Advances in Small Molecular Agents against Oral Cancer
Abstract
:1. Introduction
2. Polyphenols
3. Isothiocyanates
4. Quinones
5. Statins
6. Terpenoids and Steroids
7. Other Compounds
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Petrariu, O.A.; Barbu, I.C.; Niculescu, A.G.; Constantin, M.; Grigore, G.A.; Cristian, R.E.; Mihaescu, G.; Vrancianu, C.O. Role of probiotics in managing various human diseases, from oral pathology to cancer and gastrointestinal diseases. Front. Microbiol. 2023, 14, 1296447. [Google Scholar] [CrossRef] [PubMed]
- Badawy, M.; Balaha, H.M.; Maklad, A.S.; Almars, A.M.; Elhosseini, M.A. Revolutionizing Oral Cancer Detection: An Approach Using Aquila and Gorilla Algorithms Optimized Transfer Learning-Based CNNs. Biomimetics 2023, 8, 499. [Google Scholar] [CrossRef] [PubMed]
- Sansare, K.; Jadhav, T.S.; Venkatraman, S.; Vahanwala, S. Oral cancer in pregnancy: A systematic review. J. Stomatol. Oral Maxillofac. Surg. 2023, 124, 101647. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, M.; Yoshida, M.; Kanamori, D.; Kobayashi, Y.; Nakajima, Y.; Murai, M.; Usui, M. Changes in oral health status in terminal cancer patients during the last weeks of life. Ann. Palliat. Med. 2023, 13, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Talukdar, A., Jr.; Barman, I., Jr.; Roy, D.; Das, A.; Mahanta, P., Sr. Oral Cancer Hazards Related to Tobacco Use and a Transtheoretical Model Assessment of Preparedness of Individuals With Oral Potentially Malignant Disorders to Quit Tobacco Use. Cureus 2023, 15, e48125. [Google Scholar] [CrossRef] [PubMed]
- Radaic, A.; Kamarajan, P.; Cho, A.; Wang, S.; Hung, G.C.; Najarzadegan, F.; Wong, D.T.; Ton-That, H.; Wang, C.Y.; Kapila, Y.L. Biological biomarkers of oral cancer. Periodontol. 2000 2023. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.R.S.; Ferraz, D.L.F.; de Oliveira, C.R.G.; Evangelista, K.; Silva, M.A.G.; Silva, F.P.Y.; Silva, B.S.F. Risk and prevalence of oral cancer in patients with different types of lupus erythematosus: A systematic review and meta-analysis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2023, 136, 595–605. [Google Scholar] [CrossRef] [PubMed]
- Tran, Q.; Maddineni, S.; Arnaud, E.H.; Divi, V.; Megwalu, U.C.; Topf, M.C.; Sunwoo, J.B. Oral cavity cancer in young, non-smoking, and non-drinking patients: A contemporary review. Crit. Rev. Oncol. Hematol. 2023, 190, 104112. [Google Scholar] [CrossRef] [PubMed]
- Auguste, A.; Deloumeaux, J.; Joachim, C.; Gaete, S.; Michineau, L.; Herrmann-Storck, C.; Duflo, S.; Luce, D. Joint effect of tobacco, alcohol, and oral HPV infection on head and neck cancer risk in the French West Indies. Cancer Med. 2020, 9, 6854–6863. [Google Scholar] [CrossRef]
- Lissoni, A.; Agliardi, E.; Peri, A.; Marchioni, R.; Abati, S. Oral microbiome and mucosal trauma as risk factors for oral cancer: Beyond alcohol and tobacco. A literature review. J. Biol. Regul. Homeost. Agents 2020, 34 (Suppl. S3), 11–18. [Google Scholar]
- Sujatha, G.; Veeraraghavan, V.P.; Alamoudi, A.; Bahammam, M.A.; Bahammam, S.A.; Alhazmi, Y.A.; Alharbi, H.S.; Alzahrani, K.J.; Al-Ghamdi, M.S.; Alzahrani, F.M.; et al. Role of Toothbrushes as Gene Expression Profiling Tool for Oral Cancer Screening in Tobacco and Alcohol Users. Int. J. Environ. Res. Public Health 2022, 19, 8052. [Google Scholar] [CrossRef] [PubMed]
- Mosaddad, S.A.; Mahootchi, P.; Rastegar, Z.; Abbasi, B.; Alam, M.; Abbasi, K.; Fani-Hanifeh, S.; Amookhteh, S.; Sadeghi, S.; Soufdoost, R.S.; et al. Photodynamic Therapy in Oral Cancer: A Narrative Review. Photobiomodul Photomed. Laser Surg. 2023, 41, 248–264. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas, N. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 2015, 517, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Farah, C.S. Molecular, genomic and mutational landscape of oral leukoplakia. Oral Dis. 2021, 27, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Farah, C.S.; Jessri, M.; Bennett, N.C.; Dalley, A.J.; Shearston, K.D.; Fox, S.A. Exome sequencing of oral leukoplakia and oral squamous cell carcinoma implicates DNA damage repair gene defects in malignant transformation. Oral Oncol. 2019, 96, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Masse, R.; Duvernay, J.; Korbi, S.; Majoufre, C.; Schlund, M. Oral carcinoma cuniculatum, a rare variant of squamous cell carcinoma. J. Stomatol. Oral Maxillofac. Surg. 2023, 125, 101729. [Google Scholar] [CrossRef]
- Pangarkar, M.; Wagh, U.; Pathak, A. Autophagy indicators in oral squamous cell carcinoma. Pathology 2024, 56, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Yuan, Z.; Lu, M.; Zhang, Y.; Jin, L.; Ye, W. Poor oral health is associated with an increased risk of esophageal squamous cell carcinoma—A population-based case-control study in China. Int. J. Cancer 2017, 140, 626–635. [Google Scholar] [CrossRef]
- Fleshner, N.E.; Alibhai, S.M.H.; Connelly, K.A.; Martins, I.; Eigl, B.J.; Lukka, H.; Aprikian, A. Adherence to oral hormonal therapy in advanced prostate cancer: A scoping review. Ther. Adv. Med. Oncol. 2023, 15, 17588359231152845. [Google Scholar] [CrossRef]
- Liao, Y.H.; Chou, W.Y.; Chang, C.W.; Lin, M.C.; Wang, C.P.; Lou, P.J.; Chen, T.C. Chemoprevention of oral cancer: A review and future perspectives. Head Neck 2023, 45, 1045–1059. [Google Scholar] [CrossRef]
- Shigeishi, H. Association between human papillomavirus and oral cancer: A literature review. Int. J. Clin. Oncol. 2023, 28, 982–989. [Google Scholar] [CrossRef]
