Identification Markers Responsible for Differentially Processed Polygonatum cyrtonema Hua by Ultra-Performance Liquid Chromatography with Quadruple-Time-of-Flight Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Selection of Constituents Differentially Presented in R-PCH and P-PCHs
2.2. Chemical Structure Identification of Markers
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Preparation of P-PCHs Samples
3.3. Method for Extraction of P-PCHs Preparation
3.4. Method for UPLC-QTOF-MS Analysis
3.5. Data-Processing Method
3.6. Structure Identification Method
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, H.; Feng, S.S.; Sun, Y.J.; Hao, Z.; Feng, W.S.; Zheng, X.K. Advances in studies on chemical constituents of three medicinal plants from Polygonatum Mill. and their pharmacological activities. Chin. Tradit. Herb. Drugs 2015, 46, 2329–2338. [Google Scholar]
- Che, Y.-Y.; Qian, Y.; Wu, Y.; Qu, W.; Liang, J.-Y. Two New Homoisoflavanones from the Rhizome of Polygonatum odoratum. Chem. Nat. Compd. 2015, 51, 54–56. [Google Scholar] [CrossRef]
- Wang, W.-X.; Zhang, X.; Dabu, X.-L.-T.; He, J.; Yang, S.-C.; Chen, J.-W.; Fan, W.; Zhang, G.-H.; Ai, H.-L.; Hai, M.-R. Analysis of chemical constituents from Polygonatum cyrtonema after “Nine-Steam-Nine-Bask” processing. Phytochem. Lett. 2019, 29, 35–40. [Google Scholar] [CrossRef]
- Azietaku, J.T.; Ma, H.; Yu, X.A.; Li, J.; Oppong, M.B.; Cao, J.; An, M.; Chang, Y.X. A review of the ethnopharmacology, phytochemistry and pharmacology of Notopterygium incisum. J. Ethnopharmacol. 2017, 202, 241–255. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Dabu, X.; He, J.; Yang, H.; Yang, S.; Chen, J.; Fan, W.; Zhang, G.; Cai, J.; Ai, H.; et al. Polygonatone H, a new homoisoflavanone with cytotoxicity from Polygonatum cyrtonema Hua. Nat. Product. Res. 2019, 33, 1727–1733. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Jiang, C.L.; Zheng, C.; Hong, C.Z.; Pan, L.H.; Li, Q.M.; Luo, J.P.; Zha, X.Q. Polygonatum cyrtonema Hua Polysaccharide Alleviates Fatigue by Modulating Osteocalcin-Mediated Crosstalk between Bones and Muscles. J. Agric. Food Chem. 2023, 71, 6468–6479. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Tang, C.; Din, A.U.; Lu, Y.; Ma, X.; Zhang, T.; Wu, J.; Zuoqin, D.; Luo, P.; Wu, J. Oligosaccharides of Polygonatum cyrtonema Hua ameliorates dextran sulfate sodium-induced colitis and regulates the gut microbiota. Biomed. Pharmacother. 2023, 161, 114562. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-G.; Zhang, J.; Zhang, J.Y.; Wang, Y. Research progress in chemical constituents in plants of Paris L. and their pharmacological effects. Chin. Tradit. Herb. Drugs 2016, 47, 3301–3323. [Google Scholar]
- Chen, Z.; Zhu, B.; Chen, Z.; Cao, W.; Wang, J.; Li, S.; Zhao, J. Effects of steam on polysaccharides from Polygonatum cyrtonema based on saccharide mapping analysis and pharmacological activity assays. Chin. Med. 2022, 17, 97. [Google Scholar] [CrossRef]
- Xie, P.; Chen, L.; Wang, J.; Wang, X.; Yang, S.; Zhu, G. Polysaccharides from Polygonatum cyrtonema Hua prevent post-traumatic stress disorder behaviors in mice: Mechanisms from the perspective of synaptic injury, oxidative stress, and neuroinflammation. J. Ethnopharmacol. 2024, 319, 117165. [Google Scholar] [CrossRef]
