Studies of the Functionalized α-Hydroxy-p-Quinone Imine Derivatives Stabilized by Intramolecular Hydrogen Bond
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Structural Studies of Quinone Derivatives 3a–g
2.1.1. Synthesis of Quinone Derivatives 3a–g
2.1.2. Single-Crystal X-ray Analysis of Quinone Derivative 3a
2.1.3. 1H NMR Spectroscopy Analysis of Quinone Derivatives 3a–g
2.1.4. Electronic Absorption
2.2. Electrochemistry/Redox Chemistry Studies of Quinone Derivatives 1a and 3a
2.2.1. Open-Circuit Potential Measurements
2.2.2. Cyclic Voltammetry Measurements
2.2.3. Raman Measurements
2.2.4. Scanning Electron Microscopy Measurements
3. Materials and Methods
3.1. Materials and Instrumentation
3.2. X-ray Crystallography Analysis
3.3. Cathode Material Preparation
3.4. Cyclic Voltammetry
3.5. Raman Spectroscopy
3.6. Scanning Electron Microscopy
3.7. Synthesis of Quinone Derivatives 1a,b and 3a–g
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cao, P.; Bracun, L.; Yamagata, A.; Christianson, B.M.; Negami, T.; Zou, B.; Terada, T.; Canniffe, D.P.; Shirouzu, M.; Li, M.; et al. Structural basis for the assembly and quinone transport mechanisms of the dimeric photosynthetic RC–LH1 supercomplex. Nat. Commun. 2022, 13, 1977. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Fernández, J.; Kaszuba, K.; Minhas, G.S.; Baradaran, R.; Tambalo, M.; Gallagher, D.T.; Sazanov, L.A. Key role of quinone in the mechanism of respiratory complex I. Nat. Commun. 2020, 11, 4135. [Google Scholar] [CrossRef] [PubMed]
- Bolton, J.L.; Dunlap, T. Formation and Biological Targets of Quinones: Cytotoxic versus Cytoprotective Effects. Chem. Res. Toxicol. 2017, 30, 13–37. [Google Scholar] [CrossRef]
- Mansha, M.; Anam, A.; Khan, S.A.; Alzahrani, A.S.; Khan, M.; Ahmad, A.; Arshad, M.; Ali, S. Recent Developments on Electroactive Organic Electrolytes for Non-Aqueous Redox Flow Batteries: Current Status, Challenges, and Prospects. Chem. Rec. 2023, 24, e202300233. [Google Scholar] [CrossRef] [PubMed]
- Go, C.Y.; Shin, J.; Choi, M.K.; Jung, I.H.; Kim, K.C. Switchable Design of Redox-Enhanced Nonaromatic Quinones Enabled by Conjugation Recovery. Adv. Mater. 2023, 2311155. [Google Scholar] [CrossRef] [PubMed]
- Simon, P.; Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 2020, 19, 1151–1163. [Google Scholar] [CrossRef] [PubMed]
- Shea, J.J.; Luo, C. Organic Electrode Materials for Metal Ion Batteries. ACS Appl. Mater. Interfaces 2020, 12, 5361–5380. [Google Scholar] [CrossRef]
- Jethwa, R.B.; Hey, D.; Kerber, R.N.; Bond, A.D.; Wright, D.S.; Grey, C.P. Exploring the Landscape of Heterocyclic Quinones for Redox Flow Batteries. ACS Appl. Energy Mater. 2023, 7, 414–426. [Google Scholar] [CrossRef] [PubMed]
- Blanc, L.E.; Kundu, D.; Nazar, L.F. Scientific Challenges for the Implementation of Zn-Ion Batteries. Joule 2020, 4, 771–799. [Google Scholar] [CrossRef]
- Tsao, Y.; Lee, M.; Miller, E.C.; Gao, G.; Park, J.; Chen, S.; Katsumata, T.; Tran, H.; Wang, L.-W.; Toney, M.F.; et al. Designing a Quinone-Based Redox Mediator to Facilitate Li2S Oxidation in Li-S Batteries. Joule 2019, 3, 872–884. [Google Scholar] [CrossRef]
- Sieuw, L.; Jouhara, A.; Quarez, É.; Auger, C.; Gohy, J.-F.; Poizot, P.; Vlad, A. A H-bond stabilized quinone electrode material for Li–organic batteries: The strength of weak bonds. Chem. Sci. 2018, 10, 418–426. [Google Scholar] [CrossRef] [PubMed]
