Advances in Small Molecular Agents against Oral Cancer
Abstract
1. Introduction
2. Polyphenols
3. Isothiocyanates
4. Quinones
5. Statins
6. Terpenoids and Steroids
7. Other Compounds
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Petrariu, O.A.; Barbu, I.C.; Niculescu, A.G.; Constantin, M.; Grigore, G.A.; Cristian, R.E.; Mihaescu, G.; Vrancianu, C.O. Role of probiotics in managing various human diseases, from oral pathology to cancer and gastrointestinal diseases. Front. Microbiol. 2023, 14, 1296447. [Google Scholar] [CrossRef] [PubMed]
- Badawy, M.; Balaha, H.M.; Maklad, A.S.; Almars, A.M.; Elhosseini, M.A. Revolutionizing Oral Cancer Detection: An Approach Using Aquila and Gorilla Algorithms Optimized Transfer Learning-Based CNNs. Biomimetics 2023, 8, 499. [Google Scholar] [CrossRef] [PubMed]
- Sansare, K.; Jadhav, T.S.; Venkatraman, S.; Vahanwala, S. Oral cancer in pregnancy: A systematic review. J. Stomatol. Oral Maxillofac. Surg. 2023, 124, 101647. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, M.; Yoshida, M.; Kanamori, D.; Kobayashi, Y.; Nakajima, Y.; Murai, M.; Usui, M. Changes in oral health status in terminal cancer patients during the last weeks of life. Ann. Palliat. Med. 2023, 13, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Talukdar, A., Jr.; Barman, I., Jr.; Roy, D.; Das, A.; Mahanta, P., Sr. Oral Cancer Hazards Related to Tobacco Use and a Transtheoretical Model Assessment of Preparedness of Individuals With Oral Potentially Malignant Disorders to Quit Tobacco Use. Cureus 2023, 15, e48125. [Google Scholar] [CrossRef] [PubMed]
- Radaic, A.; Kamarajan, P.; Cho, A.; Wang, S.; Hung, G.C.; Najarzadegan, F.; Wong, D.T.; Ton-That, H.; Wang, C.Y.; Kapila, Y.L. Biological biomarkers of oral cancer. Periodontol. 2000 2023. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.R.S.; Ferraz, D.L.F.; de Oliveira, C.R.G.; Evangelista, K.; Silva, M.A.G.; Silva, F.P.Y.; Silva, B.S.F. Risk and prevalence of oral cancer in patients with different types of lupus erythematosus: A systematic review and meta-analysis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2023, 136, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Tran, Q.; Maddineni, S.; Arnaud, E.H.; Divi, V.; Megwalu, U.C.; Topf, M.C.; Sunwoo, J.B. Oral cavity cancer in young, non-smoking, and non-drinking patients: A contemporary review. Crit. Rev. Oncol. Hematol. 2023, 190, 104112. [Google Scholar] [CrossRef] [PubMed]
- Auguste, A.; Deloumeaux, J.; Joachim, C.; Gaete, S.; Michineau, L.; Herrmann-Storck, C.; Duflo, S.; Luce, D. Joint effect of tobacco, alcohol, and oral HPV infection on head and neck cancer risk in the French West Indies. Cancer Med. 2020, 9, 6854–6863. [Google Scholar] [CrossRef]
- Lissoni, A.; Agliardi, E.; Peri, A.; Marchioni, R.; Abati, S. Oral microbiome and mucosal trauma as risk factors for oral cancer: Beyond alcohol and tobacco. A literature review. J. Biol. Regul. Homeost. Agents 2020, 34 (Suppl. S3), 11–18. [Google Scholar]
- Sujatha, G.; Veeraraghavan, V.P.; Alamoudi, A.; Bahammam, M.A.; Bahammam, S.A.; Alhazmi, Y.A.; Alharbi, H.S.; Alzahrani, K.J.; Al-Ghamdi, M.S.; Alzahrani, F.M.; et al. Role of Toothbrushes as Gene Expression Profiling Tool for Oral Cancer Screening in Tobacco and Alcohol Users. Int. J. Environ. Res. Public Health 2022, 19, 8052. [Google Scholar] [CrossRef] [PubMed]
- Mosaddad, S.A.; Mahootchi, P.; Rastegar, Z.; Abbasi, B.; Alam, M.; Abbasi, K.; Fani-Hanifeh, S.; Amookhteh, S.; Sadeghi, S.; Soufdoost, R.S.; et al. Photodynamic Therapy in Oral Cancer: A Narrative Review. Photobiomodul Photomed. Laser Surg. 2023, 41, 248–264. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas, N. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 2015, 517, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Farah, C.S. Molecular, genomic and mutational landscape of oral leukoplakia. Oral Dis. 2021, 27, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Farah, C.S.; Jessri, M.; Bennett, N.C.; Dalley, A.J.; Shearston, K.D.; Fox, S.A. Exome sequencing of oral leukoplakia and oral squamous cell carcinoma implicates DNA damage repair gene defects in malignant transformation. Oral Oncol. 2019, 96, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Masse, R.; Duvernay, J.; Korbi, S.; Majoufre, C.; Schlund, M. Oral carcinoma cuniculatum, a rare variant of squamous cell carcinoma. J. Stomatol. Oral Maxillofac. Surg. 2023, 125, 101729. [Google Scholar] [CrossRef]
- Pangarkar, M.; Wagh, U.; Pathak, A. Autophagy indicators in oral squamous cell carcinoma. Pathology 2024, 56, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yuan, Z.; Lu, M.; Zhang, Y.; Jin, L.; Ye, W. Poor oral health is associated with an increased risk of esophageal squamous cell carcinoma—A population-based case-control study in China. Int. J. Cancer 2017, 140, 626–635. [Google Scholar] [CrossRef]
- Fleshner, N.E.; Alibhai, S.M.H.; Connelly, K.A.; Martins, I.; Eigl, B.J.; Lukka, H.; Aprikian, A. Adherence to oral hormonal therapy in advanced prostate cancer: A scoping review. Ther. Adv. Med. Oncol. 2023, 15, 17588359231152845. [Google Scholar] [CrossRef]
- Liao, Y.H.; Chou, W.Y.; Chang, C.W.; Lin, M.C.; Wang, C.P.; Lou, P.J.; Chen, T.C. Chemoprevention of oral cancer: A review and future perspectives. Head Neck 2023, 45, 1045–1059. [Google Scholar] [CrossRef]
- Shigeishi, H. Association between human papillomavirus and oral cancer: A literature review. Int. J. Clin. Oncol. 2023, 28, 982–989. [Google Scholar] [CrossRef]
