Physicochemical Characterization, Antioxidant, and Proliferative Activity of Colombian Propolis Extracts: A Comparative Study
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sensorial Analysis of Propolis Extracts
2.2. Physicochemical Characteristics
2.3. Chemical Characterization
2.4. Total Phenolic Content, Total Flavonoid Content, and DPPH• Radical Scavenging Capacity
2.5. Biological Activity
2.5.1. Effects of EEPs on Cell Viability and Determination of IC50
2.5.2. Effect of Propolis on Fibroblast Proliferation
3. Materials and Methods
3.1. Obtaining Propolis and Preparing Ethanolic Extracts
3.2. Sensorial Analysis
3.3. Physicochemical Characteristics
3.3.1. Moisture
3.3.2. Determination of Melting Point
3.3.3. Ash Content
3.3.4. Determination of Waxes
3.4. Chemical Characterization
High-Performance Liquid Chromatography Coupled with Mass Spectrometry Analysis
3.5. Determination of Bioactive Compounds
3.5.1. DPPH• Free Radical Scavenging Activity Measurements
3.5.2. Total Phenol Content (TPC) and Total Flavonoid Content (TFC)
3.6. Biological Activity Assays
3.6.1. Cell Lines and Culture Conditions
3.6.2. Cell Viability Assay and IC50 Determination
3.6.3. Cell Cycle Analysis
3.7. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Korkmaz, S.; Parmaksiz, A.; Sait, A.; Omurtag Korkmaz, B.İ. The Analysis of the Effects of Propolis Products as Food Supplements on the Viability of Baby Hamster Kidney (BHK-21) and Murine Macrophage (RAW 264.7) Cells by Spectrophotometric MTT Assay. J. Adv. VetBio Sci. Tech. 2022, 7, 45–53. [Google Scholar] [CrossRef]
- Elnakady, Y.A.; Rushdi, A.I.; Franke, R.; Abutaha, N.; Ebaid, H.; Baabbad, M.; Omar, M.O.M.; Al Ghamdi, A.A. Characteristics, Chemical Compositions and Biological Activities of Propolis from Al-Bahah, Saudi Arabia. Sci. Rep. 2017, 7, 41453. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, C.P.; Wang, K.; Li, G.Q.; Hu, F.L. Recent Advances in the Chemical Composition of Propolis. Molecules 2014, 19, 19610–19632. [Google Scholar] [CrossRef]
- Dias, L.G.; Pereira, A.P.; Estevinho, L.M. Comparative Study of Different Portuguese Samples of Propolis: Pollinic, Sensorial, Physicochemical, Microbiological Characterization and Antibacterial Activity. Food Chem. Toxicol. 2012, 50, 4246–4253. [Google Scholar] [CrossRef]
- Przybyłek, I.; Karpiński, T.M. Antibacterial Properties of Propolis. Molecules 2019, 24, 2047. [Google Scholar] [CrossRef] [PubMed]
- Pahlavani, N.; Malekahmadi, M.; Firouzi, S.; Rostami, D.; Sedaghat, A.; Moghaddam, A.B.; Ferns, G.A.; Navashenaq, J.G.; Reazvani, R.; Safarian, M.; et al. Molecular and Cellular Mechanisms of the Effects of Propolis in Inflammation, Oxidative Stress, and Glycemic Control in Chronic Diseases. Nutr. Metab. 2020, 17, 65. [Google Scholar] [CrossRef]
- Daleprane, J.B.; Abdalla, D.S. Emerging Roles of Propolis: Antioxidant, Cardioprotective, and Antiangiogenic Actions. Evid.-Based Complement. Altern. Med. 2013, 2013, 175135. [Google Scholar] [CrossRef]
- Oryan, A.; Alemzadeh, E.; Moshiri, A. Potential Role of Propolis in Wound Healing: Biological Properties and Therapeutic Activities. Biomed. Pharmacother. 2018, 98, 469–483. [Google Scholar] [CrossRef] [PubMed]
- da Rosa, C.; Bueno, I.L.; Quaresma, A.C.M.; Longato, G.B. Healing Potential of Propolis in Skin Wounds Evidenced by Clinical Studies. Pharmaceuticals 2022, 15, 1143. [Google Scholar] [CrossRef]