- Sugumaran, M. Reactivities of Quinone Methides versus o-Quinones in Catecholamine Metabolism and Eumelanin Biosynthesis. Int. J. Mol. Sci. 2016, 17, 1576. [Google Scholar] [CrossRef] [PubMed]
- Poddel’Sky, A.I.; Druzhkov, N.O.; Fukin, G.K.; Cherkasov, V.K.; Abakumov, G.A. Bifunctional iminopyridino-catechol and its o-quinone: Synthesis and investigation of coordination abilities. Polyhedron 2017, 124, 41–50. [Google Scholar] [CrossRef]
- Astaf’eva, T.V.; Arsenyev, M.V.; Rumyantcev, R.V.; Fukin, G.K.; Cherkasov, V.K.; Poddel’sky, A.I. Imine-Based Catechols and o-Benzoquinones: Synthesis, Structure, and Features of Redox Behavior. ACS Omega 2020, 5, 22179–22191. [Google Scholar] [CrossRef]
- Ribeiro, R.C.B.; Ferreira, P.G.; Borges, A.D.A.; Forezi, L.D.S.M.; Silva, F.D.C.D.; Ferreira, V.F. 1,2-Naphthoquinone-4-sulfonic acid salts in organic synthesis. Beilstein J. Org. Chem. 2022, 18, 53–69. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, Q.; Yang, P.; Chen, H.; Zhang, Q.; Li, S.; Tang, Y.; Zhang, S. Molecular and Morphological Engineering of Organic Electrode Materials for Electrochemical Energy Storage. Electrochem. Energy Rev. 2022, 5, 1–67. [Google Scholar] [CrossRef]
- Batenko, N.; Belyakov, S.; Kiselovs, G.; Valters, R. Synthesis of 6,7-dichloropyrido[1,2-a]benzimidazole-8,9-dione and its analogues and their reactions with nucleophiles. Tetrahedron Lett. 2013, 54, 4697–4699. [Google Scholar] [CrossRef]
- Gaile, A.; Belyakov, S.; Turovska, B.; Batenko, N. Synthesis of Asymmetric Coupled Polymethines Based on a 7-Chloropyrido[1,2-a]benzimidazole-8,9-dione Core. J. Org. Chem. 2022, 87, 2345–2355. [Google Scholar] [CrossRef] [PubMed]
- Gaile, A.; Belyakov, S.; Rjabovs, V.; Mihailovs, I.; Turovska, B.; Batenko, N. Investigation of Weak Noncovalent Interactions Directed by the Amino Substituent of Pyrido- and Pyrimido-[1,2-a]benzimidazole-8,9-diones. ACS Omega 2023, 8, 40960–40971. [Google Scholar] [CrossRef]
- Yamada, T.; Yamashita, T.; Nakamura, M.; Shimamura, H.; Yamaguchi, A.; Takaya, M. Synthesis and Hemostatic Activity of 1, 2-Naphthoquinones. Yakugaku Zasshi 1980, 100, 799–806. [Google Scholar] [CrossRef]
- Carroll, F.I.; Miller, H.W.; Meck, R. Thiosemicarbazone and amidinohydrazone derivatives of some 1,4-naphthoquinones. J. Chem. Soc. C Org. 1970, 3, 1993–1996. [Google Scholar] [CrossRef]
- Dudley, K.H.; Miller, H.W.; Schneider, P.W.; McKee, R.L. Potential naphthoquinone antimalarials. 2-Acylhydrazino-1,4-naphthoquinones and related compounds. J. Org. Chem. 1969, 34, 2750–2755. [Google Scholar] [CrossRef]
- Smith, M.B.; March, J. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 6th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006; Volume 9780471720. [Google Scholar]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.J.; Thomas, S.P.; Shi, M.W.; Jayatilaka, D.; Spackman, M.A. Energy frameworks: Insights into interaction anisotropy and the mechanical properties of molecular crystals. Chem. Commun. 2014, 51, 3735–3738. [Google Scholar] [CrossRef] [PubMed]
- Catalán, J. Toward a Generalized Treatment of the Solvent Effect Based on Four Empirical Scales: Dipolarity (SdP, a New Scale), Polarizability (SP), Acidity (SA), and Basicity (SB) of the Medium. J. Phys. Chem. B 2009, 113, 5951–5960. [Google Scholar] [CrossRef] [PubMed]