- Mosaddad, S.A.; Namanloo, R.A.; Aghili, S.S.; Maskani, P.; Alam, M.; Abbasi, K.; Nouri, F.; Tahmasebi, E.; Yazdanian, M.; Tebyaniyan, H. Photodynamic therapy in oral cancer: A review of clinical studies. Med. Oncol. 2023, 40, 91. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Gao, Y.; Zhu, W.; Bai, X.-g.; Qi, J. Advances in molecular agents targeting toll-like receptor 4 signaling pathways for potential treatment of sepsis. Eur. J. Med. Chem. 2024, 268, 116300. [Google Scholar] [CrossRef] [PubMed]
- Kenison, J.E.; Wang, Z.; Yang, K.; Snyder, M.; Quintana, F.J.; Sherr, D.H. The aryl hydrocarbon receptor suppresses immunity to oral squamous cell carcinoma through immune checkpoint regulation. Proc. Natl. Acad. Sci. USA 2021, 118, e2012692118. [Google Scholar] [CrossRef]
- Thiruvengadam, R.; Kim, J.H. Therapeutic strategy for oncovirus-mediated oral cancer: A comprehensive review. Biomed. Pharmacother. 2023, 165, 115035. [Google Scholar] [CrossRef] [PubMed]
- Antoniraj, M.G.; Devi, K.P.; Berindan-Neagoe, I.; Nabavi, S.F.; Khayat Kashani, H.R.; Aghaabdollahian, S.; Afkhami, F.; Jeandet, P.; Lorigooini, Z.; Khayatkashani, M.; et al. Oral microbiota in cancer: Could the bad guy turn good with application of polyphenols? Expert. Rev. Mol. Med. 2022, 25, e1. [Google Scholar] [CrossRef] [PubMed]
- Cueva, C.; Silva, M.; Pinillos, I.; Bartolome, B.; Moreno-Arribas, M.V. Interplay between Dietary Polyphenols and Oral and Gut Microbiota in the Development of Colorectal Cancer. Nutrients 2020, 12, 625. [Google Scholar] [CrossRef] [PubMed]
- Sheng, H.; Ogawa, T.; Niwano, Y.; Sasaki, K.; Tachibana, K. Effects of polyphenols on doxorubicin-induced oral keratinocyte cytotoxicity and anticancer potency against oral cancer cells. J. Oral Pathol. Med. 2018, 47, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Adhami, V.M.; Siddiqui, I.A.; Ahmad, N.; Gupta, S.; Mukhtar, H. Oral consumption of green tea polyphenols inhibits insulin-like growth factor-I-induced signaling in an autochthonous mouse model of prostate cancer. Cancer Res. 2004, 64, 8715–8722. [Google Scholar] [CrossRef]
- Kapoor, V.; Aggarwal, S.; Das, S.N. 6-Gingerol Mediates its Anti Tumor Activities in Human Oral and Cervical Cancer Cell Lines through Apoptosis and Cell Cycle Arrest. Phytother. Res. 2016, 30, 588–595. [Google Scholar] [CrossRef]
- Liu, Y.T.; Ho, H.Y.; Lin, C.C.; Chuang, Y.C.; Lo, Y.S.; Hsieh, M.J.; Chen, M.K. Platyphyllenone Induces Autophagy and Apoptosis by Modulating the AKT and JNK Mitogen-Activated Protein Kinase Pathways in Oral Cancer Cells. Int. J. Mol. Sci. 2021, 22, 4211. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, M.; Ogasawara, Y.; Hayashi, H.; Inoue, K.; Sakashita, H. Resveratrol Inhibits Proliferation and Induces Autophagy by Blocking SREBP1 Expression in Oral Cancer Cells. Molecules 2022, 27, 8250. [Google Scholar] [CrossRef] [PubMed]
- Angellotti, G.; Di Prima, G.; Belfiore, E.; Campisi, G.; De Caro, V. Chemopreventive and Anticancer Role of Resveratrol against Oral Squamous Cell Carcinoma. Pharmaceutics 2023, 15, 275. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Yin, X.; Ma, D.; Su, Z. Anticancer activity of Phloretin against the human oral cancer cells is due to G0/G1 cell cycle arrest and ROS mediated cell death. J. BUON 2020, 25, 344–349. [Google Scholar] [PubMed]
- Chen, Y.J.; Kuo, C.C.; Ting, L.L.; Lu, L.S.; Lu, Y.C.; Cheng, A.J.; Lin, Y.T.; Chen, C.H.; Tsai, J.T.; Chiou, J.F. Piperlongumine inhibits cancer stem cell properties and regulates multiple malignant phenotypes in oral cancer. Oncol. Lett. 2018, 15, 1789–1798. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Yoo, H.; Kim, J.A.; Lee, S.; Jee, J.G.; Lee, M.Y.; Lee, Y.M.; Bae, J.S. Barrier protective effects of piperlonguminine in LPS-induced inflammation in vitro and in vivo. Food Chem. Toxicol. 2013, 58, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Sharma, N.K.; Mishra, N.; Mahajan, A.; Krishnan, A.; Rajpoot, R.; Kumar, J.A.; Pandey, A. Effects of curcumin on oral cancer at molecular level: A systematic review. Natl. J. Maxillofac. Surg. 2023, 14, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Chien, M.-H.; Shih, P.-C.; Ding, Y.-F.; Chen, L.-H.; Hsieh, F.-K.; Tsai, M.-Y.; Li, P.-Y.; Lin, C.-W.; Yang, S.-F. Curcumin analog, GO-Y078, induces HO-1 transactivation-mediated apoptotic cell death of oral cancer cells by triggering MAPK pathways and AP-1 DNA-binding activity. Expert. Opin. Ther. Targets 2022, 26, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Semlali, A.; Contant, C.; Al-Otaibi, B.; Al-Jammaz, I.; Chandad, F. The curcumin analog (PAC) suppressed cell survival and induced apoptosis and autophagy in oral cancer cells. Sci. Rep. 2021, 11, 11701. [Google Scholar] [CrossRef]
- Yu, H.J.; Shin, J.A.; Yang, I.H.; Won, D.H.; Ahn, C.H.; Kwon, H.J.; Lee, J.S.; Cho, N.P.; Kim, E.C.; Yoon, H.J.; et al. Apoptosis induced by caffeic acid phenethyl ester in human oral cancer cell lines: Involvement of Puma and Bax activation. Arch. Oral Biol. 2017, 84, 94–99. [Google Scholar] [CrossRef]
- Yesil-Celiktas, O.; Sevimli, C.; Bedir, E.; Vardar-Sukan, F. Inhibitory effects of rosemary extracts, carnosic acid and rosmarinic acid on the growth of various human cancer cell lines. Plant Foods Hum. Nutr. 2010, 65, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.Y.; Jim, W.T.; Su, L.C.; Chung, C.J.; Lin, C.Y.; Huo, C.; Tseng, J.C.; Huang, S.H.; Lai, C.J.; Chen, B.C.; et al. Caffeic Acid phenethyl ester is a potential therapeutic agent for oral cancer. Int. J. Mol. Sci. 2015, 16, 10748–10766. [Google Scholar] [CrossRef] [PubMed]