- Mosaddad, S.A.; Namanloo, R.A.; Aghili, S.S.; Maskani, P.; Alam, M.; Abbasi, K.; Nouri, F.; Tahmasebi, E.; Yazdanian, M.; Tebyaniyan, H. Photodynamic therapy in oral cancer: A review of clinical studies. Med. Oncol. 2023, 40, 91. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Gao, Y.; Zhu, W.; Bai, X.-g.; Qi, J. Advances in molecular agents targeting toll-like receptor 4 signaling pathways for potential treatment of sepsis. Eur. J. Med. Chem. 2024, 268, 116300. [Google Scholar] [CrossRef] [PubMed]
- Kenison, J.E.; Wang, Z.; Yang, K.; Snyder, M.; Quintana, F.J.; Sherr, D.H. The aryl hydrocarbon receptor suppresses immunity to oral squamous cell carcinoma through immune checkpoint regulation. Proc. Natl. Acad. Sci. USA 2021, 118, e2012692118. [Google Scholar] [CrossRef]
- Thiruvengadam, R.; Kim, J.H. Therapeutic strategy for oncovirus-mediated oral cancer: A comprehensive review. Biomed. Pharmacother. 2023, 165, 115035. [Google Scholar] [CrossRef] [PubMed]
- Antoniraj, M.G.; Devi, K.P.; Berindan-Neagoe, I.; Nabavi, S.F.; Khayat Kashani, H.R.; Aghaabdollahian, S.; Afkhami, F.; Jeandet, P.; Lorigooini, Z.; Khayatkashani, M.; et al. Oral microbiota in cancer: Could the bad guy turn good with application of polyphenols? Expert. Rev. Mol. Med. 2022, 25, e1. [Google Scholar] [CrossRef] [PubMed]
- Cueva, C.; Silva, M.; Pinillos, I.; Bartolome, B.; Moreno-Arribas, M.V. Interplay between Dietary Polyphenols and Oral and Gut Microbiota in the Development of Colorectal Cancer. Nutrients 2020, 12, 625. [Google Scholar] [CrossRef] [PubMed]
- Sheng, H.; Ogawa, T.; Niwano, Y.; Sasaki, K.; Tachibana, K. Effects of polyphenols on doxorubicin-induced oral keratinocyte cytotoxicity and anticancer potency against oral cancer cells. J. Oral Pathol. Med. 2018, 47, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Adhami, V.M.; Siddiqui, I.A.; Ahmad, N.; Gupta, S.; Mukhtar, H. Oral consumption of green tea polyphenols inhibits insulin-like growth factor-I-induced signaling in an autochthonous mouse model of prostate cancer. Cancer Res. 2004, 64, 8715–8722. [Google Scholar] [CrossRef]
- Kapoor, V.; Aggarwal, S.; Das, S.N. 6-Gingerol Mediates its Anti Tumor Activities in Human Oral and Cervical Cancer Cell Lines through Apoptosis and Cell Cycle Arrest. Phytother. Res. 2016, 30, 588–595. [Google Scholar] [CrossRef]
- Liu, Y.T.; Ho, H.Y.; Lin, C.C.; Chuang, Y.C.; Lo, Y.S.; Hsieh, M.J.; Chen, M.K. Platyphyllenone Induces Autophagy and Apoptosis by Modulating the AKT and JNK Mitogen-Activated Protein Kinase Pathways in Oral Cancer Cells. Int. J. Mol. Sci. 2021, 22, 4211. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, M.; Ogasawara, Y.; Hayashi, H.; Inoue, K.; Sakashita, H. Resveratrol Inhibits Proliferation and Induces Autophagy by Blocking SREBP1 Expression in Oral Cancer Cells. Molecules 2022, 27, 8250. [Google Scholar] [CrossRef] [PubMed]
- Angellotti, G.; Di Prima, G.; Belfiore, E.; Campisi, G.; De Caro, V. Chemopreventive and Anticancer Role of Resveratrol against Oral Squamous Cell Carcinoma. Pharmaceutics 2023, 15, 275. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Yin, X.; Ma, D.; Su, Z. Anticancer activity of Phloretin against the human oral cancer cells is due to G0/G1 cell cycle arrest and ROS mediated cell death. J. BUON 2020, 25, 344–349. [Google Scholar] [PubMed]
- Chen, Y.J.; Kuo, C.C.; Ting, L.L.; Lu, L.S.; Lu, Y.C.; Cheng, A.J.; Lin, Y.T.; Chen, C.H.; Tsai, J.T.; Chiou, J.F. Piperlongumine inhibits cancer stem cell properties and regulates multiple malignant phenotypes in oral cancer. Oncol. Lett. 2018, 15, 1789–1798. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Yoo, H.; Kim, J.A.; Lee, S.; Jee, J.G.; Lee, M.Y.; Lee, Y.M.; Bae, J.S. Barrier protective effects of piperlonguminine in LPS-induced inflammation in vitro and in vivo. Food Chem. Toxicol. 2013, 58, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Sharma, N.K.; Mishra, N.; Mahajan, A.; Krishnan, A.; Rajpoot, R.; Kumar, J.A.; Pandey, A. Effects of curcumin on oral cancer at molecular level: A systematic review. Natl. J. Maxillofac. Surg. 2023, 14, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Chien, M.-H.; Shih, P.-C.; Ding, Y.-F.; Chen, L.-H.; Hsieh, F.-K.; Tsai, M.-Y.; Li, P.-Y.; Lin, C.-W.; Yang, S.-F. Curcumin analog, GO-Y078, induces HO-1 transactivation-mediated apoptotic cell death of oral cancer cells by triggering MAPK pathways and AP-1 DNA-binding activity. Expert. Opin. Ther. Targets 2022, 26, 375–388. [Google Scholar] [CrossRef] [PubMed]
- Semlali, A.; Contant, C.; Al-Otaibi, B.; Al-Jammaz, I.; Chandad, F. The curcumin analog (PAC) suppressed cell survival and induced apoptosis and autophagy in oral cancer cells. Sci. Rep. 2021, 11, 11701. [Google Scholar] [CrossRef]
- Yu, H.J.; Shin, J.A.; Yang, I.H.; Won, D.H.; Ahn, C.H.; Kwon, H.J.; Lee, J.S.; Cho, N.P.; Kim, E.C.; Yoon, H.J.; et al. Apoptosis induced by caffeic acid phenethyl ester in human oral cancer cell lines: Involvement of Puma and Bax activation. Arch. Oral Biol. 2017, 84, 94–99. [Google Scholar] [CrossRef]
- Yesil-Celiktas, O.; Sevimli, C.; Bedir, E.; Vardar-Sukan, F. Inhibitory effects of rosemary extracts, carnosic acid and rosmarinic acid on the growth of various human cancer cell lines. Plant Foods Hum. Nutr. 2010, 65, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.Y.; Jim, W.T.; Su, L.C.; Chung, C.J.; Lin, C.Y.; Huo, C.; Tseng, J.C.; Huang, S.H.; Lai, C.J.; Chen, B.C.; et al. Caffeic Acid phenethyl ester is a potential therapeutic agent for oral cancer. Int. J. Mol. Sci. 2015, 16, 10748–10766. [Google Scholar] [CrossRef] [PubMed]