- Yang, S.; Yang, Z.; Chen, Y.; Huang, Y.; He, L.; Zhang, Z. Study on the Polysaccharides and Saponins Constituents of Polygonatum sibiricum Red. in “Nine-steam-nine-bask” Processing. J. Hunan Norm. Univ. 2015, 12, 141–144. [Google Scholar]
- Blunder, M.; Orthaber, A.; Bauer, R.; Bucar, F.; Kunert, O. Efficient identification of flavones, flavanones and their glycosides in routine analysis via off-line combination of sensitive NMR and HPLC experiments. Food Chem. 2017, 218, 600–609. [Google Scholar] [CrossRef]
- Ruiz-Matute, A.; Brokl, M.; Soria, A.; Sanz, M.; Martínez-Castro, I. Gas chromatographic–mass spectrometric characterisation of tri- and tetrasaccharides in honey. Food Chem. 2010, 120, 637–642. [Google Scholar] [CrossRef]
- Liu, Z.; Lou, Z.; Ding, X.; Li, X.; Qi, Y.; Zhu, Z.; Chai, Y. Global characterization of neutral saccharides in crude and processed Radix Rehmanniae by hydrophilic interaction liquid chromatography tandem electrospray ionization time-of-flight mass spectrometry. Food Chem. 2013, 141, 2833–2840. [Google Scholar] [CrossRef]
- Xue, S.; Wang, L.; Chen, S.; Cheng, Y. Simultaneous Analysis of Saccharides between Fresh and Processed Radix Rehmanniae by HPLC and UHPLC-LTQ-Orbitrap-MS with Multivariate Statistical Analysis. Molecules 2018, 23, 541. [Google Scholar] [CrossRef]
- Han, L.; Wang, P.; Wang, Y.; Zhao, Q.; Zheng, F.; Dou, Z.; Yang, W.; Hu, L.; Liu, C. Rapid Discovery of the Potential Toxic Compounds in Polygonum multiflorum by UHPLC/Q-Orbitrap-MS-Based Metabolomics and Correlation Analysis. Front. Pharmacol. 2019, 10, 329. [Google Scholar] [CrossRef]
- Kang, J.; Hick, L.; Price, W. A fragmentation study of isoflavones in negative electrospray ionization by MSn ion trap mass spectrometry and triple quadrupole mass spectrometry. Rapid Commun. Mass Spectrom. 2007, 21, 857–868. [Google Scholar] [CrossRef]
- March, R.E.; Miao, X.-S.; Metcalfe, C.D.; Stobiecki, M.; Marczak, L. A fragmentation study of an isoflavone glycoside, genistein-7-O-glucoside, using electrospray quadrupole time-of-flight mass spectrometry at high mass resolution. Int. J. Mass. Spectrom. 2004, 232, 171–183. [Google Scholar] [CrossRef]
- Hughes, R.J.; Croley, T.R.; Metcalfe, C.D.; March, R.E. A tandem mass spectrometric study of selected characteristic flavonoids. Int. J. Mass Spectrom. 2001, 210, 371–385. [Google Scholar] [CrossRef]
- Justesen, U. Collision-induced fragmentation of deprotonated methoxylated flavonoids, obtained by electrospray ionization mass spectrometry. J. Mass Spectrom. 2001, 36, 169–178. [Google Scholar] [CrossRef]
- Osama, S.; El Sherei, M.; Al-Mahdy, D.A.; Bishr, M.; Salama, O.; Raafat, M.M. Antimicrobial activity of spiculisporic acid isolated from endophytic fungus Aspergillus cejpii of Hedera helix against MRSA. Braz. J. Microbiol. 2024, 55, 515–527. [Google Scholar] [CrossRef]
- Sharma, M.; Bharti, S.; Goswami, A.; Mallubhotla, S. Diversity, Antimicrobial, Antioxidant, and Anticancer Activity of Culturable Fungal Endophyte Communities in Cordia dichotoma. Molecules 2023, 28, 6926. [Google Scholar] [CrossRef]
- Chang, J.M.; Shen, C.C.; Huang, Y.L.; Chien, M.Y.; Ou, J.C.; Shieh, B.J.; Chen, C.C. Five new homoisoflavonoids from the tuber of Ophiopogon japonicus. J. Nat. Prod. 2002, 65, 1731–1733. [Google Scholar] [CrossRef]