- Divya, C.S.; Pillai, M.R. Antitumor Action of Curcumin in Human Papillomavirus Associated Cells Involves Downregulation of Viral Oncogenes, Prevention of NFkB and AP-1 Translocation, and Modulation of Apoptosis. Mol. Carcinog. 2006, 45, 320–332. [Google Scholar] [CrossRef]
- Nattagh-Eshtivani, E.; Pahlavani, N.; Ranjbar, G.; Gholizadeh Navashenaq, J.; Salehi-Sahlabadi, A.; Mahmudiono, T.; Nader Shalaby, M.; Jokar, M.; Nematy, M.; Barghchi, H.; et al. Does Propolis Have Any Effect on Rheumatoid Arthritis? A Review Study. Food Sci. Nutr. 2022, 10, 1003–1020. [Google Scholar] [CrossRef]
- Zulhendri, F.; Perera, C.O.; Tandean, S. Can Propolis Be a Useful Adjuvant in Brain and Neurological Disorders and Injuries? A Systematic Scoping Review of the Latest Experimental Evidence. Biomedicines 2021, 9, 1227. [Google Scholar] [CrossRef]
- Silva, H.; Francisco, R.; Saraiva, A.; Francisco, S.; Carrascosa, C.; Raposo, A. The Cardiovascular Therapeutic Potential of Propolis—A Comprehensive Review. Biology 2021, 10, 27. [Google Scholar] [CrossRef] [PubMed]
- Chylińska-Wrzos, P.; Lis-Sochocka, M.; Jodłowska-Jędrych, B. Use of Propolis in Difficult to Heal Diabetic Wounds. Short Review. Pol. J. Public Health 2017, 127, 173–175. [Google Scholar] [CrossRef]
- Conte, F.L.; Pereira, A.C.; Brites, G.; Ferreira, I.; Silva, A.C.; Sebastião, A.I.; Matos, P.; Pereira, C.; Batista, M.T.; Sforcin, J.M.; et al. Exploring the Antioxidant, Anti-Inflammatory, and Antiallergic Potential of Brazilian Propolis in Monocytes. Phytomed. Plus 2022, 2, 100231. [Google Scholar] [CrossRef]
- Almuhayawi, M.S. Propolis as a Novel Antibacterial Agent. Saudi J. Biol. Sci. 2020, 27, 3079–3086. [Google Scholar] [CrossRef]
- Dos Santos Oliveira, J.M.; Cavalcanti, T.F.S.; Leite, I.F.; dos Santos, D.M.R.C.; de Moraes Porto, I.C.C.; de Aquino, F.L.T.; Sonsin, A.F.; Lins, R.M.L.; Vitti, R.P.; de Freitas, J.D.; et al. Propolis in Oral Healthcare: Antibacterial Activity of a Composite Resin Enriched With Brazilian Red Propolis. Front. Pharm. 2021, 12, 787633. [Google Scholar] [CrossRef]
- De Groot, A.C. Propolis: A Review of Properties, Applications, Chemical Composition, Contact Allergy, and Other Adverse Effects. Dermatitis 2013, 24, 263–282. [Google Scholar] [CrossRef] [PubMed]
- Beserra, F.P.; Gushiken, L.F.S.; Hussni, M.F.; Ribeiro, V.P.; Bonamin, F.; Jackson, C.J.; Pellizzon, C.H.; Bastos, J.K. Artepillin C as an Outstanding Phenolic Compound of Brazilian Green Propolis for Disease Treatment: A Review on Pharmacological Aspects. Phytother. Res. 2021, 35, 2274–2286. [Google Scholar] [CrossRef]
- Pimenta, H.C.; Violante, I.M.P.; de Musis, C.R.; Borges, Á.H.; Aranha, A.M.F. In Vitro Effectiveness of Brazilian Brown Propolis against Enterococcus Faecalis. Braz. Oral Res. 2015, 29, S1806-83242015000100255. [Google Scholar] [CrossRef]
- Colciencias Colombia Bio. Colciencias 2016. Available online: https://minciencias.gov.co/portafolio/colombia-bio (accessed on 14 February 2024).
- Bankova, V. Chemical Diversity of Propolis and the Problem of Standardization. J. Ethnopharmacol. 2005, 100, 114–117. [Google Scholar] [CrossRef] [PubMed]
- Instrução Normativa No 11; Regulamento Técnico de Identidade e Qualidade do Mel. Ministério da Agricultura e Pecuária: Brasília, Brazil, 2000.