- Semlali, A.; Beji, S.; Ajala, I.; Rouabhia, M. Effects of tetrahydrocannabinols on human oral cancer cell proliferation, apoptosis, autophagy, oxidative stress, and DNA damage. Arch. Oral Biol. 2021, 129, 105200. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.-P.; Lin, C.-W.; Chen, M.-K.; Yang, S.-F.; Chiou, H.-L.; Hsieh, M.-J. Pterostilbene induce autophagy on human oral cancer cells through modulation of Akt and mitogen-activated protein kinase pathway. Oral Oncol. 2015, 51, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, M.T.; Huang, L.J.; Wu, T.S.; Lin, H.Y.; Morris-Natschke, S.L.; Lee, K.H.; Kuo, S.C. Synthesis and antitumor activity of bis(hydroxymethyl)propionate analogs of pterostilbene in cisplatin-resistant human oral cancer cells. Bioorg. Med. Chem. 2018, 26, 3909–3916. [Google Scholar] [CrossRef]
- Eltahir, S.; Ahmad, A. Flavonoids on the Frontline against Cancer Metastasis. Cancers 2023, 15, 4139. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, P.; Mishra, K.P. Role of Plant-Derived Flavonoids in Cancer Treatment. Nutr. Cancer 2023, 75, 430–449. [Google Scholar] [CrossRef]
- Gu, Y.; Zheng, Q.; Fan, G.; Liu, R. Advances in Anti-Cancer Activities of Flavonoids in Scutellariae radix: Perspectives on Mechanism. Int. J. Mol. Sci. 2022, 23, 11042. [Google Scholar] [CrossRef]
- Lee, R.H.; Shin, J.C.; Kim, K.H.; Choi, Y.H.; Chae, J.I.; Shim, J.H. Apoptotic effects of 7,8-dihydroxyflavone in human oral squamous cancer cells through suppression of Sp1. Oncol. Rep. 2015, 33, 631–638. [Google Scholar] [CrossRef]
- Ji, Y.; Hu, W.; Jin, Y.; Yu, H.; Fang, J. Liquiritigenin exerts the anti-cancer role in oral cancer via inducing autophagy-related apoptosis through PI3K/AKT/mTOR pathway inhibition in vitro and in vivo. Bioengineered 2021, 12, 6070–6082. [Google Scholar] [CrossRef]
- Jung, G.H.; Lee, J.H.; Han, S.H.; Woo, J.S.; Choi, E.Y.; Jeon, S.J.; Han, E.J.; Jung, S.H.; Park, Y.S.; Park, B.K.; et al. Chrysin Induces Apoptosis via the MAPK Pathway and Regulates ERK/mTOR-Mediated Autophagy in MC-3 Cells. Int. J. Mol. Sci. 2022, 23, 15747. [Google Scholar] [CrossRef] [PubMed]
- Park, B.S.; Choi, N.E.; Lee, J.H.; Kang, H.M.; Yu, S.B.; Kim, H.J.; Kang, H.K.; Kim, I.R. Crosstalk between Fisetin-induced Apoptosis and Autophagy in Human Oral Squamous Cell Carcinoma. J. Cancer 2019, 10, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.S.; Yao, C.N.; Liu, H.C.; Yu, F.S.; Lin, J.J.; Lu, K.W.; Liao, C.L.; Chueh, F.S.; Chung, J.G. Quercetin induced apoptosis of human oral cancer SAS cells through mitochondria and endoplasmic reticulum mediated signaling pathways. Oncol. Lett. 2018, 15, 9663–9672. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Fang, Z.; Zha, Z.; Sun, Q.; Wang, H.; Sun, M.; Qiao, B. Quercetin inhibits cell viability, migration and invasion by regulating miR-16/HOXA10 axis in oral cancer. Eur. J. Pharmacol. 2019, 847, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Zhang, Y.; Zhou, H.; Lv, J. Baicalein inhibits the growth of oral squamous cell carcinoma cells by downregulating the expression of transcription factor Sp1. Int. J. Oncol. 2020, 56, 273–282. [Google Scholar] [CrossRef]
- Tu, D.G.; Lin, W.T.; Yu, C.C.; Lee, S.S.; Peng, C.Y.; Lin, T.; Yu, C.H. Chemotherapeutic effects of luteolin on radio-sensitivity enhancement and interleukin-6/signal transducer and activator of transcription 3 signaling repression of oral cancer stem cells. J. Formos. Med. Assoc. 2016, 115, 1032–1038. [Google Scholar] [CrossRef]
- Huang, Y.C.; Lee, P.C.; Wang, J.J.; Hsu, Y.C. Anticancer Effect and Mechanism of Hydroxygenkwanin in Oral Squamous Cell Carcinoma. Front. Oncol. 2019, 9, 911. [Google Scholar] [CrossRef] [PubMed]
- Maggioni, D.; Garavello, W.; Rigolio, R.; Pignataro, L.; Gaini, R.; Nicolini, G. Apigenin impairs oral squamous cell carcinoma growth in vitro inducing cell cycle arrest and apoptosis. Int. J. Oncol. 2013, 43, 1675–1682. [Google Scholar] [CrossRef]
- Wudtiwai, B.; Makeudom, A.; Krisanaprakornkit, S.; Pothacharoen, P.; Kongtawelert, P. Anticancer Activities of Hesperidin via Suppression of Up-Regulated Programmed Death-Ligand 1 Expression in Oral Cancer Cells. Molecules 2021, 26, 5345. [Google Scholar] [CrossRef]
- Velmurugan, B.K.; Lin, J.T.; Mahalakshmi, B.; Chuang, Y.C.; Lin, C.C.; Lo, Y.S.; Hsieh, M.J.; Chen, M.K. Luteolin-7-O-Glucoside Inhibits Oral Cancer Cell Migration and Invasion by Regulating Matrix Metalloproteinase-2 Expression and Extracellular Signal-Regulated Kinase Pathway. Biomolecules 2020, 10, 502. [Google Scholar] [CrossRef]
- Tsai, J.Y.; Lee, M.J.; Chang, M.D.; Wang, H.C.; Lin, C.C.; Huang, H. Effects of novel human cathepsin S inhibitors on cell migration in human cancer cells. J. Enzym. Inhib. Med. Chem. 2014, 29, 538–546. [Google Scholar] [CrossRef]
- Chen, C.T.; Hsieh, M.J.; Hsieh, Y.H.; Hsin, M.C.; Chuang, Y.T.; Yang, S.F.; Yang, J.S.; Lin, C.W. Sulforaphane suppresses oral cancer cell migration by regulating cathepsin S expression. Oncotarget 2018, 9, 17564–17575. [Google Scholar] [CrossRef]
- Varadarajan, S.; Madapusi, B.T.; Narasimhan, M.; Pandian, C.D.; Dhanapal, S. Anticancer Effects of Carica papaya L. and Benzyl Isothiocyanate on an Oral Squamous Cell Carcinoma Cell Line: An In Vitro Study. J. Contemp. Dent. Pract. 2022, 23, 839–844. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.J.; Tseng, W.S.; Lai, J.C.; Shieh, H.R.; Chi, C.W.; Chen, Y.J. Differential Pharmacological Activities of Oxygen Numbers on the Sulfoxide Moiety of Wasabi Compound 6-(Methylsulfinyl) Hexyl Isothiocyanate in Human Oral Cancer Cells. Molecules 2018, 23, 2427. [Google Scholar] [CrossRef]
