google Scholar] [CrossRef] [PubMed]
- Zaffino, C.; Russo, B.; Bruni, S. Surface-Enhanced Raman Scattering (SERS) Study of Anthocyanidins. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2015, 149, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Welch, C.R.; Wu, Q.; Simon, J.E. Recent Advances in Anthocyanin Analysis and Characterization. Curr. Anal. Chem. 2008, 4, 75–101. [Google Scholar] [CrossRef] [PubMed]
- Gitelson, A.A.; Chivkunova, O.B.; Merzlyak, M.N. Nondestructive Estimation of Anthocyanins and Chlorophylls in Anthocyanic Leaves. Am. J. Bot. 2009, 96, 1861–1868. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Sandoval, J.R.; Nogales-Bueno, J.; Rodríguez-Pulido, F.J.; Hernández-Hierro, J.M.; Segovia-Quintero, M.A.; Martínez-Rosas, M.E.; Heredia, F.J. Screening of Anthocyanins in Single Red Grapes Using a Non-Destructive Method Based on the near Infrared Hyperspectral Technology and Chemometrics. J. Sci. Food Agric. 2016, 96, 1643–1647. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, Z.; Ma, Q.; Zhou, Y. Enhancement of Anthocyanins Extraction from Haskap by Cold Plasma Pretreatment. Innov. Food Sci. Emerg. Technol. 2023, 84, 103294. [Google Scholar] [CrossRef]
- Yoshioka, Y.; Nakayama, M.; Noguchi, Y.; Horie, H. Use of Image Analysis to Estimate Anthocyanin and UV-Excited Fluorescent Phenolic Compound Levels in Strawberry Fruit. Breed. Sci. 2013, 63, 211–217. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Custodio-Mendoza, J.A.; Aktaş, H.; Zalewska, M.; Wyrwisz, J.; Kurek, M.A. A Review of Quantitative and Topical Analysis of Anthocyanins in Food. Molecules 2024, 29, 1735. https://doi.org/10.3390/molecules29081735
Custodio-Mendoza JA, Aktaş H, Zalewska M, Wyrwisz J, Kurek MA. A Review of Quantitative and Topical Analysis of Anthocyanins in Food. Molecules. 2024; 29(8):1735. https://doi.org/10.3390/molecules29081735
Chicago/Turabian StyleCustodio-Mendoza, Jorge A., Havva Aktaş, Magdalena Zalewska, Jarosław Wyrwisz, and Marcin A. Kurek. 2024. "A Review of Quantitative and Topical Analysis of Anthocyanins in Food" Molecules 29, no. 8: 1735. https://doi.org/10.3390/molecules29081735
APA StyleCustodio-Mendoza, J. A., Aktaş, H., Zalewska, M., Wyrwisz, J., & Kurek, M. A. (2024). A Review of Quantitative and Topical Analysis of Anthocyanins in Food. Molecules, 29(8), 1735. https://doi.org/10.3390/molecules29081735