- Viloria, J.D.; Gil, J.H.; Durango, D.L.; García, C.M. Caracterización Fisicoquímica Del Propóleo De La Región Del Bajo Cauca Antioqueño (Antioquia, Colombia). Biotecnol. Sect. Agropecu. Agroind. 2012, 10, 77–86. [Google Scholar]
- Salamanca Grosso, G.; Osorio-Tangarife, M.P.; Cabrera Moncayo, J.A. Propóleos de Nariño: Propiedades Fisicoquímicas y Actividad Biológica. Biotecnol. Sect. Agropecu. Agroind. 2021, 20, 152–164. [Google Scholar] [CrossRef]
- Grosso, G.S.; Ramírez, C.; Rubiano, L.; González, E.V.; Javier, E.; Monica, H. Origen Naturaleza y Características de Los Prop Óleos Colombianos; Sello Editorial Universidad del Tolima: Ibagué, Spain, 2017; Available online: https://repository.ut.edu.co/handle/001/3130 (accessed on 14 February 2024).
- Lozina, L.A.; Peichoto, M.E.; Acosta, O.C.; Granero, G.E. Estandarización y Caracterización Organoléptica y Físico-Química de 15 Propóleos Argentinos. Lat. Am. J. Pharm. 2010, 29, 102–110. [Google Scholar]
- Figueiredo, F.J.B.; Dias-Souza, M.V.; Nascimento, E.A.; De Lima, L.R.P. Physicochemical Characterization and Flavonoid Contents of Artisanal Brazilian Green Propolis. Int. J. Pharm. Pharm. Sci. 2015, 7, 64–68. [Google Scholar]
- Vargas Sánchez, R.D.; Martínez Benavidez, E.; Hernández, J.; Torrescano Urrutia, G.R.; Sánchez Escalante, A. Effect of Physicochemical Properties and Phenolic Compounds of Bifloral Propolis on Antioxidant and Antimicrobial Capacity. Nova Sci. 2020, 12, 24. [Google Scholar] [CrossRef]
- Kumazawa, S.; Hamasaka, T.; Nakayama, T. Antioxidant Activity of Propolis of Various Geographic Origins. Food Chem. 2004, 84, 329–339. [Google Scholar] [CrossRef]
- Böke Sarıkahya, N.; Gören, A.C.; Sümer Okkalı, G.; Çöven, F.O.; Orman, B.; Kırcı, D.; Yücel, B.; Kışla, D.; Demirci, B.; Altun, M.; et al. Chemical Composition and Biological Activities of Propolis Samples from Different Geographical Regions of Turkey. Phytochem. Lett. 2021, 44, 129–136. [Google Scholar] [CrossRef]
- Afata, T.N.; Nemo, R.; Ishete, N.; Tucho, G.T.; Dekebo, A. Phytochemical Investigation, Physicochemical Characterization, and Antimicrobial Activities of Ethiopian Propolis. Arab. J. Chem. 2022, 15, 103931. [Google Scholar] [CrossRef]
- Pujirahayu, N.; Ritonga, H.; Uslinawaty, Z. Properties and Flavonoids Content in Propolis of Some Extraction Method of Raw Propolis. Int. J. Pharm. Pharm. Sci. 2014, 6, 338–340. [Google Scholar]
- Aboulghazi, A.; Touzani, S.; Fadil, M.; Lyoussi, B. Physicochemical Characterization and in Vitro Evaluation of the Antioxidant and Anticandidal Activities of Moroccan Propolis. Vet. World 2022, 15, 341. [Google Scholar] [CrossRef]
- Maldacena, C. Instituto Argentino de Normalización (IRAM) Recent Activities. Elev. World 2002, 50, 148–151. [Google Scholar]
- Šturm, L.; Ulrih, N.P. Advances in the Propolis Chemical Composition between 2013 and 2018: A Review. eFood 2020, 1, 24–37. [Google Scholar] [CrossRef]