- Hsu, P.C.; Cheng, C.F.; Hsieh, P.C.; Chen, Y.H.; Kuo, C.Y.; Sytwu, H.K. Chrysophanol Regulates Cell Death, Metastasis, and Reactive Oxygen Species Production in Oral Cancer Cell Lines. Evid. Based Complement. Altern. Med. 2020, 2020, 5867064. [Google Scholar] [CrossRef]
- Li, Q.; Wen, J.; Yu, K.; Shu, Y.; He, W.; Chu, H.; Zhang, B.; Ge, C. Aloe-emodin induces apoptosis in human oral squamous cell carcinoma SCC15 cells. BMC Complement. Altern. Med. 2018, 18, 296. [Google Scholar] [CrossRef]
- Lin, C.L.; Yu, C.I.; Lee, T.H.; Chuang, J.M.; Han, K.F.; Lin, C.S.; Huang, W.P.; Chen, J.Y.; Chen, C.Y.; Lin, M.Y.; et al. Plumbagin induces the apoptosis of drug-resistant oral cancer in vitro and in vivo through ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction. Phytomedicine 2023, 111, 154655. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Si, L.; Zheng, Y.; Wang, H. Shikonin enhances chemosensitivity of oral cancer through β-catenin pathway. Oral Dis. 2022, 12, 14458. [Google Scholar] [CrossRef]
- Cho, B.H.; Jung, Y.H.; Kim, D.J.; Woo, B.H.; Jung, J.E.; Lee, J.H.; Choi, Y.W.; Park, H.R. Acetylshikonin suppresses invasion of Porphyromonas gingivalis-infected YD10B oral cancer cells by modulating the interleukin-8/matrix metalloproteinase axis. Mol. Med. Rep. 2018, 17, 2327–2334. [Google Scholar] [CrossRef]
- Kim, D.J.; Lee, J.H.; Park, H.R.; Choi, Y.W. Acetylshikonin inhibits growth of oral squamous cell carcinoma by inducing apoptosis. Arch. Oral Biol. 2016, 70, 149–157. [Google Scholar] [CrossRef]
- Salar, T.; Jimenez, M.; Hameed, M.; Ocon, A. Chronic Anti-HMG-CoA Reductase Positive Necrotizing Myositis With Remote Exposure to Statins. Cureus 2023, 15, e40552. [Google Scholar] [CrossRef] [PubMed]
- Zaborowska, M.; Matyszewska, D.; Bilewicz, R. Model Lipid Raft Membranes for Embedding Integral Membrane Proteins: Reconstitution of HMG-CoA Reductase and Its Inhibition by Statins. Langmuir 2022, 38, 13888–13897. [Google Scholar] [CrossRef]
- Miyajima, C.; Hayakawa, Y.; Inoue, Y.; Nagasaka, M.; Hayashi, H. HMG-CoA Reductase Inhibitor Statins Activate the Transcriptional Activity of p53 by Regulating the Expression of TAZ. Pharmaceuticals 2022, 15, 1015. [Google Scholar] [CrossRef] [PubMed]
- Biselli-Chicote, P.M.; Lotierzo, A.T.; Biselli, J.M.; Paravino, E.C.; Goloni-Bertollo, E.M. Atorvastatin increases oxidative stress and inhibits cell migration of oral squamous cell carcinoma in vitro. Oral Oncol. 2019, 90, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Kansal, V.; Burnham, A.J.; Kinney, B.L.C.; Saba, N.F.; Paulos, C.; Lesinski, G.B.; Buchwald, Z.S.; Schmitt, N.C. Statin drugs enhance responses to immune checkpoint blockade in head and neck cancer models. J. Immunother. Cancer 2023, 11, e005940. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.C.; Chen, W.M.; Shia, B.C.; Chen, M.; Wu, S.Y. The effect of statin medication on the incidence of oral squamous cell carcinoma among betel-nut chewers. Head Neck 2023, 45, 1455–1467. [Google Scholar] [CrossRef] [PubMed]
- Pan, W.; Zhang, G. Linalool monoterpene exerts potent antitumor effects in OECM 1 human oral cancer cells by inducing sub-G1 cell cycle arrest, loss of mitochondrial membrane potential and inhibition of PI3K/AKT biochemical pathway. J. BUON 2019, 24, 323–328. [Google Scholar] [PubMed]
- Hsieh, M.J.; Lin, C.W.; Chiou, H.L.; Yang, S.F.; Chen, M.K. Dehydroandrographolide, an iNOS inhibitor, extracted from Andrographis paniculata (Burm.f.) Nees, induces autophagy in human oral cancer cells. Oncotarget 2015, 6, 30831–30849. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.T.; Hsieh, M.J.; Lin, J.T.; Chen, G.; Lin, C.C.; Lo, Y.S.; Chuang, Y.C.; Hsi, Y.T.; Chen, M.K.; Chou, M.C. Coronarin D induces human oral cancer cell apoptosis though upregulate JNK1/2 signaling pathway. Environ. Toxicol. 2019, 34, 513–520. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Yi, J.K.; Lim, S.G.; Park, S.; Zhang, H.; Kim, E.; Jang, S.; Lee, M.H.; Liu, K.; Kim, K.R.; et al. Costunolide Induces Apoptosis via the Reactive Oxygen Species and Protein Kinase B Pathway in Oral Cancer Cells. Int. J. Mol. Sci. 2021, 22, 7509. [Google Scholar] [CrossRef]
- She, Y.Y.; Lin, J.J.; Su, J.H.; Chang, T.S.; Wu, Y.J. 4-Carbomethoxyl-10-Epigyrosanoldie E Extracted from Cultured Soft Coral Sinularia sandensis Induced Apoptosis and Autophagy via ROS and Mitochondrial Dysfunction and ER Stress in Oral Cancer Cells. Oxid. Med. Cell Longev. 2022, 2022, 3017807. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.T.; Wu, C.Y.; Tang, J.Y.; Huang, C.Y.; Liaw, C.C.; Wu, S.H.; Sheu, J.H.; Chang, H.W. Sinularin induces oxidative stress-mediated G2/M arrest and apoptosis in oral cancer cells. Environ. Toxicol. 2017, 32, 2124–2132. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.H.; Lin, Y.S.; Wang, S.C.; Lee, M.Y.; Tang, J.Y.; Chang, F.R.; Chuang, Y.T.; Sheu, J.H.; Chang, H.W. Soft Coral-Derived Dihydrosinularin Exhibits Antiproliferative Effects Associated with Apoptosis and DNA Damage in Oral Cancer Cells. Pharmaceuticals 2021, 14, 994. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.L.; Lo, Y.H.; Lin, C.L.; Lee, T.H.; Leung, W.; Wang, S.W.; Lin, I.P.; Lin, M.Y.; Lee, C.H. Trichodermin inhibits the growth of oral cancer through apoptosis-induced mitochondrial dysfunction and HDAC-2-mediated signaling. Biomed. Pharmacother. 2022, 153, 113351. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.S.; Yang, C.Y.; Lin, C.K.; Lin, G.J.; Sytwu, H.K.; Chen, Y.W. Triptolide suppresses oral cancer cell PD-L1 expression in the interferon-gamma-modulated microenvironment in vitro, in vivo, and in clinical patients. Biomed. Pharmacother. 2021, 133, 111057. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.J.; Hsieh, C.Y.; Tang, J.Y.; Lin, L.C.; Huang, H.W.; Wang, H.R.; Yeh, Y.C.; Chuang, Y.T.; Ou-Yang, F.; Chang, H.W. Antimycin A shows selective antiproliferation to oral cancer cells by oxidative stress-mediated apoptosis and DNA damage. Environ. Toxicol. 2020, 35, 1212–1224. [Google Scholar] [CrossRef]