- Semlali, A.; Beji, S.; Ajala, I.; Rouabhia, M. Effects of tetrahydrocannabinols on human oral cancer cell proliferation, apoptosis, autophagy, oxidative stress, and DNA damage. Arch. Oral Biol. 2021, 129, 105200. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.-P.; Lin, C.-W.; Chen, M.-K.; Yang, S.-F.; Chiou, H.-L.; Hsieh, M.-J. Pterostilbene induce autophagy on human oral cancer cells through modulation of Akt and mitogen-activated protein kinase pathway. Oral Oncol. 2015, 51, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.T.; Huang, L.J.; Wu, T.S.; Lin, H.Y.; Morris-Natschke, S.L.; Lee, K.H.; Kuo, S.C. Synthesis and antitumor activity of bis(hydroxymethyl)propionate analogs of pterostilbene in cisplatin-resistant human oral cancer cells. Bioorg. Med. Chem. 2018, 26, 3909–3916. [Google Scholar] [CrossRef]
- Eltahir, S.; Ahmad, A. Flavonoids on the Frontline against Cancer Metastasis. Cancers 2023, 15, 4139. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, P.; Mishra, K.P. Role of Plant-Derived Flavonoids in Cancer Treatment. Nutr. Cancer 2023, 75, 430–449. [Google Scholar] [CrossRef]
- Gu, Y.; Zheng, Q.; Fan, G.; Liu, R. Advances in Anti-Cancer Activities of Flavonoids in Scutellariae radix: Perspectives on Mechanism. Int. J. Mol. Sci. 2022, 23, 11042. [Google Scholar] [CrossRef]
- Lee, R.H.; Shin, J.C.; Kim, K.H.; Choi, Y.H.; Chae, J.I.; Shim, J.H. Apoptotic effects of 7,8-dihydroxyflavone in human oral squamous cancer cells through suppression of Sp1. Oncol. Rep. 2015, 33, 631–638. [Google Scholar] [CrossRef]
- Ji, Y.; Hu, W.; Jin, Y.; Yu, H.; Fang, J. Liquiritigenin exerts the anti-cancer role in oral cancer via inducing autophagy-related apoptosis through PI3K/AKT/mTOR pathway inhibition in vitro and in vivo. Bioengineered 2021, 12, 6070–6082. [Google Scholar] [CrossRef]
- Jung, G.H.; Lee, J.H.; Han, S.H.; Woo, J.S.; Choi, E.Y.; Jeon, S.J.; Han, E.J.; Jung, S.H.; Park, Y.S.; Park, B.K.; et al. Chrysin Induces Apoptosis via the MAPK Pathway and Regulates ERK/mTOR-Mediated Autophagy in MC-3 Cells. Int. J. Mol. Sci. 2022, 23, 15747. [Google Scholar] [CrossRef] [PubMed]
- Park, B.S.; Choi, N.E.; Lee, J.H.; Kang, H.M.; Yu, S.B.; Kim, H.J.; Kang, H.K.; Kim, I.R. Crosstalk between Fisetin-induced Apoptosis and Autophagy in Human Oral Squamous Cell Carcinoma. J. Cancer 2019, 10, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.S.; Yao, C.N.; Liu, H.C.; Yu, F.S.; Lin, J.J.; Lu, K.W.; Liao, C.L.; Chueh, F.S.; Chung, J.G. Quercetin induced apoptosis of human oral cancer SAS cells through mitochondria and endoplasmic reticulum mediated signaling pathways. Oncol. Lett. 2018, 15, 9663–9672. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Fang, Z.; Zha, Z.; Sun, Q.; Wang, H.; Sun, M.; Qiao, B. Quercetin inhibits cell viability, migration and invasion by regulating miR-16/HOXA10 axis in oral cancer. Eur. J. Pharmacol. 2019, 847, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Zhang, Y.; Zhou, H.; Lv, J. Baicalein inhibits the growth of oral squamous cell carcinoma cells by downregulating the expression of transcription factor Sp1. Int. J. Oncol. 2020, 56, 273–282. [Google Scholar] [CrossRef]
- Tu, D.G.; Lin, W.T.; Yu, C.C.; Lee, S.S.; Peng, C.Y.; Lin, T.; Yu, C.H. Chemotherapeutic effects of luteolin on radio-sensitivity enhancement and interleukin-6/signal transducer and activator of transcription 3 signaling repression of oral cancer stem cells. J. Formos. Med. Assoc. 2016, 115, 1032–1038. [Google Scholar] [CrossRef]
- Huang, Y.C.; Lee, P.C.; Wang, J.J.; Hsu, Y.C. Anticancer Effect and Mechanism of Hydroxygenkwanin in Oral Squamous Cell Carcinoma. Front. Oncol. 2019, 9, 911. [Google Scholar] [CrossRef] [PubMed]
- Maggioni, D.; Garavello, W.; Rigolio, R.; Pignataro, L.; Gaini, R.; Nicolini, G. Apigenin impairs oral squamous cell carcinoma growth in vitro inducing cell cycle arrest and apoptosis. Int. J. Oncol. 2013, 43, 1675–1682. [Google Scholar] [CrossRef]
- Wudtiwai, B.; Makeudom, A.; Krisanaprakornkit, S.; Pothacharoen, P.; Kongtawelert, P. Anticancer Activities of Hesperidin via Suppression of Up-Regulated Programmed Death-Ligand 1 Expression in Oral Cancer Cells. Molecules 2021, 26, 5345. [Google Scholar] [CrossRef]
- Velmurugan, B.K.; Lin, J.T.; Mahalakshmi, B.; Chuang, Y.C.; Lin, C.C.; Lo, Y.S.; Hsieh, M.J.; Chen, M.K. Luteolin-7-O-Glucoside Inhibits Oral Cancer Cell Migration and Invasion by Regulating Matrix Metalloproteinase-2 Expression and Extracellular Signal-Regulated Kinase Pathway. Biomolecules 2020, 10, 502. [Google Scholar] [CrossRef]
- Tsai, J.Y.; Lee, M.J.; Chang, M.D.; Wang, H.C.; Lin, C.C.; Huang, H. Effects of novel human cathepsin S inhibitors on cell migration in human cancer cells. J. Enzym. Inhib. Med. Chem. 2014, 29, 538–546. [Google Scholar] [CrossRef]
- Chen, C.T.; Hsieh, M.J.; Hsieh, Y.H.; Hsin, M.C.; Chuang, Y.T.; Yang, S.F.; Yang, J.S.; Lin, C.W. Sulforaphane suppresses oral cancer cell migration by regulating cathepsin S expression. Oncotarget 2018, 9, 17564–17575. [Google Scholar] [CrossRef]
- Varadarajan, S.; Madapusi, B.T.; Narasimhan, M.; Pandian, C.D.; Dhanapal, S. Anticancer Effects of Carica papaya L. and Benzyl Isothiocyanate on an Oral Squamous Cell Carcinoma Cell Line: An In Vitro Study. J. Contemp. Dent. Pract. 2022, 23, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Tseng, W.S.; Lai, J.C.; Shieh, H.R.; Chi, C.W.; Chen, Y.J. Differential Pharmacological Activities of Oxygen Numbers on the Sulfoxide Moiety of Wasabi Compound 6-(Methylsulfinyl) Hexyl Isothiocyanate in Human Oral Cancer Cells. Molecules 2018, 23, 2427. [Google Scholar] [CrossRef]