- Palomino, L.R. Caracterización Fisicoquímica y Actividad Antimicrobiana Del Propóleos En El Municipio de La Unión (Antioquia, Colombia). Fac. De Cienc. Agrar. 2010, 63, 5373–5383. [Google Scholar]
- Correa-González, Y.X.; Rojas-Cardozo, M.A.; Mora-Huertas, C.E. Potentialities of the Colombian Propolis in Pharmaceutics and Cosmetics: A Standpoint from the Quality Control. Rev. Colomb. De Cienc. Quim.-Farm. 2019, 48, 762–788. [Google Scholar] [CrossRef]
- Betances-Salcedo, E.; Revilla, I.; Vivar-Quintana, A.M.; González-Martín, M.I. Flavonoid and Antioxidant Capacity of Propolis Prediction Using near Infrared Spectroscopy. Sensors 2017, 17, 2–13. [Google Scholar] [CrossRef]
- El-Fadaly, H.; El-Badrawy, E.E.Y. Flavonoids of Propolis and Their Antibacterial Activities. Pak. J. Biol. Sci. 2001, 4, 204–207. [Google Scholar] [CrossRef]
- Mello, B.C.B.S.; Petrus, J.C.C.; Hubinger, M.D. Concentration of Flavonoids and Phenolic Compounds in Aqueous and Ethanolic Propolis Extracts through Nanofiltration. J. Food Eng. 2010, 96, 533–539. [Google Scholar] [CrossRef]
- Wieczorek, P.P.; Hudz, N.; Yezerska, O.; Horčinová-Sedláčková, V.; Shanaida, M.; Korytniuk, O.; Jasicka-Misiak, I. Chemical Variability and Pharmacological Potential of Propolis Pharmaceutical Products. Molecules 2022, 27, 1600. [Google Scholar] [CrossRef] [PubMed]
- Campoccia, D.; Ravaioli, S.; Santi, S.; Mariani, V.; Santarcangelo, C.; De Filippis, A.; Montanaro, L.; Arciola, C.R.; Daglia, M. Exploring the Anticancer Effects of Standardized Extracts of Poplar-Type Propolis: In Vitro Cytotoxicity toward Cancer and Normal Cell Lines. Biomed. Pharmacother. 2021, 141, 111895. [Google Scholar] [CrossRef] [PubMed]
- Siripatrawan, U.; Vitchayakitti, W.; Sanguandeekul, R. Antioxidant and Antimicrobial Properties of Thai Propolis Extracted Using Ethanol Aqueous Solution. Int. J. Food Sci. Technol. 2013, 48, 22–27. [Google Scholar] [CrossRef]
- Popova, M.; Trusheva, B.; Antonova, D.; Cutajar, S.; Mifsud, D.; Farrugia, C.; Tsvetkova, I.; Najdenski, H.; Bankova, V. The Specific Chemical Profile of Mediterranean Propolis from Malta. Food Chem. 2011, 126, 1431–1435. [Google Scholar] [CrossRef]
- da Silva Frozza, C.O.; Garcia, C.S.C.; Gambato, G.; de Souza, M.D.O.; Salvador, M.; Moura, S.; Padilha, F.F.; Seixas, F.K.; Collares, T.; Borsuk, S.; et al. Chemical Characterization, Antioxidant and Cytotoxic Activities of Brazilian Red Propolis. Food Chem. Toxicol. 2013, 52, 137–142. [Google Scholar] [CrossRef]
- Muñoz, O.; Copaja, S.; Speisky, H.; Peña, R.C.; Montenegro, G. Contenido de Flavonoides y Compuestos Fenólicos de Mieles Chilenas e Índice Antioxidante. Química Nova 2007, 30, 848–851. [Google Scholar] [CrossRef]
- Graikou, K.; Popova, M.; Gortzi, O.; Bankova, V.; Chinou, I. Characterization and Biological Evaluation of Selected Mediterranean Propolis Samples. Is It a New Type? LWT 2016, 65, 261–267. [Google Scholar] [CrossRef]
- Bankova, V.; Popova, M.; Bogdanov, S.; Sabatini, A.G. Chemical Composition of European Propolis: Expected and Unexpected Results. Z. Fur Nat.-Sect. C J. Biosci. 2002, 57, 530–533. [Google Scholar] [CrossRef]