- Chen, Y.N.; Chan, C.K.; Yen, C.Y.; Shiau, J.P.; Chang, M.Y.; Wang, C.C.; Jeng, J.H.; Tang, J.Y.; Chang, H.W. Antioral Cancer Effects by the Nitrated [6,6,6]Tricycles Compound (SK1) In Vitro. Antioxidants 2022, 11, 2072. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.J.; Ahn, C.H.; Yang, I.H.; Jin, B.; Lee, W.W.; Kim, J.H.; Ahn, M.H.; Swarup, N.; Hong, K.O.; Shin, J.A.; et al. Pseudolaric Acid B Induces Growth Inhibition and Caspase-Dependent Apoptosis on Head and Neck Cancer Cell lines through Death Receptor 5. Molecules 2019, 24, 3715. [Google Scholar] [CrossRef] [PubMed]
- Su, S.C.; Chen, Y.T.; Hsieh, Y.H.; Yang, W.E.; Su, C.W.; Chiu, W.Y.; Yang, S.F.; Lin, C.W. Gambogic Acid Induces HO-1 Expression and Cell Apoptosis through p38 Signaling in Oral Squamous Cell Carcinoma. Am. J. Chin. Med. 2022, 50, 1663–1679. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhang, N.A.; Wang, R.; Huang, F.; Li, G. Paclitaxel induces apoptosis and reduces proliferation by targeting epidermal growth factor receptor signaling pathway in oral cavity squamous cell carcinoma. Oncol. Lett. 2015, 10, 2378–2384. [Google Scholar] [CrossRef]
- Saha, D.; Mitra, D.; Alam, N.; Sen, S.; Mustafi, S.M.; Majumder, P.K.; Majumder, B.; Murmu, N. Lupeol and Paclitaxel cooperate in hindering hypoxia induced vasculogenic mimicry via suppression of HIF-1alpha-EphA2-Laminin-5gamma2 network in human oral cancer. J. Cell Commun. Signal. 2023, 17, 591–608. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.W.; Chin, H.K.; Lee, S.L.; Chiu, C.F.; Chung, J.G.; Lin, Z.Y.; Wu, C.Y.; Liu, Y.C.; Hsiao, Y.T.; Feng, C.H.; et al. Ursolic acid induces apoptosis and autophagy in oral cancer cells. Environ. Toxicol. 2019, 34, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Y.; Lin, C.S.; Hua, C.H.; Jou, Y.J.; Liao, C.R.; Chang, Y.S.; Wan, L.; Huang, S.H.; Hour, M.J.; Lin, C.W. Cis-3-O-p-hydroxycinnamoyl Ursolic Acid Induced ROS-Dependent p53-Mediated Mitochondrial Apoptosis in Oral Cancer Cells. Biomol. Ther. 2019, 27, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Sharifi, S.; Naseri, N.; Fathiazad, F.; Asnaashari, S.; Hamedeyazdan, S. Anticancer effect of buddlejasaponin IV and buddlejasaponin IVa from Clinopodium umbrosum on oral cancer cells (HN-5). Toxicon 2022, 220, 106939. [Google Scholar] [CrossRef] [PubMed]
- Pang, L.; Zhao, X.; Liu, W.; Deng, J.; Tan, X.; Qiu, L. Anticancer Effect of Ursodeoxycholic Acid in Human Oral Squamous Carcinoma HSC-3 Cells through the Caspases. Nutrients 2015, 7, 3200–3218. [Google Scholar] [CrossRef]
- Shen, H.; Liu, L.; Yang, Y.; Xun, W.; Wei, K.; Zeng, G. Betulinic Acid Inhibits Cell Proliferation in Human Oral Squamous Cell Carcinoma via Modulating ROS-Regulated p53 Signaling. Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 2017, 25, 1141–1152. [Google Scholar] [CrossRef]
- Rauth, S.; Ray, S.; Bhattacharyya, S.; Mehrotra, D.G.; Alam, N.; Mondal, G.; Nath, P.; Roy, A.; Biswas, J.; Murmu, N. Lupeol evokes anticancer effects in oral squamous cell carcinoma by inhibiting oncogenic EGFR pathway. Mol. Cell Biochem. 2016, 417, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yi, J.; Kim, E.; Choo, Y.; Hai, H.; Kim, K.; Kim, E.K.; Ryoo, Z.; Kim, M. 20(S)-Ginsenoside Rh2 Suppresses Oral Cancer Cell Growth by Inhibiting the Src-Raf-ERK Signaling Pathway. Anticancer Res. 2021, 41, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.C.; Wong, W.T.; Li, L.H.; Chu, L.J.; Menon, M.P.; Ho, C.L.; Chernikov, O.V.; Lee, S.L.; Hua, K.F. Ginsenoside M1 Induces Apoptosis and Inhibits the Migration of Human Oral Cancer Cells. Int. J. Mol. Sci. 2020, 21, 9704. [Google Scholar] [CrossRef]
- Li, T.; Wang, L. Riparsaponin isolated from Homonoia riparia Lour induces apoptosis of oral cancer cells. Oncol. Lett. 2017, 14, 6841–6846. [Google Scholar] [CrossRef]
- Ho, S.Y.; Wu, W.S.; Lin, L.C.; Wu, Y.H.; Chiu, H.W.; Yeh, Y.L.; Huang, B.M.; Wang, Y.J. Cordycepin Enhances Radiosensitivity in Oral Squamous Carcinoma Cells by Inducing Autophagy and Apoptosis Through Cell Cycle Arrest. Int. J. Mol. Sci. 2019, 20, 5366. [Google Scholar] [CrossRef] [PubMed]
- Su, N.W.; Wu, S.H.; Chi, C.W.; Tsai, T.H.; Chen, Y.J. Cordycepin, isolated from medicinal fungus Cordyceps sinensis, enhances radiosensitivity of oral cancer associated with modulation of DNA damage repair. Food Chem. Toxicol. 2019, 124, 400–410. [Google Scholar] [CrossRef]
- Xing, D.; Li, L.; Meng, D.; Zhang, Y.; Ma, F. Anti-cell Proliferative Mechanism of Doxazosin on Human Oral Cancer Cells Through the Modulation of Antioxidant and Apoptotic Pathway. Appl. Biochem. Biotechnol. 2023, 195, 6824–6839. [Google Scholar] [CrossRef] [PubMed]
- Gorur, A.; Patino, M.; Shi, T.; Corrales, G.; Takahashi, H.; Rangel, R.; Gleber-Netto, F.O.; Pickering, C.; Myers, J.N.; Cata, J.P. Low doses of methylnaltrexone inhibits head and neck squamous cell carcinoma growth in vitro and in vivo by acting on the mu-opioid receptor. J. Cell Physiol. 2021, 236, 7698–7710. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.; Choi, H.; Kim, J.; Kim, S.; Jeon, S.; Ni, K.; Song, S.Y.; Oh, H.K.; Im, Y.; Lee, G.; et al. Expression of cancer stem cell marker during 4-nitroquinoline 1-oxide-induced rat tongue carcinogenesis. J. Mol. Histol. 2014, 45, 653–663. [Google Scholar] [CrossRef] [PubMed]