- Hsu, P.C.; Cheng, C.F.; Hsieh, P.C.; Chen, Y.H.; Kuo, C.Y.; Sytwu, H.K. Chrysophanol Regulates Cell Death, Metastasis, and Reactive Oxygen Species Production in Oral Cancer Cell Lines. Evid. Based Complement. Altern. Med. 2020, 2020, 5867064. [Google Scholar] [CrossRef]
- Li, Q.; Wen, J.; Yu, K.; Shu, Y.; He, W.; Chu, H.; Zhang, B.; Ge, C. Aloe-emodin induces apoptosis in human oral squamous cell carcinoma SCC15 cells. BMC Complement. Altern. Med. 2018, 18, 296. [Google Scholar] [CrossRef]
- Lin, C.L.; Yu, C.I.; Lee, T.H.; Chuang, J.M.; Han, K.F.; Lin, C.S.; Huang, W.P.; Chen, J.Y.; Chen, C.Y.; Lin, M.Y.; et al. Plumbagin induces the apoptosis of drug-resistant oral cancer in vitro and in vivo through ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction. Phytomedicine 2023, 111, 154655. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Si, L.; Zheng, Y.; Wang, H. Shikonin enhances chemosensitivity of oral cancer through β-catenin pathway. Oral Dis. 2022, 12, 14458. [Google Scholar] [CrossRef]
- Cho, B.H.; Jung, Y.H.; Kim, D.J.; Woo, B.H.; Jung, J.E.; Lee, J.H.; Choi, Y.W.; Park, H.R. Acetylshikonin suppresses invasion of Porphyromonas gingivalis-infected YD10B oral cancer cells by modulating the interleukin-8/matrix metalloproteinase axis. Mol. Med. Rep. 2018, 17, 2327–2334. [Google Scholar] [CrossRef]
- Kim, D.J.; Lee, J.H.; Park, H.R.; Choi, Y.W. Acetylshikonin inhibits growth of oral squamous cell carcinoma by inducing apoptosis. Arch. Oral Biol. 2016, 70, 149–157. [Google Scholar] [CrossRef]
- Salar, T.; Jimenez, M.; Hameed, M.; Ocon, A. Chronic Anti-HMG-CoA Reductase Positive Necrotizing Myositis With Remote Exposure to Statins. Cureus 2023, 15, e40552. [Google Scholar] [CrossRef] [PubMed]
- Zaborowska, M.; Matyszewska, D.; Bilewicz, R. Model Lipid Raft Membranes for Embedding Integral Membrane Proteins: Reconstitution of HMG-CoA Reductase and Its Inhibition by Statins. Langmuir 2022, 38, 13888–13897. [Google Scholar] [CrossRef]
- Miyajima, C.; Hayakawa, Y.; Inoue, Y.; Nagasaka, M.; Hayashi, H. HMG-CoA Reductase Inhibitor Statins Activate the Transcriptional Activity of p53 by Regulating the Expression of TAZ. Pharmaceuticals 2022, 15, 1015. [Google Scholar] [CrossRef] [PubMed]
- Biselli-Chicote, P.M.; Lotierzo, A.T.; Biselli, J.M.; Paravino, E.C.; Goloni-Bertollo, E.M. Atorvastatin increases oxidative stress and inhibits cell migration of oral squamous cell carcinoma in vitro. Oral Oncol. 2019, 90, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Kansal, V.; Burnham, A.J.; Kinney, B.L.C.; Saba, N.F.; Paulos, C.; Lesinski, G.B.; Buchwald, Z.S.; Schmitt, N.C. Statin drugs enhance responses to immune checkpoint blockade in head and neck cancer models. J. Immunother. Cancer 2023, 11, e005940. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.C.; Chen, W.M.; Shia, B.C.; Chen, M.; Wu, S.Y. The effect of statin medication on the incidence of oral squamous cell carcinoma among betel-nut chewers. Head Neck 2023, 45, 1455–1467. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.; Zhang, G. Linalool monoterpene exerts potent antitumor effects in OECM 1 human oral cancer cells by inducing sub-G1 cell cycle arrest, loss of mitochondrial membrane potential and inhibition of PI3K/AKT biochemical pathway. J. BUON 2019, 24, 323–328. [Google Scholar] [PubMed]
- Hsieh, M.J.; Lin, C.W.; Chiou, H.L.; Yang, S.F.; Chen, M.K. Dehydroandrographolide, an iNOS inhibitor, extracted from Andrographis paniculata (Burm.f.) Nees, induces autophagy in human oral cancer cells. Oncotarget 2015, 6, 30831–30849. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.T.; Hsieh, M.J.; Lin, J.T.; Chen, G.; Lin, C.C.; Lo, Y.S.; Chuang, Y.C.; Hsi, Y.T.; Chen, M.K.; Chou, M.C. Coronarin D induces human oral cancer cell apoptosis though upregulate JNK1/2 signaling pathway. Environ. Toxicol. 2019, 34, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Yi, J.K.; Lim, S.G.; Park, S.; Zhang, H.; Kim, E.; Jang, S.; Lee, M.H.; Liu, K.; Kim, K.R.; et al. Costunolide Induces Apoptosis via the Reactive Oxygen Species and Protein Kinase B Pathway in Oral Cancer Cells. Int. J. Mol. Sci. 2021, 22, 7509. [Google Scholar] [CrossRef]
- She, Y.Y.; Lin, J.J.; Su, J.H.; Chang, T.S.; Wu, Y.J. 4-Carbomethoxyl-10-Epigyrosanoldie E Extracted from Cultured Soft Coral Sinularia sandensis Induced Apoptosis and Autophagy via ROS and Mitochondrial Dysfunction and ER Stress in Oral Cancer Cells. Oxid. Med. Cell Longev. 2022, 2022, 3017807. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.T.; Wu, C.Y.; Tang, J.Y.; Huang, C.Y.; Liaw, C.C.; Wu, S.H.; Sheu, J.H.; Chang, H.W. Sinularin induces oxidative stress-mediated G2/M arrest and apoptosis in oral cancer cells. Environ. Toxicol. 2017, 32, 2124–2132. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.H.; Lin, Y.S.; Wang, S.C.; Lee, M.Y.; Tang, J.Y.; Chang, F.R.; Chuang, Y.T.; Sheu, J.H.; Chang, H.W. Soft Coral-Derived Dihydrosinularin Exhibits Antiproliferative Effects Associated with Apoptosis and DNA Damage in Oral Cancer Cells. Pharmaceuticals 2021, 14, 994. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.L.; Lo, Y.H.; Lin, C.L.; Lee, T.H.; Leung, W.; Wang, S.W.; Lin, I.P.; Lin, M.Y.; Lee, C.H. Trichodermin inhibits the growth of oral cancer through apoptosis-induced mitochondrial dysfunction and HDAC-2-mediated signaling. Biomed. Pharmacother. 2022, 153, 113351. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.S.; Yang, C.Y.; Lin, C.K.; Lin, G.J.; Sytwu, H.K.; Chen, Y.W. Triptolide suppresses oral cancer cell PD-L1 expression in the interferon-gamma-modulated microenvironment in vitro, in vivo, and in clinical patients. Biomed. Pharmacother. 2021, 133, 111057. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.J.; Hsieh, C.Y.; Tang, J.Y.; Lin, L.C.; Huang, H.W.; Wang, H.R.; Yeh, Y.C.; Chuang, Y.T.; Ou-Yang, F.; Chang, H.W. Antimycin A shows selective antiproliferation to oral cancer cells by oxidative stress-mediated apoptosis and DNA damage. Environ. Toxicol. 2020, 35, 1212–1224. [Google Scholar] [CrossRef]