- Aloud, A.A.; Veeramani, C.; Govindasamy, C.; Alsaif, M.A.; El Newehy, A.S.; Al-Numair, K.S. Galangin, a Dietary Flavonoid, Improves Antioxidant Status and Reduces Hyperglycemia-Mediated Oxidative Stress in Streptozotocin-Induced Diabetic Rats. Redox Rep. 2017, 22, 290–300. [Google Scholar] [CrossRef]
- Mishra, B.; Priyadarsini, K.I.; Kumar, M.S.; Unnikrishnan, M.K.; Mohan, H. Effect of O-Glycosilation on the Antioxidant Activity and Free Radical Reactions of a Plant Flavonoid, Chrysoeriol. Bioorg. Med. Chem. 2003, 11, 2677–2685. [Google Scholar] [CrossRef]
- Xu, W.; Lu, H.; Yuan, Y.; Deng, Z.; Zheng, L.; Li, H. The Antioxidant and Anti-Inflammatory Effects of Flavonoids from Propolis via Nrf2 and NF-κB Pathways. Foods 2022, 11, 2439. [Google Scholar] [CrossRef] [PubMed]
- Palomino, G.L.R.; García, P.C.M.; Gil, G.J.H.; Rojano, B.A.; Durango, R.D.L. Determinación del Contenido de Fenoles y Evaluación de la Actividad Antioxidante de Propóleos Recolectados en el Departamento de Antioquia (Colombia). Vitae 2009, 16, 388–395. [Google Scholar]
- Kurek-Górecka, A.; Keskin, Ş.; Bobis, O.; Felitti, R.; Górecki, M.; Otręba, M.; Stojko, J.; Olczyk, P.; Kolayli, S.; Rzepecka-Stojko, A. Comparison of the Antioxidant Activity of Propolis Samples from Different Geographical Regions. Plants 2022, 11, 1203. [Google Scholar] [CrossRef] [PubMed]
- Standard 11266, I ISO 10993-5:2009; Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity. International Organization of Standardization: Geneva, Switzerland, 2009.
- Gjertsen, A.W.; Stothz, K.A.; Neiva, K.G.; Pileggi, R. Effect of Propolis on Proliferation and Apoptosis of Periodontal Ligament Fibroblasts. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 2011, 112, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Oda, H.; Nakagawa, T.; Maruyama, K.; Dono, Y.; Katsuragi, H.; Sato, S. Effect of Brazilian Green Propolis on Oral Pathogens and Human Periodontal Fibroblasts. J. Oral Biosci. 2016, 58, 50–54. [Google Scholar] [CrossRef]
- Özan, F.; Polat, Z.A.; Er, K.; Özan, Ü.; Deǧer, O. Effect of Propolis on Survival of Periodontal Ligament Cells: New Storage Media for Avulsed Teeth. J. Endod. 2007, 33, 570–573. [Google Scholar] [CrossRef] [PubMed]
- Lopez, B.G.C.; de Lourenço, C.C.; Alves, D.A.; Machado, D.; Lancellotti, M.; Sawaya, A.C.H.F. Antimicrobial and Cytotoxic Activity of Red Propolis: An Alert for Its Safe Use. J. Appl. Microbiol. 2015, 119, 677–687. [Google Scholar] [CrossRef] [PubMed]
- de Almeida Xavier, J.; Valentim, I.B.; Camatari, F.O.S.; de Almeida, A.M.M.; Goulart, H.F.; de Souza Ferro, J.N.; de Oliveira Barreto, E.; Cavalcanti, B.C.; Bottoli, C.B.G.; Goulart, M.O.F. Polyphenol Profile by Uhplc-Ms/Ms, Anti-Glycation, Antioxidant and Cytotoxic Activities of Several Samples of Propolis from the Northeastern Semi-Arid Region of Brazil. Pharm. Biol. 2017, 55, 1884–1893. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, M.A.E.; Amarante, M.K.; Conti, B.J.; Sforcin, J.M. Cytotoxic Constituents of Propolis Inducing Anticancer Effects: A Review. J. Pharm. Pharmacol. 2011, 63, 1378–1386. [Google Scholar] [CrossRef] [PubMed]