- Shapet’Ko, N.N.; Shigorin, D.N. NMR study of intramolecular hydrogen bond protons in quinoid structures. J. Struct. Chem. 1968, 8, 474–476. [Google Scholar] [CrossRef]
- Kamlet, M.J.; Taft, R.W. The solvatochromic comparison method. I. The .beta.-scale of solvent hydrogen-bond acceptor (HBA) basicities. J. Am. Chem. Soc. 1976, 98, 377–383. [Google Scholar] [CrossRef]
- Hansch, C.; Leo, A.; Taft, R.W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 1991, 91, 165–195. [Google Scholar] [CrossRef]
- Su, X.; Lõkov, M.; Kütt, A.; Leito, I.; Aprahamian, I. Unusual para-substituent effects on the intramolecular hydrogen-bond in hydrazone-based switches. Chem. Commun. 2012, 48, 10490–10492. [Google Scholar] [CrossRef]
- Su, X.; Aprahamian, I. Hydrazone-based switches, metallo-assemblies and sensors. Chem. Soc. Rev. 2014, 43, 1963–1981. [Google Scholar] [CrossRef]
- Johnson, J.E.; Morales, N.M.; Gorczyca, A.M.; Dolliver, D.D.; McAllister, M.A. Mechanisms of Acid-Catalyzed Z/E Isomerization of Imines. J. Org. Chem. 2001, 66, 7979–7985. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Aprahamian, I. Switching Around Two Axles: Controlling the Configuration and Conformation of a Hydrazone-Based Switch. Org. Lett. 2010, 13, 30–33. [Google Scholar] [CrossRef] [PubMed]
- Ryabchun, A.; Li, Q.; Lancia, F.; Aprahamian, I.; Katsonis, N. Shape-Persistent Actuators from Hydrazone Photoswitches. J. Am. Chem. Soc. 2019, 141, 1196–1200. [Google Scholar] [CrossRef]
- Kim, J.; Ling, J.; Lai, Y.; Milner, P.J. Redox-Active Organic Materials: From Energy Storage to Redox Catalysis. ACS Mater. Au 2024. [Google Scholar] [CrossRef]
- Wang, M.; Dong, X.; Escobar, I.C.; Cheng, Y.-T. Lithium Ion Battery Electrodes Made Using Dimethyl Sulfoxide (DMSO)—A Green Solvent. ACS Sustain. Chem. Eng. 2020, 8, 11046–11051. [Google Scholar] [CrossRef]
- Laurence, C.; Legros, J.; Chantzis, A.; Planchat, A.; Jacquemin, D. A Database of Dispersion-Induction DI, Electrostatic ES, and Hydrogen Bonding α1 and β1 Solvent Parameters and Some Applications to the Multiparameter Correlation Analysis of Solvent Effects. J. Phys. Chem. B 2015, 119, 3174–3184. [Google Scholar] [CrossRef]
- Matsui, M. Polymethine Dyes. In Progress in the Science of Functional Dyes; Ooyama, Y., Yagi, S., Eds.; Springer: Singapore, Singapore, 2021; pp. 3–19. [Google Scholar] [CrossRef]
- Miran, M.S.; Kinoshita, H.; Yasuda, T.; Susan, A.B.H.; Watanabe, M. Hydrogen bonds in protic ionic liquids and their correlation with physicochemical properties. Chem. Commun. 2011, 47, 12676–12678. [Google Scholar] [CrossRef] [PubMed]
- Almeida, R.G.; Valença, W.O.; Rosa, L.G.; de Simone, C.A.; de Castro, S.L.; Barbosa, J.M.C.; Pinheiro, D.P.; Paier, C.R.K.; de Carvalho, G.G.C.; Pessoa, C.; et al. Synthesis of quinone imine and sulphur-containing compounds with antitumor and trypanocidal activities: Redox and biological implications. RSC Med. Chem. 2020, 11, 1145–1160. [Google Scholar] [CrossRef] [PubMed]
- Klopčič, I.; Dolenc, M.S. Chemicals and Drugs Forming Reactive Quinone and Quinone Imine Metabolites. Chem. Res. Toxicol. 2018, 32, 1–34. [Google Scholar] [CrossRef]
- Batenko, N.; Kricka, A.; Belyakov, S.; Turovska, B.; Valters, R. A novel method for the synthesis of benzimidazole-based 1,4-quinone derivatives. Tetrahedron Lett. 2015, 57, 292–295. [Google Scholar] [CrossRef]