- Chen, Y.N.; Chan, C.K.; Yen, C.Y.; Shiau, J.P.; Chang, M.Y.; Wang, C.C.; Jeng, J.H.; Tang, J.Y.; Chang, H.W. Antioral Cancer Effects by the Nitrated [6,6,6]Tricycles Compound (SK1) In Vitro. Antioxidants 2022, 11, 2072. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.J.; Ahn, C.H.; Yang, I.H.; Jin, B.; Lee, W.W.; Kim, J.H.; Ahn, M.H.; Swarup, N.; Hong, K.O.; Shin, J.A.; et al. Pseudolaric Acid B Induces Growth Inhibition and Caspase-Dependent Apoptosis on Head and Neck Cancer Cell lines through Death Receptor 5. Molecules 2019, 24, 3715. [Google Scholar] [CrossRef] [PubMed]
- Su, S.C.; Chen, Y.T.; Hsieh, Y.H.; Yang, W.E.; Su, C.W.; Chiu, W.Y.; Yang, S.F.; Lin, C.W. Gambogic Acid Induces HO-1 Expression and Cell Apoptosis through p38 Signaling in Oral Squamous Cell Carcinoma. Am. J. Chin. Med. 2022, 50, 1663–1679. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhang, N.A.; Wang, R.; Huang, F.; Li, G. Paclitaxel induces apoptosis and reduces proliferation by targeting epidermal growth factor receptor signaling pathway in oral cavity squamous cell carcinoma. Oncol. Lett. 2015, 10, 2378–2384. [Google Scholar] [CrossRef]
- Saha, D.; Mitra, D.; Alam, N.; Sen, S.; Mustafi, S.M.; Majumder, P.K.; Majumder, B.; Murmu, N. Lupeol and Paclitaxel cooperate in hindering hypoxia induced vasculogenic mimicry via suppression of HIF-1alpha-EphA2-Laminin-5gamma2 network in human oral cancer. J. Cell Commun. Signal. 2023, 17, 591–608. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.W.; Chin, H.K.; Lee, S.L.; Chiu, C.F.; Chung, J.G.; Lin, Z.Y.; Wu, C.Y.; Liu, Y.C.; Hsiao, Y.T.; Feng, C.H.; et al. Ursolic acid induces apoptosis and autophagy in oral cancer cells. Environ. Toxicol. 2019, 34, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Lin, C.S.; Hua, C.H.; Jou, Y.J.; Liao, C.R.; Chang, Y.S.; Wan, L.; Huang, S.H.; Hour, M.J.; Lin, C.W. Cis-3-O-p-hydroxycinnamoyl Ursolic Acid Induced ROS-Dependent p53-Mediated Mitochondrial Apoptosis in Oral Cancer Cells. Biomol. Ther. 2019, 27, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, S.; Naseri, N.; Fathiazad, F.; Asnaashari, S.; Hamedeyazdan, S. Anticancer effect of buddlejasaponin IV and buddlejasaponin IVa from Clinopodium umbrosum on oral cancer cells (HN-5). Toxicon 2022, 220, 106939. [Google Scholar] [CrossRef] [PubMed]
- Pang, L.; Zhao, X.; Liu, W.; Deng, J.; Tan, X.; Qiu, L. Anticancer Effect of Ursodeoxycholic Acid in Human Oral Squamous Carcinoma HSC-3 Cells through the Caspases. Nutrients 2015, 7, 3200–3218. [Google Scholar] [CrossRef]
- Shen, H.; Liu, L.; Yang, Y.; Xun, W.; Wei, K.; Zeng, G. Betulinic Acid Inhibits Cell Proliferation in Human Oral Squamous Cell Carcinoma via Modulating ROS-Regulated p53 Signaling. Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 2017, 25, 1141–1152. [Google Scholar] [CrossRef]
- Rauth, S.; Ray, S.; Bhattacharyya, S.; Mehrotra, D.G.; Alam, N.; Mondal, G.; Nath, P.; Roy, A.; Biswas, J.; Murmu, N. Lupeol evokes anticancer effects in oral squamous cell carcinoma by inhibiting oncogenic EGFR pathway. Mol. Cell Biochem. 2016, 417, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yi, J.; Kim, E.; Choo, Y.; Hai, H.; Kim, K.; Kim, E.K.; Ryoo, Z.; Kim, M. 20(S)-Ginsenoside Rh2 Suppresses Oral Cancer Cell Growth by Inhibiting the Src-Raf-ERK Signaling Pathway. Anticancer Res. 2021, 41, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.C.; Wong, W.T.; Li, L.H.; Chu, L.J.; Menon, M.P.; Ho, C.L.; Chernikov, O.V.; Lee, S.L.; Hua, K.F. Ginsenoside M1 Induces Apoptosis and Inhibits the Migration of Human Oral Cancer Cells. Int. J. Mol. Sci. 2020, 21, 9704. [Google Scholar] [CrossRef]
- Li, T.; Wang, L. Riparsaponin isolated from Homonoia riparia Lour induces apoptosis of oral cancer cells. Oncol. Lett. 2017, 14, 6841–6846. [Google Scholar] [CrossRef]
- Ho, S.Y.; Wu, W.S.; Lin, L.C.; Wu, Y.H.; Chiu, H.W.; Yeh, Y.L.; Huang, B.M.; Wang, Y.J. Cordycepin Enhances Radiosensitivity in Oral Squamous Carcinoma Cells by Inducing Autophagy and Apoptosis Through Cell Cycle Arrest. Int. J. Mol. Sci. 2019, 20, 5366. [Google Scholar] [CrossRef] [PubMed]
- Su, N.W.; Wu, S.H.; Chi, C.W.; Tsai, T.H.; Chen, Y.J. Cordycepin, isolated from medicinal fungus Cordyceps sinensis, enhances radiosensitivity of oral cancer associated with modulation of DNA damage repair. Food Chem. Toxicol. 2019, 124, 400–410. [Google Scholar] [CrossRef]
- Xing, D.; Li, L.; Meng, D.; Zhang, Y.; Ma, F. Anti-cell Proliferative Mechanism of Doxazosin on Human Oral Cancer Cells Through the Modulation of Antioxidant and Apoptotic Pathway. Appl. Biochem. Biotechnol. 2023, 195, 6824–6839. [Google Scholar] [CrossRef] [PubMed]
- Gorur, A.; Patino, M.; Shi, T.; Corrales, G.; Takahashi, H.; Rangel, R.; Gleber-Netto, F.O.; Pickering, C.; Myers, J.N.; Cata, J.P. Low doses of methylnaltrexone inhibits head and neck squamous cell carcinoma growth in vitro and in vivo by acting on the mu-opioid receptor. J. Cell Physiol. 2021, 236, 7698–7710. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.; Choi, H.; Kim, J.; Kim, S.; Jeon, S.; Ni, K.; Song, S.Y.; Oh, H.K.; Im, Y.; Lee, G.; et al. Expression of cancer stem cell marker during 4-nitroquinoline 1-oxide-induced rat tongue carcinogenesis. J. Mol. Histol. 2014, 45, 653–663. [Google Scholar] [CrossRef] [PubMed]