- Bala, S.; Uniyal, G.C. High-performance liquid chromatographic analysis of genistein and other isoflavonoids from heartwood of Ougeinia dalbergioides. Phytochem. Anal. 2002, 13, 211–214. [Google Scholar] [CrossRef]
- Barnes, S.; Wang, C.C.; Kirk, M.; Smith-Johnson, M.; Coward, L.; Barnes, N.C.; Vance, G.; Boersma, B. HPLC-mass spectrometry of isoflavonoids in soy and the American groundnut, Apios americana. Adv. Exp. Med. Biol. 2002, 505, 77–88. [Google Scholar]
- Garran, T.A.; Ji, R.; Chen, J.L.; Xie, D.; Guo, L.; Huang, L.Q.; Lai, C.J. Elucidation of metabolite isomers of Leonurus japonicus and Leonurus cardiaca using discriminating metabolite isomerism strategy based on ultra-high performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry. J. Chromatogr. A 2019, 1598, 141–153. [Google Scholar] [CrossRef]
- Rafiei, A.; Sleno, L. Comparison of peak-picking workflows for untargeted liquid chromatography/high-resolution mass spectrometry metabolomics data analysis. Rapid Commun. Mass Spectrom. 2015, 29, 119–127. [Google Scholar] [CrossRef]
- Govaert, E.A.-O.; Van Steendam, K.; Willems, S.; Vossaert, L.; Dhaenens, M.; Deforce, D. Comparison of fractionation proteomics for local SWATH library building. Proteomics 2017, 17, 1700052. [Google Scholar] [CrossRef]
Group a | No. | Rt (min) | m/z (Neg) | Formula | MS/MS (m/z) | Identification |
---|---|---|---|---|---|---|
0 | 1 | 2.10 | 177.0556 | C10H10O3 | 65.0407, 93.0329, 134.0377, 161.0244, 162.0325, 175.0399, 176.0470, 177.0559 | |
0 | 2 | 7.66 | 265.1805 | C16H26O3 | 55.0197, 80.0270, 96.9604, 124.0162, 233.1546, 265.1815 | - |
0 | 3 | 7.39 | 403.2483 | C24H36O5 | 301.2170, 311.2014, 333.2448, 343.2275, 361.2401 | (3alpha, 5beta)-3-hydroxy-6,7-dioxocholan-24-oic acid |
0 | 4 | 8.12 | 424.3200 | - | 158.0603, 406.3111 | - |
0 | 5 | 7.16 | 476.2748 | - | 78.9589, 196.0381, 279.2318, 476.2783 | - |
0 | 6 | 7.94 | 466.2915 | - | 78.9592, 196.0375, 269.2481, 466.2953 | - |
0 | 7 | 6.77 | 800.4163 | - | 279.2339, 433.2353, 476.2789, 518.2911, 782.3837, 800.3846 | - |
0 | 8 | 6.78 | 799.4106 | C47H60O11 | 179.0546, 591.3492, 753.4002 | - |
1 | 9 | 6.40 | 315.0870 | C17H16O6 | 57.0340, 81.0347, 125.0241, 179.0349, 205.0877, 213.0566, 271.0998, 315.0869 | - |
1 | 10 | 6.81 | 373.1264 | C20H22O7 | 123.0452, 151.0400, 205.0508, 341.1037 | Ophiopogonanone F |
1 | 11 | 6.12 | 945.4258 | C46H66N4O17 | 179.0546, 737.4118, 899.4621 | - |
1 | 12 | 6.08 | 946.4296 | - | 738.4173, 900.4647 | - |
2 | 13 | 6.59 | 431.3374 | C24H48O6 | 152.9952, 269.2044, 277.2173, 293.2106, 311.2042, 431.2443 | Apigenin-7-O-glucoside |
2 | 14 | 6.88 | 571.2886 | C28H40N6O7 | 152.9960, 241.0119, 255.2332, 315.0493, 571.2900 | - |
3 | 15 | 1.43 | 622.2197 | C30H33N5O10 | 118.0498, 160.0596, 190.0708, 262.0913, 280.1007 | - |
3 | 16 | 6.99 | 883.4660 | - | 89.0245, 179.0562, 721.4167, 883.4680 | - |
4 | 17 | 7.85 | 621.3621 | C30H50N4O6 | 291.1972, 311.2231, 327.2203, 621.4388 | - |
4 | 18 | 7.30 | 767.4186 | C36H60N6O12 | 119.0347, 247.0824, 575.3596, 721.4126 | - |
4 | 19 | 5.88 | 813.4248 | - | 89.0242, 179.0565, 767.4221, 813.4271 | - |
4 | 20 | 6.99 | 883.4660 | - | 89.0245, 179.0562, 721.4167, 883.4680 | - |
4 | 21 | 7.06 | 913.4755 | C47H74O18 | 721.4193, 867.4757, 913.4847 | - |
4 | 22 | 6.99 | 929.4727 | C42H70N6O17 | 89.0244, 179.0555, 721.4149, 737.4128, 883.4645 | - |
4 | 23 | 6.12 | 945.4258 | C46H66N4O17 | 179.0546, 737.4118, 899.4621 | - |