- Noureddine, H.; Hage-Sleiman, R.; Wehbi, B.; Fayyad-Kazan, A.H.; Hayar, S.; Traboulssi, M.; Alyamani, O.A.; Faour, W.H.; ElMakhour, Y. Chemical Characterization and Cytotoxic Activity Evaluation of Lebanese Propolis. Biomed. Pharmacother. 2017, 95, 298–307. [Google Scholar] [CrossRef]
- Akbar Boojar, M.M. An Overview of the Cellular Mechanisms of Flavonoids Radioprotective Effects. Adv. Pharm. Bull. 2020, 10, 13. [Google Scholar] [CrossRef]
- Tavsan, Z.; Kayali, H.A. Flavonoids Showed Anticancer Effects on the Ovarian Cancer Cells: Involvement of Reactive Oxygen Species, Apoptosis, Cell Cycle and Invasion. Biomed. Pharmacother. 2019, 116, 109004. [Google Scholar] [CrossRef]
- Desta, T.; Graves, D.T. Fibroblast Apoptosis Induced by Porphyromonas Gingivalis Is Stimulated by a Gingipain and Caspase-Independent Pathway That Involves Apoptosis-Inducing Factor. Cell Microbiol. 2007, 9, 2667–2675. [Google Scholar] [CrossRef]
- Liu, J.; Tang, X.; Li, C.; Pan, C.; Li, Q.; Geng, F.; Pan, Y. Porphyromonas Gingivalis Promotes the Cell Cycle and Inflammatory Cytokine Production in Periodontal Ligament Fibroblasts. Arch. Oral Biol. 2015, 60, 1153–1161. [Google Scholar] [CrossRef]
- Calabrese, E.J. Hormetic Mechanisms. Crit. Rev. Toxicol. 2013, 43, 580–606. [Google Scholar] [CrossRef]
- Popova, M.; Giannopoulou, E.; Skalicka-Wózniak, K.; Graikou, K.; Widelski, J.; Bankova, V.; Kalofonos, H.; Sivolapenko, G.; Gaweł-Bȩben, K.; Antosiewicz, B.; et al. Characterization and Biological Evaluation of Propolis from Poland. Molecules 2017, 22, 1159. [Google Scholar] [CrossRef]
- Ozdal, T.; Sari-Kaplan, G.; Mutlu-Altundag, E.; Boyacioglu, D.; Capanoglu, E. Evaluation of Turkish Propolis for Its Chemical Composition, Antioxidant Capacity, Anti-Proliferative Effect on Several Human Breast Cancer Cell Lines and Proliferative Effect on Fibroblasts and Mouse Mesenchymal Stem Cell Line. J. Apic. Res. 2018, 57, 627–638. [Google Scholar] [CrossRef]
- Kasala, E.R.; Bodduluru, L.N.; Madana, R.M.; Athira, K.V.; Gogoi, R.; Barua, C.C. Chemopreventive and Therapeutic Potential of Chrysin in Cancer: Mechanistic Perspectives. Toxicol. Lett. 2015, 233, 214–225. [Google Scholar] [CrossRef]
- Moskot, M.; Jakóbkiewicz-Banecka, J.; Smolińska, E.; Piotrowska, E.; Węgrzyn, G.; Gabig-Cimińska, M. Effects of Flavonoids on Expression of Genes Involved in Cell Cycle Regulation and DNA Replication in Human Fibroblasts. Mol. Cell Biochem. 2015, 407, 97–109. [Google Scholar] [CrossRef]
- Murillo Torres, O.J.; Pardo Mora, D.P.; Garcia, O.T.; Buitrago, M.R. Evaluation of the Effect of Five Colombian Propolis Extracts on the Expression of Genes Associated with Cell Cycle and Inflammation in a Canine Osteosarcoma Cell Line. Pharmacogn. Res. 2023, 16, 172–182. [Google Scholar] [CrossRef]