- Sahu, S.R.; Thakur, S.; Peroumal, D.; Utkalaja, B.G.; Dutta, A.; Kumari, P.; Subhadarsini, I.; Acharya, N. 4-nitroquinoline 1-oxide induces immune cells death to onset early immunosuppression during oral squamous cell carcinoma development. Front. Immunol. 2023, 14, 1274519. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, P.; Suchalatha, S.; Babu, P.V.; Devi, R.S.; Narayan, S.; Sabitha, K.E.; Shyamala Devi, C.S. Chemopreventive and therapeutic modulation of green tea polyphenols on drug metabolizing enzymes in 4-Nitroquinoline 1-oxide induced oral cancer. Chem. Biol. Interact. 2008, 172, 224–234. [Google Scholar] [CrossRef]
- Park, N.S.; Park, Y.K.; Yadav, A.K.; Shin, Y.M.; Bishop-Bailey, D.; Choi, J.S.; Park, J.W.; Jang, B.C. Anti-growth and pro-apoptotic effects of dasatinib on human oral cancer cells through multi-targeted mechanisms. J. Cell. Mol. Med. 2021, 25, 8300–8311. [Google Scholar] [CrossRef]
- Hsu, R.J.; Peng, K.Y.; Hsu, W.L.; Chen, Y.T.; Liu, D.W. Z-Ligustilide Induces c-Myc-Dependent Apoptosis via Activation of ER-Stress Signaling in Hypoxic Oral Cancer Cells. Front. Oncol. 2022, 12, 824043. [Google Scholar] [CrossRef]
- Deng, Z.; Liao, W.; Wei, W.; Zhong, G.; He, C.; Zhang, H.; Liu, Q.; Xu, X.; Liang, J.; Liu, Z. Anlotinib as a promising inhibitor on tumor growth of oral squamous cell carcinoma through cell apoptosis and mitotic catastrophe. Cancer Cell Int. 2021, 21, 37. [Google Scholar] [CrossRef]
- Nakamura, N.; Fujihara, H.; Kawaguchi, K.; Yamada, H.; Nakayama, R.; Yasukawa, M.; Kishi, Y.; Hamada, Y.; Masutani, M. Possible Action of Olaparib for Preventing Invasion of Oral Squamous Cell Carcinoma In Vitro and In Vivo. Int. J. Mol. Sci. 2022, 23, 2527. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Liu, H.; Li, X. Orlistat treatment induces apoptosis and arrests cell cycle in HSC-3 oral cancer cells. Microb. Pathog. 2017, 112, 15–19. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, M.H.; Abdel Bar, F.M.; Harsha, C.; Monisha, J.; Shimizu, K.; Kunnumakkara, A.B.; Badria, F.A. Synthesis of new selective cytotoxic ricinine analogues against oral squamous cell carcinoma. Nat. Product. Res. 2019, 35, 2145–2156. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.E.M.; do Nascimento Filho, C.H.V.; Marinho Bezerra, T.M.; Guerra, E.N.S.; Castilho, R.M.; Squarize, C.H. Entinostat is a novel therapeutic agent to treat oral squamous cell carcinoma. J. Oral Pathol. Med. 2020, 49, 771–779. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.J.; Shin, J.A.; Nam, J.S.; Kang, B.S.; Cho, S.D. Apoptotic effect of dibenzylideneacetone on oral cancer cells via modulation of specificity protein 1 and Bax. Oral Dis. 2013, 19, 767–774. [Google Scholar] [CrossRef]
- Chen, C.H.; Tsai, H.T.; Chuang, H.C.; Shiu, L.Y.; Su, L.J.; Chiu, T.J.; Luo, S.D.; Fang, F.M.; Huang, C.C.; Chien, C.Y. Metformin disrupts malignant behavior of oral squamous cell carcinoma via a novel signaling involving Late SV40 factor/Aurora-A. Sci. Rep. 2017, 7, 1358. [Google Scholar] [CrossRef] [PubMed]
- Tao, A.; Wang, X.; Li, C. Effect of Lycopene on Oral Squamous Cell Carcinoma Cell Growth by Inhibiting IGF1 Pathway. Cancer Manag. Res. 2021, 13, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Babukumar, S.; Vinothkumar, V.; Ramachandhiran, D. Modulating effect of hesperetin on the molecular expression pattern of apoptotic and cell proliferative markers in 7,12-dimethylbenz(a)anthracene-induced oral carcinogenesis. Arch. Physiol. Biochem. 2020, 126, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Basilotta, R.; Lanza, M.; Filippone, A.; Casili, G.; Mannino, D.; De Gaetano, F.; Chisari, G.; Colarossi, L.; Motta, G.; Campolo, M.; et al. Therapeutic Potential of Dimethyl Fumarate in Counteract Oral Squamous Cell Carcinoma Progression by Modulating Apoptosis, Oxidative Stress and Epithelial-Mesenchymal Transition. Int. J. Mol. Sci. 2023, 24, 2777. [Google Scholar] [CrossRef]
- Tang, J.Y.; Wu, C.Y.; Shu, C.W.; Wang, S.C.; Chang, M.Y.; Chang, H.W. A novel sulfonyl chromen-4-ones (CHW09) preferentially kills oral cancer cells showing apoptosis, oxidative stress, and DNA damage. Environ. Toxicol. 2018, 33, 1195–1203. [Google Scholar] [CrossRef]
- Aggarwal, S.; Das, S.N. Thiodigalactoside shows antitumour activity by beta-galactoside-binding protein and regulatory T cells inhibition in oral squamous cell carcinoma. Oral Dis. 2016, 22, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.Y.; Chang, Y.L.; Liu, S.T.; Chen, G.S.; Lee, S.P.; Huang, S.M. Differential Cytotoxicity Mechanisms of Copper Complexed with Disulfiram in Oral Cancer Cells. Int. J. Mol. Sci. 2021, 22, 3711. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.H.; Wu, W.S.; Lin, L.C.; Liu, C.S.; Ho, S.Y.; Wang, B.J.; Huang, B.M.; Yeh, Y.L.; Chiu, H.W.; Yang, W.L.; et al. Bortezomib enhances radiosensitivity in oral cancer through inducing autophagy-mediated TRAF6 oncoprotein degradation. J. Exp. Clin. Cancer Res. 2018, 37, 91. [Google Scholar] [CrossRef]
- Chiang, S.L.; Velmurugan, B.K.; Chung, C.M.; Lin, S.H.; Wang, Z.H.; Hua, C.H.; Tsai, M.H.; Kuo, T.M.; Yeh, K.T.; Chang, P.Y.; et al. Preventive effect of celecoxib use against cancer progression and occurrence of oral squamous cell carcinoma. Sci. Rep. 2017, 7, 6235. [Google Scholar] [CrossRef] [PubMed]