- Smith, E.; Dent, G. Modern Raman Spectroscopy—A Practical Approach; John Wiley & Sons: Chichester, UK, 2004. [Google Scholar] [CrossRef]
- Kudin, K.N.; Ozbas, B.; Schniepp, H.C.; Prud’Homme, R.K.; Aksay, I.A.; Car, R. Raman Spectra of Graphite Oxide and Functionalized Graphene Sheets. Nano Lett. 2007, 8, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, M.; Ganesan, M.; Ambalavanan, S. An in situ generated carbon as integrated conductive additive for hierarchical negative plate of lead-acid battery. J. Power Sources 2014, 251, 20–29. [Google Scholar] [CrossRef]
- Gottlieb, H.E.; Kotlyar, V.; Nudelman, A. NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. J. Org. Chem. 1997, 62, 7512–7515. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Bourhis, L.J.; Dolomanov, O.V.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment–Olex2dissected. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 59–75. [Google Scholar] [CrossRef]
- Macrae, C.F.; Sovago, I.; Cottrell, S.J.; Galek, P.T.A.; McCabe, P.; Pidcock, E.; Platings, M.; Shields, G.P.; Stevens, J.S.; Towler, M.; et al. Mercury 4.0: From visualization to analysis, design and prediction. J. Appl. Crystallogr. 2020, 53, 226–235. [Google Scholar] [CrossRef]
Crystal Parameter | Compound 3a |
---|---|
Empirical formula | C18H11ClN4O3 |
Calculated density (g/cm3) | 1.556 |
Formula weight | 366.766 |
Color | Red |
Size/mm3 | 0.18 × 0.03 × 0.01 |
Temperature/K | 150.0 (1) |
Crystal system | monoclinic |
Space group | P21/n |
a/Å | 5.65994 (5) |
b/Å | 14.90948 (19) |
c/Å | 18.5815 (2) |
α/° | 90 |
β/° | 93.1950 (9) |
γ/° | 90 |
V/Å3 | 1565.60 (3) |
Wavelength/Å | 1.54184 |
Radiation type | Cu Kα |
Absorption coefficient (mm−1) | 2.419 |
θmin/° | 3.8 |
2θmax/° | 155.0 |
Measured reflections | 17875 |
Number of independent reflections | 3322 |
Reflections with I ≥ 2σ(I) | 3089 |
Rint | 0.0327 |
Number of refined parameters | 243 |
Restraints | 0 |
Largest peak | 0.3476 |
Deepest hole | −0.3143 |
Goodness of fit | 1.0362 |
wR2(all data) | 0.0962 |
wR2 | 0.0945 |
R1(all data) | 0.0367 |
R1 | 0.0346 |
CCDC deposition number | 2238663 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaile, A.; Belyakov, S.; Dūrena, R.; Griščenko, Ņ.; Zukuls, A.; Batenko, N. Studies of the Functionalized α-Hydroxy-p-Quinone Imine Derivatives Stabilized by Intramolecular Hydrogen Bond. Molecules 2024, 29, 1613. https://doi.org/10.3390/molecules29071613
Gaile A, Belyakov S, Dūrena R, Griščenko Ņ, Zukuls A, Batenko N. Studies of the Functionalized α-Hydroxy-p-Quinone Imine Derivatives Stabilized by Intramolecular Hydrogen Bond. Molecules. 2024; 29(7):1613. https://doi.org/10.3390/molecules29071613
Chicago/Turabian StyleGaile, Anastasija, Sergey Belyakov, Ramona Dūrena, Ņikita Griščenko, Anzelms Zukuls, and Nelli Batenko. 2024. "Studies of the Functionalized α-Hydroxy-p-Quinone Imine Derivatives Stabilized by Intramolecular Hydrogen Bond" Molecules 29, no. 7: 1613. https://doi.org/10.3390/molecules29071613
APA StyleGaile, A., Belyakov, S., Dūrena, R., Griščenko, Ņ., Zukuls, A., & Batenko, N. (2024). Studies of the Functionalized α-Hydroxy-p-Quinone Imine Derivatives Stabilized by Intramolecular Hydrogen Bond. Molecules, 29(7), 1613. https://doi.org/10.3390/molecules29071613