- Woźniak, M.; Sip, A.; Mrówczyńska, L.; Broniarczyk, J.; Waśkiewicz, A.; Ratajczak, I. Biological Activity and Chemical Composition of Propolis from Various Regions of Poland. Molecules 2023, 28, 141. [Google Scholar] [CrossRef]
- Velásquez-Ladino, Y.; Quiñones, R.; Coy-Barrera, E. Chemical Profiling Combined with Multivariate Analysis of Unfractionated Kernel-Derived Extracts of Maize (Zea mays L.) Landraces from Central Colombia. Emir. J. Food Agric. 2016, 28, 713–724. [Google Scholar] [CrossRef]
- Meza, A.; Rojas, P.; Cely-Veloza, W.; Guerrero-Perilla, C.; Coy-Barrera, E. Variation of Isoflavone Content and DPPH• Scavenging Capacity of Phytohormone-Treated Seedlings after in Vitro Germination of Cape Broom (Genista Monspessulana). S. Afr. J. Bot. 2020, 130, 64–74. [Google Scholar] [CrossRef]
- Rampersad, S.N. Multiple Applications of Alamar Blue as an Indicator of Metabolic Function and Cellular Health in Cell Viability Bioassays. Sensors 2012, 12, 12347–12360. [Google Scholar] [CrossRef] [PubMed]
- Peraza-Labrador, A.; Buitrago, D.M.; Coy-Barrera, E.; Perdomo-Lara, S.J. Antiproliferative and Proapoptotic Effects of a Phenolic-Rich Extract from Lycium Barbarum Fruits on Human Papillomavirus (HPV) 16-Positive Head Cancer Cell Lines. Molecules 2022, 27, 3568. [Google Scholar] [CrossRef]
- Takahashi, H.; Sakakura, K.; Kawabata-Iwakawa, R.; Rokudai, S.; Toyoda, M.; Nishiyama, M.; Chikamatsu, K. Immunosuppressive Activity of Cancer-Associated Fibroblasts in Head and Neck Squamous Cell Carcinoma. Cancer Immunol. Immunother. 2015, 64, 1407–1417. [Google Scholar] [CrossRef] [PubMed]
Algeciras | Quebradon | Otás | Arcadia | Reference Values | |
---|---|---|---|---|---|
Moisture (%) | 2.8 ± 0.4 * | 2.1 ± 0.9 | 1.6 ± 06 | 1.7 ± 0.3 | <10% |
Melting point (°C) | 59–61 °C * | 59–62 °C * | 55–57 °C | 54–58 °C | 60–100 °C |
Ash (%) | 2.14 ± 0.5 | 2.19 ± 0.1 * | 1.98 ± 0.7 | 1.40 ± 0.6 | <5.0% |
Waxes (%) | 6.6 ± 0.7 | 7.8 ± 0.3 | 7.9 ± 0.8 | 17.9 ± 2.1 * | <40% |
Yield (%) | 39.5 ± 1.2 | 48.5 ± 1.7 * | 40.9 ± 1.1 | 32.4 ± 0.9 | - |
Peak | a rt (min) | RA b | m/z c ([M + H]+) | Molecular Formula d | Error (ppm) e | Name g | |||
---|---|---|---|---|---|---|---|---|---|
Propolis A | Propolis B | Propolis C | Propolis D | ||||||
1 | 7.3 | 7.1 | 0.2 | 2.7 | 1.4 | 300.9972 | C14H6O8 | 4.14 | ellagic acid |
2 | 7.5 | 1.9 | 0.0 | 1.0 | 0.0 | 163.0388 | C9H8O3 | 4.42 | p-coumaric acid |
3 | 8.1 | 5.9 | 0.1 | 1.2 | 1.7 | 193.0511 | C10H10O4 | −5.26 | ferulic acid |
4 | 9.0 | 7.6 | 0.3 | 2.9 | 1.0 | 207.0649 | C11H12O4 | 4.03 | 3,4-O-dimethylcaffeic acid |
5 | 9.8 | 0.0 | 0.5 | 0.1 | 0.0 | 315.0512 | C16H12O7 | −2.29 | quercetin-O-methyl-ether |
6 | 10.1 | 2.3 | 0.9 | 1.8 | 2.5 | 271.0613 | C15H12O5 | −2.40 | pinobanksine |
7 | 10.3 | 0.0 | 0.4 | 0.0 | 0.0 | 283.0959 | C17H16O4 | 4.01 | pinocembrin-O-methyl-ether |
8 | 10.5 | 1.0 | 0.5 | 1.6 | 1.1 | 269.0462 | C15H10O5 | −4.46 | apigenine |
9 | 10.8 | 0.9 | 0.1 | 1.2 | 4.7 | 285.0391 | C15H10O6 | 2.86 | kaempferol |