- Shieu, M.K.; Ho, H.Y.; Lin, C.C.; Lo, Y.S.; Chuang, Y.C.; Hsieh, M.J.; Chen, M.K. Narciclasine suppresses oral cancer metastasis by modulating cathepsin B and extracellular signal-related kinase pathways. Biomed. Pharmacother. 2023, 158, 114159. [Google Scholar] [CrossRef] [PubMed]
- Samal, S.K.; Routray, S.; Veeramachaneni, G.K.; Dash, R.; Botlagunta, M. Ketorolac salt is a newly discovered DDX3 inhibitor to treat oral cancer. Sci. Rep. 2015, 5, 9982. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Yu, K.; Chu, X.; Yang, L. Betanin alleviates inflammation and ameliorates apoptosis on human oral squamous cancer cells SCC131 and SCC4 through the NF-kappaB/PI3K/Akt signaling pathway. J. Biochem. Mol. Toxicol. 2022, 36, e23094. [Google Scholar] [CrossRef]
No. | Name | Source | Cell Line | Activity (IC50) | Target or Signalling Pathway | Reference |
---|---|---|---|---|---|---|
1 | 6-Gingerol | Isolated from ginger | YD10B and Ca9-22 | - | AKT/mTOR signalling pathway | [30] |
2 | Platyphyllenone | Isolated from Alnus nepalensis Isolated from leaves | SCC-9 and SCC-47 | - | AKT and c-Jun N-terminal kinase (JNK) pathways | [31] |
3 | Resveratrol | Isolated from grapes | HSC-2 and HSC-3, HSC-4, Ca9-22, and SAS | - | Autophagy | [32,33] |
4 | Phloretin | Isolated from plants | SCC-1 | 12.5 µM | ROS-mediated apoptosis and G0/G1 phase arrest. | [34] |
5 | Piperlongumine | Isolated from Piper longum | SAS and CGHNC8 | - | TNF-α, IL-6, and NF-κB | [35,36] |
6 | Curcumin | Isolated from ginger | SCC-25 | - | Cell cycle arrest | [37] |
7 | GO-Y078 | Synthetic | SCC-9 and HSC-3 | <0.5 μM | Caspase-mediated apoptosis | [38] |
8 | PAC | Synthetic | Ca9-22 | 3 µM | Apoptosis, autophagy, and oxidative stress | [39] |
9 | Caffeic acid phenethyl ester | Isolated from propolis | TW2.6, OSF, GNM, TSCCa, SAS and OEC-M1 | 72.1, 90.6, 101.0, 120.9, 129.7 and 159.2 µM | Apoptosis-related proteins | [40] |
10 | Rosmarinic acid | Isolated from Rosemarinus officinalis | SCC-15 | 20–40 µM | Apoptosis and G2/M phase arrest | [41,42] |
11 and 12 | delta-8- and delta-9-tetrahydrocannabinol | Isolated from cannabis | Ca9-22 | 13 and 10 μg/mL | Decreased ROS production and increased glutathione and glutathione expression | [43] |
13 | Pterostilbene | Isolated from rosewood | SAS and OECM-1 | - | c-Jun N-terminal kinase (JNK) pathways | [44] |
14 | Bis(hydroxymethyl)propionate analogs | Synthetic | CAR | 32.58 μM | Autophagy | [45] |
15 | 7,8-Dihydroxyflavone | Isolated from plants | HN22 and HSC4 | - | Cell cycle arrest and apoptosis | [49] |
16 | Liquiritigenin | Isolated from liquorice | CAL-27 and SCC-9 | - | PI3K/AKT/mTOR pathway | [50] |
17 | Chrysin | Isolated from bignonia | MC3 | - | MAPK/extracellular signalling pathway | [51] |
18 | Fisetin | Isolated from toxicodendron sylvestre | Ca9-22 | - | Wnt, mTOR, and NF-xB signals’ pathway | [52] |
19 | Quercetin | Isolated from plants | HSC-6 and SCC-9 | 50 μM | Mitochondrial apoptosis pathway | [53,54] |
20 | Baicalein | Isolated from Scutellariae Radix | SCC25, CAL27 and HSC3 | - | Sp1 | [55] |
21 | luteolin | Isolated from chamomile tea, celery, perilla leaf, and green peppers | SAS and GNM | - | Interleukin-6/signal transduction and transcription 3 signalling | [56] |
22 | Hydroxygenkwanin | Isolated from Daphne genkwa Sieb. et Zucc. | SAS and OCEM1 | - | p21 and endogenous apoptotic pathways | [57] |
23 | Apigenin | Isolated from fruits and vegetables | SCC-25 | - | Cell cycle arrest and apoptosis | [58] |
24 | Hesperidin | Isolated from fruit of immature citron | HN6 | 169.53 μM | Programmed Death-Ligand 1 Expression | [59] |
25 | Luteolin-7-O-Glucoside | Isolated from plantain herb | HSC-3, FaDu, and CA9-22 | - | Signalling regulates the kinase pathway | [60] |
26 | Sulforaphane | Synthetic | SCC-9 and SCC-14 | - | Cathepsin S | [61,62] |
27 | Benzyl Isothiocyanate | Isolated from Carica papaya L. | SCC-25 | 29.80 μM. | Apoptosis | [63] |
28 | 6-MITC | Isolated from Wasabia japonica | SAS and OECM-1 | - | G2/M phase | [64] |
29 | I7447 | Semi-synthetic | SAS and OECM-1 | 10.3 and 13.1 μM. | G2/M phase | [64] |
30 | I7557 | Semi-synthetic | SAS and OECM-1 | 10.1 and 9.6 μM. | G2/M phase | [64] |
31 | Chrysophanol | Isolated from rhubarb | FaDu and SAS | 9.64 and 12.60 μM. | Cell death, metastasis, and reactivity oxygen production | [65] |
32 | Aloe emodin | Isolated from Rheum undulatum L. | SCC15 | 160.7 μM | Apoptosis | [66] |
33 | Plumbagin | Isolated from Plumbago zeylanica L | CR-SAS | 4.379 μM | ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction | [67] |
34 | Shikonin | Isolated from alkanet | SCC-25 and HSC-3 | - | β-catenin pathway | [69] |
35 | Acetylshikonin | Isolated from Lithospermum erythrorhizon | YD10B | - | Interleukin-8/matrix metalloproteinase axis | [70] |
36 | Atorvastatin | Synthetic | HN13 | - | VEGF-A after ROS formation | [74] |
37–42 | Lovastatin, Simvastatin, Fluvastatin, Pravastatin, Pitavastatin, Rosuvastatin | Synthetic | MOC1 | - | PD-1 | [75] |
43 | Linalool | Isolated from aromatic camphor | OECM-1 | 65 µM | PI3K/AKT signalling pathway | [76] |
44 | Dehydroandrographolide | Isolated from sinularia flexibilis | Ca9-22, SCC-9, OECM-1, CAL 27, OC-2, and HSC-3 | - | Apoptosis and oral DNA damage | [78] |
45 | Coronarin D | Isolated from garland-flower | SCC-9 and SAS | - | JNK1/2 signalling pathway | [79] |
46 | Costunolide | Isolated from costustoot | YD-10B, YD-38 and Ca9-22 than in YD-9 | - | Protein kinase B pathway | [80] |
47 | 4-Carbomethoxyl-10-epigyrosanoldie E | Isolated from sinularia sandensis | Ca9-22 and Cal-27 | - | Apoptosis and autophagy | [81] |