- Sahu, S.R.; Thakur, S.; Peroumal, D.; Utkalaja, B.G.; Dutta, A.; Kumari, P.; Subhadarsini, I.; Acharya, N. 4-nitroquinoline 1-oxide induces immune cells death to onset early immunosuppression during oral squamous cell carcinoma development. Front. Immunol. 2023, 14, 1274519. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, P.; Suchalatha, S.; Babu, P.V.; Devi, R.S.; Narayan, S.; Sabitha, K.E.; Shyamala Devi, C.S. Chemopreventive and therapeutic modulation of green tea polyphenols on drug metabolizing enzymes in 4-Nitroquinoline 1-oxide induced oral cancer. Chem. Biol. Interact. 2008, 172, 224–234. [Google Scholar] [CrossRef]
- Park, N.S.; Park, Y.K.; Yadav, A.K.; Shin, Y.M.; Bishop-Bailey, D.; Choi, J.S.; Park, J.W.; Jang, B.C. Anti-growth and pro-apoptotic effects of dasatinib on human oral cancer cells through multi-targeted mechanisms. J. Cell. Mol. Med. 2021, 25, 8300–8311. [Google Scholar] [CrossRef]
- Hsu, R.J.; Peng, K.Y.; Hsu, W.L.; Chen, Y.T.; Liu, D.W. Z-Ligustilide Induces c-Myc-Dependent Apoptosis via Activation of ER-Stress Signaling in Hypoxic Oral Cancer Cells. Front. Oncol. 2022, 12, 824043. [Google Scholar] [CrossRef]
- Deng, Z.; Liao, W.; Wei, W.; Zhong, G.; He, C.; Zhang, H.; Liu, Q.; Xu, X.; Liang, J.; Liu, Z. Anlotinib as a promising inhibitor on tumor growth of oral squamous cell carcinoma through cell apoptosis and mitotic catastrophe. Cancer Cell Int. 2021, 21, 37. [Google Scholar] [CrossRef]
- Nakamura, N.; Fujihara, H.; Kawaguchi, K.; Yamada, H.; Nakayama, R.; Yasukawa, M.; Kishi, Y.; Hamada, Y.; Masutani, M. Possible Action of Olaparib for Preventing Invasion of Oral Squamous Cell Carcinoma In Vitro and In Vivo. Int. J. Mol. Sci. 2022, 23, 2527. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Liu, H.; Li, X. Orlistat treatment induces apoptosis and arrests cell cycle in HSC-3 oral cancer cells. Microb. Pathog. 2017, 112, 15–19. [Google Scholar] [CrossRef] [PubMed]
- El-Naggar, M.H.; Abdel Bar, F.M.; Harsha, C.; Monisha, J.; Shimizu, K.; Kunnumakkara, A.B.; Badria, F.A. Synthesis of new selective cytotoxic ricinine analogues against oral squamous cell carcinoma. Nat. Product. Res. 2019, 35, 2145–2156. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.E.M.; do Nascimento Filho, C.H.V.; Marinho Bezerra, T.M.; Guerra, E.N.S.; Castilho, R.M.; Squarize, C.H. Entinostat is a novel therapeutic agent to treat oral squamous cell carcinoma. J. Oral Pathol. Med. 2020, 49, 771–779. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.J.; Shin, J.A.; Nam, J.S.; Kang, B.S.; Cho, S.D. Apoptotic effect of dibenzylideneacetone on oral cancer cells via modulation of specificity protein 1 and Bax. Oral Dis. 2013, 19, 767–774. [Google Scholar] [CrossRef]
- Chen, C.H.; Tsai, H.T.; Chuang, H.C.; Shiu, L.Y.; Su, L.J.; Chiu, T.J.; Luo, S.D.; Fang, F.M.; Huang, C.C.; Chien, C.Y. Metformin disrupts malignant behavior of oral squamous cell carcinoma via a novel signaling involving Late SV40 factor/Aurora-A. Sci. Rep. 2017, 7, 1358. [Google Scholar] [CrossRef] [PubMed]
- Tao, A.; Wang, X.; Li, C. Effect of Lycopene on Oral Squamous Cell Carcinoma Cell Growth by Inhibiting IGF1 Pathway. Cancer Manag. Res. 2021, 13, 723–732. [Google Scholar] [CrossRef] [PubMed]
- Babukumar, S.; Vinothkumar, V.; Ramachandhiran, D. Modulating effect of hesperetin on the molecular expression pattern of apoptotic and cell proliferative markers in 7,12-dimethylbenz(a)anthracene-induced oral carcinogenesis. Arch. Physiol. Biochem. 2020, 126, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Basilotta, R.; Lanza, M.; Filippone, A.; Casili, G.; Mannino, D.; De Gaetano, F.; Chisari, G.; Colarossi, L.; Motta, G.; Campolo, M.; et al. Therapeutic Potential of Dimethyl Fumarate in Counteract Oral Squamous Cell Carcinoma Progression by Modulating Apoptosis, Oxidative Stress and Epithelial-Mesenchymal Transition. Int. J. Mol. Sci. 2023, 24, 2777. [Google Scholar] [CrossRef]
- Tang, J.Y.; Wu, C.Y.; Shu, C.W.; Wang, S.C.; Chang, M.Y.; Chang, H.W. A novel sulfonyl chromen-4-ones (CHW09) preferentially kills oral cancer cells showing apoptosis, oxidative stress, and DNA damage. Environ. Toxicol. 2018, 33, 1195–1203. [Google Scholar] [CrossRef]
- Aggarwal, S.; Das, S.N. Thiodigalactoside shows antitumour activity by beta-galactoside-binding protein and regulatory T cells inhibition in oral squamous cell carcinoma. Oral Dis. 2016, 22, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.Y.; Chang, Y.L.; Liu, S.T.; Chen, G.S.; Lee, S.P.; Huang, S.M. Differential Cytotoxicity Mechanisms of Copper Complexed with Disulfiram in Oral Cancer Cells. Int. J. Mol. Sci. 2021, 22, 3711. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.H.; Wu, W.S.; Lin, L.C.; Liu, C.S.; Ho, S.Y.; Wang, B.J.; Huang, B.M.; Yeh, Y.L.; Chiu, H.W.; Yang, W.L.; et al. Bortezomib enhances radiosensitivity in oral cancer through inducing autophagy-mediated TRAF6 oncoprotein degradation. J. Exp. Clin. Cancer Res. 2018, 37, 91. [Google Scholar] [CrossRef]
- Chiang, S.L.; Velmurugan, B.K.; Chung, C.M.; Lin, S.H.; Wang, Z.H.; Hua, C.H.; Tsai, M.H.; Kuo, T.M.; Yeh, K.T.; Chang, P.Y.; et al. Preventive effect of celecoxib use against cancer progression and occurrence of oral squamous cell carcinoma. Sci. Rep. 2017, 7, 6235. [Google Scholar] [CrossRef] [PubMed]