10 | 12.7 | 0.0 | 16.8 | 3.9 | 11.7 | 267.0648 | C16H12O4 | 3.50 | chrysin-O-methyl-ether |
11 | 13.8 | 0.9 | 0.4 | 1.4 | 4.1 | 315.0512 | C16H12O7 | −2.29 | rhamnetine |
12 | 14.4 | 4.8 | 8.3 | 6.2 | 9.0 | 269.0461 | C15H10O5 | −4.09 | galangine |
13 | 14.8 | 0.6 | 0.6 | 1.1 | 1.0 | 283.0614 | C16H12O5 | −2.65 | acacetine |
14 | 15.2 | 0.0 | 1.3 | 4.8 | 8.3 | 329.0672 | C17H14O7 | −3.25 | quercetin-O-dimethyl-ether |
15 | 15.4 | 55.5 | 59.8 | 55.9 | 30.4 | 313.0703 | C17H14O6 | 2.92 | chrysoeriol-O-methyl-ether |
16 | 15.7 | 1.5 | 1.4 | 2.8 | 4.3 | 327.0855 | C18H16O6 | 4.17 | pinobanksin-3-O-propionate |
17 | 16.0 | 3.1 | 2.9 | 3.5 | 4.2 | 373.1643 | C21H26O6 | 2.18 | pinobanksin-3-O-pentanoate |
18 | 16.3 | 1.9 | 1.8 | 1.3 | 2.1 | 341.1033 | C19H18O6 | −2.30 | pinobanksin-3-O-butyrate |
19 | 17.5 | 5.2 | 3.7 | 6.6 | 12.6 | 353.1015 | C20H18O6 | 2.87 | pinobansin-3-O-pentenoate |
Propolis (EEP) | TPC (mg GAE/g) | TFC (mg QE/g) | DPPH (µmol/g) |
---|---|---|---|
Algeciras | 221 ± 4.1 | 5.1 ± 0.26 | 23.4 ± 4.2 |
Quebradon | 255.9 ± 9.2 | 31.2 ± 0.91 | 37.42 ± 1.2 * |
Otás | 234.4 ± 4.3 | 5.8 ± 0.71 | 29.53 ± 3.0 |
Arcadia | 543.1 ± 8.4 * | 32.5 ± 1.18 | 38.19 ± 0.7 * |
BTH | -- | -- | 32.1 ± 2.4 |
Q | -- | 61 ± 0.11 | -- |
Propolis (EEP) | IC50 Range (mg/mL) | IC50 (mg/mL) | R Square | SME |
---|---|---|---|---|
Algeciras | 0.745–1.011 | 0.8681 | 0.98 | ±1.5 |
Quebradon | 1.863–4.307 | 2.833 * | 0.92 | ±2.3 |
Otás | 0.7558–3.830 | 1.071 | 0.95 | ±1.4 |
Arcadia | 2.579–7.130 | 4.288 * | 0.94 | ±1.4 |
Propolis (EEP) | IC50 Range (mg/mL) | IC50 (mg/mL) | R Square | SME |
---|---|---|---|---|
Algeciras | 0.4955–0.7175 | 0.5959 | 0.99 | ±1.17 |
Quebradon | 1.484–4.480 | 2.578 * | 0.94 | ±8.0 |
Otás | 0.1688–0.6090 | 0.3206 | 0.92 | ±4.16 |
Arcadia | 2.415–7.809 | 4.341 * | 0.99 | ±11.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buitrago, D.M.; Perdomo, S.J.; Silva, F.A.; Cely-Veloza, W.; Lafaurie, G.I. Physicochemical Characterization, Antioxidant, and Proliferative Activity of Colombian Propolis Extracts: A Comparative Study. Molecules 2024, 29, 1643. https://doi.org/10.3390/molecules29071643
Buitrago DM, Perdomo SJ, Silva FA, Cely-Veloza W, Lafaurie GI. Physicochemical Characterization, Antioxidant, and Proliferative Activity of Colombian Propolis Extracts: A Comparative Study. Molecules. 2024; 29(7):1643. https://doi.org/10.3390/molecules29071643
Chicago/Turabian StyleBuitrago, Diana Marcela, Sandra J. Perdomo, Francisco Arturo Silva, Willy Cely-Veloza, and Gloria Inés Lafaurie. 2024. "Physicochemical Characterization, Antioxidant, and Proliferative Activity of Colombian Propolis Extracts: A Comparative Study" Molecules 29, no. 7: 1643. https://doi.org/10.3390/molecules29071643
APA StyleBuitrago, D. M., Perdomo, S. J., Silva, F. A., Cely-Veloza, W., & Lafaurie, G. I. (2024). Physicochemical Characterization, Antioxidant, and Proliferative Activity of Colombian Propolis Extracts: A Comparative Study. Molecules, 29(7), 1643. https://doi.org/10.3390/molecules29071643