48 | Sinularin | Isolated from S. manaarensis | Ca9-22 and CAL 27 | 23.5 and 36.6 µM | Oxidative stress-mediated cell G2/M block and apoptosis | [82] |
49 | Dihydrosinularin | Isolated from S. flexibilis | Ca9-22, OECM-1, CAL 27, and SCC-9 | 0.39, 0.69, 0.8 and 0.65 mM | Apoptosis and DNA damage | [83] |
50 | Trichodermin | Isolated from trichoderma viride, | Ca922 and HSC-3 | 9.65 ± 1.1 µM and 11.49 ± 1.26 µM | Apoptosis, mitochondrial dysfunction, and hdac-2-mediated signalling | [84] |
51 | Triptolide | Isolated from Thunder God vine | SAS | 1.686 nM | Interferon γ modulates the expression of PD-L1 in oral cancer cells in microenvironment | [85] |
52 | Antimycin A | Isolated from Streptomyces | CAL-27 and Ca9-22 | 4.72 and 14.85 µM | ROS | [86] |
53 | Nitrated [6,6,6]Tricycles | Synthetic | Ca9-22, CAL 27, and HSC-3 | 7.93, 12.46 and 12.46 µM | Apoptosis and DNA damage | [87] |
54 | Pseudolaric Acid B | Isolated from pseudolarix kaempferi | PAB, HN22 | approximately 0.7 µm/mL | Apoptosis | [88] |
55 | Gambogic Acid | Isolated from garcinia hanburyi and garcinia morella trees | SCC-9 and SAS | - | p38 signals apoptosis in oral cells | [89] |
56 | Paclitaxel | Isolated from pacific yew tree | tea8113 | - | Epidermal growth factor receptor signalling pathways | [90] |
57 | Ursolic acid | Isolated from bearberry leaf | Ca922 and SCC2095 | 11.5 and 13.8 μM | Induce apoptosis and autophagy | [92] |
58 | Cis-3-O-p-hydroxycinnamoyl | Isolated from Elaeagnus oldhamii Maxim | Ca9-22 and SAS | 24.0 and 17.8 μM | ROS-dependent p53-mediated mitochondrial apoptosis | [93] |
59 | Buddlejasaponin IV | Isolated from clinopodium umbrosum | HN-5 and HUVEC | 19.1 and 18.6 | Mitochondrial apoptosis pathway | [94] |
60 | Ursodeoxycholic Acid | Isolated from gallbladder of Ursus thibetanus | HSC-3 | - | Apoptosis | [95] |
61 | Betulinic Acid | Isolated from plants | KB | - | ROS-regulated p53 signalling | [96] |
62 | Lupeol | Isolated from plants | SCC131 and SCC084 | 26.1 and 21.42 lmol | Oncogenic EGFR pathway | [97] |
63 | 20(S)-Ginsenoside Rh2 | Isolated from panax ginseng | YD10B and Ca9-22 | - | G0/G phase arrest | [98] |
64 | Ginsenoside M1 | Isolated from panax ginseng | OEC-M1 | - | Apoptosis | [99] |
65 | Riparsaponin | Isolated from homonoia riparia | Cal-27, SCC-9 and Detroit 562 | - | Apoptosis | [100] |
66 | Cordycepin | Isolated from cordyceps sinensis | SCC-9, SCC-25, and SAS | - | Autophagy | [101] |
67 | Doxazosin | Synthetic | KB | - | Modulation of antioxidant and apoptotic pathway | [103] |
68 | Methylnaltrexone | Synthetic | FaDu and MDA686Tu | - | mu-opioid receptor | [104] |
69 | 4-Nitroquinoline | Synthetic | cancer stem cell | - | Cancer stem cell | [105,106,107] |
70 | Dasatinib | Synthetic | YD-10B and HSC-3 | - | Multi-targeted mechanisms | [108] |
71 | Z-Ligustilide | Isolated from angelica sinensis | TW2.6 and OML1 | - | C-MYC-dependent apoptosis in hypoxic oral cancer cell lines | [109] |
72 | Anlotinib | Synthetic | Cal-27 and SCC-25 | - | Antiangiogenic activity of several tyrosine kinases | [110] |
74 | Olaparib | Synthetic | EMT | - | mRNA expression of markers related to tumourigenesis and EMT | [111] |
75 | Orlistat | Synthetic | HSC-3 | - | Apoptosis and cell cycle arrest | [112] |
76 | Ricinine | Isolated from castor bean | SAS | 90 µM | PTP1B and COX-2 | [113] |
77 | Entinostat | Synthetic | WSU-HN6 and WSU-HN12 | 0.54 µM and 23.31 µM | Inhibition of cell cycle | [114] |
78 | Dibenzylideneacetone | Isolated from Curcuma longa L | HSC-4, HSC-2, YD-10B and SCC-15 | - | Specificity protein 1 and Bax | [115] |
79 | Metformin | Synthetic | SAS, Cal27 and SCC25 | - | Malignant behaviour of oral squamous cell carcinoma via a novel signalling involving Late SV40 factor/Aurora-A | [116] |
80 | Lycopene | Isolated from love apple | CAL-27 and WSU-HN6 | 0.95 vs. 0.83 mM | IGF1 Pathway | [117] |
81 | Dimethyl Fumarate | Synthetic | CAL27, HSC-2 and HSC-3 | - | Apoptosis, oxidative stress and epithelial–mesenchymal transition | [118,119] |
82 | CHW09 | Synthetic | Ca9-22 | 40 μg/mL | Apoptosis, oxidative stress, and DNA damage | [120] |
83 | Thiodigalactoside | Isolated from ilex cornuta | SCC-4, SCC-9 and SCC-25 | - | Cell cycle arrest and apoptosis, and prevent the angiogenesis | [121] |
84 | Disulfiram | Synthetic | OECM-1 and SG | - | Aldehyde dehydrogenase | [122] |
85 | Bortezomib | Synthetic | SAS | - | Autophagy-mediated TRAF6 oncoprotein degradation | [123] |
86 | Celecoxib | Synthetic | HSC-3 | - | Transcription factors | [124] |
87 | Narciclasine | Isolated from narcissus | SAS and SCC-47 | - | Cathepsin B and extracellular signal-related kinase pathways | [125] |
88 | Ketorolac | Synthetic | H357 | 2.6 mM | DDX3 | [126] |
89 | Betanin | Isolated from beets | SCC131 and SCC4 | 30 μM | NF-κB/PI3K/Akt signalling pathway | [127] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, K.; Zhu, W.; Kou, Y.; Zheng, X.; Zheng, Y. Advances in Small Molecular Agents against Oral Cancer. Molecules 2024, 29, 1594. https://doi.org/10.3390/molecules29071594
Wei K, Zhu W, Kou Y, Zheng X, Zheng Y. Advances in Small Molecular Agents against Oral Cancer. Molecules. 2024; 29(7):1594. https://doi.org/10.3390/molecules29071594
Chicago/Turabian StyleWei, Kai, Weiru Zhu, Yanan Kou, Xinhua Zheng, and Yunyun Zheng. 2024. "Advances in Small Molecular Agents against Oral Cancer" Molecules 29, no. 7: 1594. https://doi.org/10.3390/molecules29071594
APA StyleWei, K., Zhu, W., Kou, Y., Zheng, X., & Zheng, Y. (2024). Advances in Small Molecular Agents against Oral Cancer. Molecules, 29(7), 1594. https://doi.org/10.3390/molecules29071594