- Shieu, M.K.; Ho, H.Y.; Lin, C.C.; Lo, Y.S.; Chuang, Y.C.; Hsieh, M.J.; Chen, M.K. Narciclasine suppresses oral cancer metastasis by modulating cathepsin B and extracellular signal-related kinase pathways. Biomed. Pharmacother. 2023, 158, 114159. [Google Scholar] [CrossRef] [PubMed]
- Samal, S.K.; Routray, S.; Veeramachaneni, G.K.; Dash, R.; Botlagunta, M. Ketorolac salt is a newly discovered DDX3 inhibitor to treat oral cancer. Sci. Rep. 2015, 5, 9982. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Yu, K.; Chu, X.; Yang, L. Betanin alleviates inflammation and ameliorates apoptosis on human oral squamous cancer cells SCC131 and SCC4 through the NF-kappaB/PI3K/Akt signaling pathway. J. Biochem. Mol. Toxicol. 2022, 36, e23094. [Google Scholar] [CrossRef]
No. | Name | Source | Cell Line | Activity (IC50) | Target or Signalling Pathway | Reference |
---|---|---|---|---|---|---|
1 | 6-Gingerol | Isolated from ginger | YD10B and Ca9-22 | - | AKT/mTOR signalling pathway | [30] |
2 | Platyphyllenone | Isolated from Alnus nepalensis Isolated from leaves | SCC-9 and SCC-47 | - | AKT and c-Jun N-terminal kinase (JNK) pathways | [31] |
3 | Resveratrol | Isolated from grapes | HSC-2 and HSC-3, HSC-4, Ca9-22, and SAS | - | Autophagy | [32,33] |
4 | Phloretin | Isolated from plants | SCC-1 | 12.5 µM | ROS-mediated apoptosis and G0/G1 phase arrest. | [34] |
5 | Piperlongumine | Isolated from Piper longum | SAS and CGHNC8 | - | TNF-α, IL-6, and NF-κB | [35,36] |
6 | Curcumin | Isolated from ginger | SCC-25 | - | Cell cycle arrest | [37] |
7 | GO-Y078 | Synthetic | SCC-9 and HSC-3 | <0.5 μM | Caspase-mediated apoptosis | [38] |
8 | PAC | Synthetic | Ca9-22 | 3 µM | Apoptosis, autophagy, and oxidative stress | [39] |
9 | Caffeic acid phenethyl ester | Isolated from propolis | TW2.6, OSF, GNM, TSCCa, SAS and OEC-M1 | 72.1, 90.6, 101.0, 120.9, 129.7 and 159.2 µM | Apoptosis-related proteins | [40] |
10 | Rosmarinic acid | Isolated from Rosemarinus officinalis | SCC-15 | 20–40 µM | Apoptosis and G2/M phase arrest | [41,42] |
11 and 12 | delta-8- and delta-9-tetrahydrocannabinol | Isolated from cannabis | Ca9-22 | 13 and 10 μg/mL | Decreased ROS production and increased glutathione and glutathione expression | [43] |
13 | Pterostilbene | Isolated from rosewood | SAS and OECM-1 | - | c-Jun N-terminal kinase (JNK) pathways | [44] |
14 | Bis(hydroxymethyl)propionate analogs | Synthetic | CAR | 32.58 μM | Autophagy | [45] |
15 | 7,8-Dihydroxyflavone | Isolated from plants | HN22 and HSC4 | - | Cell cycle arrest and apoptosis | [49] |
16 | Liquiritigenin | Isolated from liquorice | CAL-27 and SCC-9 | - | PI3K/AKT/mTOR pathway | [50] |
17 | Chrysin | Isolated from bignonia | MC3 | - | MAPK/extracellular signalling pathway | [51] |
18 | Fisetin | Isolated from toxicodendron sylvestre | Ca9-22 | - | Wnt, mTOR, and NF-xB signals’ pathway | [52] |
19 | Quercetin | Isolated from plants | HSC-6 and SCC-9 | 50 μM | Mitochondrial apoptosis pathway | [53,54] |
20 | Baicalein | Isolated from Scutellariae Radix | SCC25, CAL27 and HSC3 | - | Sp1 | [55] |
21 | luteolin | Isolated from chamomile tea, celery, perilla leaf, and green peppers | SAS and GNM | - | Interleukin-6/signal transduction and transcription 3 signalling | [56] |
22 | Hydroxygenkwanin | Isolated from Daphne genkwa Sieb. et Zucc. | SAS and OCEM1 | - | p21 and endogenous apoptotic pathways | [57] |
23 | Apigenin | Isolated from fruits and vegetables | SCC-25 | - | Cell cycle arrest and apoptosis | [58] |
24 | Hesperidin | Isolated from fruit of immature citron | HN6 | 169.53 μM | Programmed Death-Ligand 1 Expression | [59] |
25 | Luteolin-7-O-Glucoside | Isolated from plantain herb | HSC-3, FaDu, and CA9-22 | - | Signalling regulates the kinase pathway | [60] |
26 | Sulforaphane | Synthetic | SCC-9 and SCC-14 | - | Cathepsin S | [61,62] |
27 | Benzyl Isothiocyanate | Isolated from Carica papaya L. | SCC-25 | 29.80 μM. | Apoptosis | [63] |
28 | 6-MITC | Isolated from Wasabia japonica | SAS and OECM-1 | - | G2/M phase | [64] |
29 | I7447 | Semi-synthetic | SAS and OECM-1 | 10.3 and 13.1 μM. | G2/M phase | [64] |
30 | I7557 | Semi-synthetic | SAS and OECM-1 | 10.1 and 9.6 μM. | G2/M phase | [64] |
31 | Chrysophanol | Isolated from rhubarb | FaDu and SAS | 9.64 and 12.60 μM. | Cell death, metastasis, and reactivity oxygen production | [65] |
32 | Aloe emodin | Isolated from Rheum undulatum L. | SCC15 | 160.7 μM | Apoptosis | [66] |
33 | Plumbagin | Isolated from Plumbago zeylanica L | CR-SAS | 4.379 μM | ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction | [67] |
34 | Shikonin | Isolated from alkanet | SCC-25 and HSC-3 | - | β-catenin pathway | [69] |
35 | Acetylshikonin | Isolated from Lithospermum erythrorhizon | YD10B | - | Interleukin-8/matrix metalloproteinase axis | [70] |
36 | Atorvastatin | Synthetic | HN13 | - | VEGF-A after ROS formation | [74] |
37–42 | Lovastatin, Simvastatin, Fluvastatin, Pravastatin, Pitavastatin, Rosuvastatin | Synthetic | MOC1 | - | PD-1 | [75] |
43 | Linalool | Isolated from aromatic camphor | OECM-1 | 65 µM | PI3K/AKT signalling pathway | [76] |
44 | Dehydroandrographolide | Isolated from sinularia flexibilis | Ca9-22, SCC-9, OECM-1, CAL 27, OC-2, and HSC-3 | - | Apoptosis and oral DNA damage | [78] |
45 | Coronarin D | Isolated from garland-flower | SCC-9 and SAS | - | JNK1/2 signalling pathway | [79] |
46 | Costunolide | Isolated from costustoot | YD-10B, YD-38 and Ca9-22 than in YD-9 | - | Protein kinase B pathway | [80] |
47 | 4-Carbomethoxyl-10-epigyrosanoldie E | Isolated from sinularia sandensis | Ca9-22 and Cal-27 | - | Apoptosis and autophagy | [81] |