4 | 24 | 5.81 | 959.4826 | - | 751.3942, 913.4454 | - |
5 | 25 | 7.03 | 327.1439 | C19H20O5 | 149.0257, 177.0202, 178.0643, 205.0494, 206.0582, 327.1247 | - |
5 | 26 | 7.46 | 329.1597 | C16H26O7 | 69.0345, 179.1803, 183.1769, 197.1908, 239.1654, 267.1627, 293.2121, 329.1679 | Aurantio-obtusin |
5 | 27 | 7.46 | 330.1639 | - | 57.0346, 180.1842, 198.1951, 214.1889, 268.1640, 325.1790 | - |
5 | 28 | 7.62 | 343.1761 | C17H28O7 | 116.9275, 139.0060, 179.1815, 239.1654, 267.1557, 297.2436 | 3-hydroxy-13-tetradecene-1, 3, 4-tricarboxylic acid |
5 | 29 | 7.3 | 767.4186 | C36H60N6O12 | 119.0347, 247.0824, 575.3596, 721.4126 | - |
5 | 30 | 7.96 | 767.4222 | C51H60O6 | 279.2329, 325.1839, 767.5078 | - |
6 | 31 | 8.43 | 425.2903 | - | 254.2514, 255.2404, 425.2594 | - |
6 | 32 | 6.99 | 883.4660 | - | 89.0245, 179.0562, 721.4167, 883.4680 | - |
7 | 33 | 7.47 | 267.1603 | C15H24O4 | 82.0034, 125.9963, 179.1796, 195.1740, 239.1747, 267.1616 | - |
7 | 34 | 7.46 | 330.1639 | - | 57.0346, 180.1842, 198.1951, 214.1889, 268.1640, 325.1790 | - |
7 | 35 | 7.30 | 767.4186 | - | 89.0242, 205.0722, 721.4128 | - |
8 | 36 | 6.48 | 231.0098 | C15H4O3 | 98.9656, 149.9747, 185.9510, 231.0127 | - |
8 | 37 | 6.01 | 365.0682 | - | 119.0515, 150.0300, 165.0557, 245.0114, 365.0686 | - |
8 | 38 | 7.77 | 399.2517 | C25H36O4 | 161.0968, 193.1240, 327.2112, 399.2537 | - |
8 | 39 | 1.43 | 622.2197 | C30H33N5O10 | 118.0498, 160.0596, 190.0708, 262.0913, 280.1007 | - |
9 | 40 | 6.64 | 327.1808 | C18H32O5 | 129.0920, 141.0925, 171.1022, 185.1187, 197.1184, 201.1131, 213.1135, 291.1967, 327.2189 | - |
9 | 41 | 7.46 | 329.1597 | C16H26O7 | 69.0345, 179.1803, 183.1769, 197.1908, 239.1654, 267.1627, 293.2121, 329.1679 | Aurantioobtusin |
9 | 42 | 7.46 | 330.1639 | - | 57.0346, 180.1842, 198.1951, 214.1889, 268.1640, 325.1790 | - |
9 | 43 | 6.77 | 327.1808 | C17H28O6 | 87.0084, 197.1906, 225.1853, 251.1645 | Spiculisporic acid |
9 | 44 | 6.59 | 431.3374 | C21H20O10 | 152.9952, 243.1596, 269.2044, 277.2173, 293.2106, 311.2042, 413.3272, 431.2443 | Apigenin-7-O-glucoside |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, R.; Wu, C.; Zhang, X.; Deng, P. Identification Markers Responsible for Differentially Processed Polygonatum cyrtonema Hua by Ultra-Performance Liquid Chromatography with Quadruple-Time-of-Flight Mass Spectrometry. Molecules 2024, 29, 1559. https://doi.org/10.3390/molecules29071559
Nie R, Wu C, Zhang X, Deng P. Identification Markers Responsible for Differentially Processed Polygonatum cyrtonema Hua by Ultra-Performance Liquid Chromatography with Quadruple-Time-of-Flight Mass Spectrometry. Molecules. 2024; 29(7):1559. https://doi.org/10.3390/molecules29071559
Chicago/Turabian StyleNie, Ruihua, Cuihong Wu, Xuan Zhang, and Pei Deng. 2024. "Identification Markers Responsible for Differentially Processed Polygonatum cyrtonema Hua by Ultra-Performance Liquid Chromatography with Quadruple-Time-of-Flight Mass Spectrometry" Molecules 29, no. 7: 1559. https://doi.org/10.3390/molecules29071559
APA StyleNie, R., Wu, C., Zhang, X., & Deng, P. (2024). Identification Markers Responsible for Differentially Processed Polygonatum cyrtonema Hua by Ultra-Performance Liquid Chromatography with Quadruple-Time-of-Flight Mass Spectrometry. Molecules, 29(7), 1559. https://doi.org/10.3390/molecules29071559