48 | Sinularin | Isolated from S. manaarensis | Ca9-22 and CAL 27 | 23.5 and 36.6 µM | Oxidative stress-mediated cell G2/M block and apoptosis | [82] |
49 | Dihydrosinularin | Isolated from S. flexibilis | Ca9-22, OECM-1, CAL 27, and SCC-9 | 0.39, 0.69, 0.8 and 0.65 mM | Apoptosis and DNA damage | [83] |
50 | Trichodermin | Isolated from trichoderma viride, | Ca922 and HSC-3 | 9.65 ± 1.1 µM and 11.49 ± 1.26 µM | Apoptosis, mitochondrial dysfunction, and hdac-2-mediated signalling | [84] |
51 | Triptolide | Isolated from Thunder God vine | SAS | 1.686 nM | Interferon γ modulates the expression of PD-L1 in oral cancer cells in microenvironment | [85] |
52 | Antimycin A | Isolated from Streptomyces | CAL-27 and Ca9-22 | 4.72 and 14.85 µM | ROS | [86] |
53 | Nitrated [6,6,6]Tricycles | Synthetic | Ca9-22, CAL 27, and HSC-3 | 7.93, 12.46 and 12.46 µM | Apoptosis and DNA damage | [87] |
54 | Pseudolaric Acid B | Isolated from pseudolarix kaempferi | PAB, HN22 | approximately 0.7 µm/mL | Apoptosis | [88] |
55 | Gambogic Acid | Isolated from garcinia hanburyi and garcinia morella trees | SCC-9 and SAS | - | p38 signals apoptosis in oral cells | [89] |
56 | Paclitaxel | Isolated from pacific yew tree | tea8113 | - | Epidermal growth factor receptor signalling pathways | [90] |
57 | Ursolic acid | Isolated from bearberry leaf | Ca922 and SCC2095 | 11.5 and 13.8 μM | Induce apoptosis and autophagy | [92] |
58 | Cis-3-O-p-hydroxycinnamoyl | Isolated from Elaeagnus oldhamii Maxim | Ca9-22 and SAS | 24.0 and 17.8 μM | ROS-dependent p53-mediated mitochondrial apoptosis | [93] |
59 | Buddlejasaponin IV | Isolated from clinopodium umbrosum | HN-5 and HUVEC | 19.1 and 18.6 | Mitochondrial apoptosis pathway | [94] |
60 | Ursodeoxycholic Acid | Isolated from gallbladder of Ursus thibetanus | HSC-3 | - | Apoptosis | [95] |
61 | Betulinic Acid | Isolated from plants | KB | - | ROS-regulated p53 signalling | [96] |
62 | Lupeol | Isolated from plants | SCC131 and SCC084 | 26.1 and 21.42 lmol | Oncogenic EGFR pathway | [97] |
63 | 20(S)-Ginsenoside Rh2 | Isolated from panax ginseng | YD10B and Ca9-22 | - | G0/G phase arrest | [98] |
64 | Ginsenoside M1 | Isolated from panax ginseng | OEC-M1 | - | Apoptosis | [99] |
65 | Riparsaponin | Isolated from homonoia riparia | Cal-27, SCC-9 and Detroit 562 | - | Apoptosis | [100] |
66 | Cordycepin | Isolated from cordyceps sinensis | SCC-9, SCC-25, and SAS | - | Autophagy | [101] |
67 | Doxazosin | Synthetic | KB | - | Modulation of antioxidant and apoptotic pathway | [103] |
68 | Methylnaltrexone | Synthetic | FaDu and MDA686Tu | - | mu-opioid receptor | [104] |
69 | 4-Nitroquinoline | Synthetic | cancer stem cell | - | Cancer stem cell | [105,106,107] |
70 | Dasatinib | Synthetic | YD-10B and HSC-3 | - | Multi-targeted mechanisms | [108] |
71 | Z-Ligustilide | Isolated from angelica sinensis | TW2.6 and OML1 | - | C-MYC-dependent apoptosis in hypoxic oral cancer cell lines | [109] |
72 | Anlotinib | Synthetic | Cal-27 and SCC-25 | - | Antiangiogenic activity of several tyrosine kinases | [110] |
74 | Olaparib | Synthetic | EMT | - | mRNA expression of markers related to tumourigenesis and EMT | [111] |
75 | Orlistat | Synthetic | HSC-3 | - | Apoptosis and cell cycle arrest | [112] |
76 | Ricinine | Isolated from castor bean | SAS | 90 µM | PTP1B and COX-2 | [113] |
77 | Entinostat | Synthetic | WSU-HN6 and WSU-HN12 | 0.54 µM and 23.31 µM | Inhibition of cell cycle | [114] |
78 | Dibenzylideneacetone | Isolated from Curcuma longa L | HSC-4, HSC-2, YD-10B and SCC-15 | - | Specificity protein 1 and Bax | [115] |
79 | Metformin | Synthetic | SAS, Cal27 and SCC25 | - | Malignant behaviour of oral squamous cell carcinoma via a novel signalling involving Late SV40 factor/Aurora-A | [116] |
80 | Lycopene | Isolated from love apple | CAL-27 and WSU-HN6 | 0.95 vs. 0.83 mM | IGF1 Pathway | [117] |
81 | Dimethyl Fumarate | Synthetic | CAL27, HSC-2 and HSC-3 | - | Apoptosis, oxidative stress and epithelial–mesenchymal transition | [118,119] |
82 | CHW09 | Synthetic | Ca9-22 | 40 μg/mL | Apoptosis, oxidative stress, and DNA damage | [120] |
83 | Thiodigalactoside | Isolated from ilex cornuta | SCC-4, SCC-9 and SCC-25 | - | Cell cycle arrest and apoptosis, and prevent the angiogenesis | [121] |
84 | Disulfiram | Synthetic | OECM-1 and SG | - | Aldehyde dehydrogenase | [122] |
85 | Bortezomib | Synthetic | SAS | - | Autophagy-mediated TRAF6 oncoprotein degradation | [123] |
86 | Celecoxib | Synthetic | HSC-3 | - | Transcription factors | [124] |
87 | Narciclasine | Isolated from narcissus | SAS and SCC-47 | - | Cathepsin B and extracellular signal-related kinase pathways | [125] |
88 | Ketorolac | Synthetic | H357 | 2.6 mM | DDX3 | [126] |
89 | Betanin | Isolated from beets | SCC131 and SCC4 | 30 μM | NF-κB/PI3K/Akt signalling pathway | [127] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, K.; Zhu, W.; Kou, Y.; Zheng, X.; Zheng, Y. Advances in Small Molecular Agents against Oral Cancer. Molecules 2024, 29, 1594. https://doi.org/10.3390/molecules29071594
Wei K, Zhu W, Kou Y, Zheng X, Zheng Y. Advances in Small Molecular Agents against Oral Cancer. Molecules. 2024; 29(7):1594. https://doi.org/10.3390/molecules29071594
Chicago/Turabian StyleWei, Kai, Weiru Zhu, Yanan Kou, Xinhua Zheng, and Yunyun Zheng. 2024. "Advances in Small Molecular Agents against Oral Cancer" Molecules 29, no. 7: 1594. https://doi.org/10.3390/molecules29071594
APA StyleWei, K., Zhu, W., Kou, Y., Zheng, X., & Zheng, Y. (2024). Advances in Small Molecular Agents against Oral Cancer. Molecules, 29(7), 1594. https://doi.org/10.3390/molecules29071594