Synthesis and Reduction Processes of Silver Nanowires in a Silver(I) Sulfamate–Poly (Vinylpyrrolidone) Hydrothermal System
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Ag Nanowires
2.2. Morphology and Phase of Ag Nanowires
2.3. Formation Process of Ag Nanowires
2.4. Reduction Process of Ag Nanowires
2.5. Sulfamic Acid Does Not Play the Role of the Reductant
3. Conclusions
4. Experimental Section
4.1. Materials
4.2. Silver Nanowires Synthesis
4.3. Preparation of Preheated PVP Aqueous Solution
4.4. Preparation of Preheated Silver Sulfamate Solution
4.5. Purification of Silver Nanowires
4.6. Characterization
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, A.; Kumar, M.; Goyat, M.; Avasthi, D. A review of the latest developments in the production and applications of Ag-nanowires as transparent electrodes. Mater. Today Commun. 2022, 33, 104433. [Google Scholar] [CrossRef]
- Zheng, R.; Zheng, K.; Fu, H. Te/C coaxial nanocable as a supporting material for loading ultra-high density Pt nanoparticles at room temperature. Appl. Surf. Sci. 2011, 257, 8024–8027. [Google Scholar] [CrossRef]
- Bae, S.; Han, H.; Bae, J.G.; Lee, E.Y.; Im, S.H.; Kim, D.H.; Seo, T.S. Growth of silver nanowires from controlled silver chloride seeds and their application for fluorescence enhancement based on localized surface plasmon resonance. Small 2017, 13, 1603392. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Xin, W.; Ji, Q.; Hu, T.; Zhang, J.; Shang, C.; Liu, Z.; Liu, X.; Chen, H. Ultrasonic bending of silver nanowires. ACS Nano 2020, 14, 15286–15292. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Balankura, T.; Fichthorn, K.A.; Rioux, R.M. Revisiting the polyol synthesis of silver nanostructures: Role of chloride in nanocube formation. ACS Nano 2019, 13, 1849–1860. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Chang, J.W.; Balasanthiran, C.; Milner, S.T.; Rioux, R.M. Anisotropic growth of silver nanoparticles is kinetically controlled by polyvinylpyrrolidone binding. J. Am. Chem. Soc. 2019, 141, 4328–4337. [Google Scholar] [CrossRef] [PubMed]
- Fiévet, F.; Ammar-Merah, S.; Brayner, R.; Chau, F.; Giraud, M.; Mammeri, F.; Peron, J.; Piquemal, J.-Y.; Sicard, L.; Viau, G. The polyol process: A unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions. Chem. Soc. Rev. 2018, 47, 5187–5233. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.; Yang, R.; Wang, Y.; Wang, R.; Hua, F. Silver nanowire synthesis and applications in composites: Progress and prospects. Adv. Mater. Technol. 2022, 7, 2200027. [Google Scholar] [CrossRef]
- Sohn, H.; Park, C.; Oh, J.-M.; Kang, S.W.; Kim, M.-J. Silver nanowire networks: Mechano-electric properties and applications. Materials 2019, 12, 2526. [Google Scholar] [CrossRef]
- Zheng, R.; Meng, X.; Tang, F. A general protocol to coat titania shell on carbon-based composite cores using carbon as coupling agent. J. Solid. State Chem. 2009, 182, 1235–1240. [Google Scholar] [CrossRef]
- Gou, L.; Chipara, M.; Zaleski, J.M. Convenient, rapid synthesis of Ag nanowires. Chem. Mater. 2007, 19, 1755–1760. [Google Scholar] [CrossRef]
- Huang, Z.; Xu, J.; Zhang, Q.; Liu, G.; Wu, T.; Lin, T.; He, P. Low-temperature polyol synthesis of millimeter-scale-length silver nanowires enabled by high concentration of Fe3+ for flexible transparent heaters. Mater. Today Chem. 2023, 30, 101569. [Google Scholar] [CrossRef]
- Marks, L.D.; Peng, L. Nanoparticle shape, thermodynamics and kinetics. J. Phys. Condens. Matter 2016, 28, 053001. [Google Scholar] [CrossRef] [PubMed]
- Parente, M.; Van Helvert, M.; Hamans, R.F.; Verbroekken, R.; Sinha, R.; Bieberle-Hütter, A.; Baldi, A. Simple and fast high-yield synthesis of silver nanowires. Nano Lett. 2020, 20, 5759–5764. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Li, S.; Xie, S.; Gao, Y.; Song, L. Machinable long PVP-stabilized silver nanowires. Chem. A Eur. J. 2004, 10, 4817–4821. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Gates, B.; Mayers, B.; Xia, Y. Crystalline silver nanowires by soft solution processing. Nano. Lett. 2002, 2, 165–168. [Google Scholar] [CrossRef]
- Sun, Y.; Xia, Y. Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv. Mater. 2002, 14, 833–837. [Google Scholar] [CrossRef]
- Sun, Y.; Yin, Y.; Mayers, B.; Herricks, T.; Xia, Y. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater. 2002, 14, 4736–4745. [Google Scholar] [CrossRef]
- Villalpando, M.; Saavedra-Molina, A.; Rosas, G. A facile synthesis of silver nanowires and their evaluation in the mitochondrial membrane potential. Mater. Sci. Eng. C 2020, 114, 110973. [Google Scholar] [CrossRef]
- Zhou, Y.; Yu, S.H.; Cui, X.P.; Wang, C.Y.; Chen, Z.Y. Formation of silver nanowires by a novel solid–liquid phase ARC discharge method. Chem. Mater. 1999, 11, 545–546. [Google Scholar] [CrossRef]
- Caswell, K.K.; Bender, C.M.; Murphy, C.J. Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Lett. 2003, 3, 667–669. [Google Scholar] [CrossRef]
- Fahad, S.; Yu, H.; Wang, L.; Wang, Y.; Lin, T.; Amin, B.U.; Naveed, K.-U.; Khan, R.U.; Mehmood, S.; Haq, F.; et al. Synthesis of AgNWs using high molecular weight PVP as a capping agent and their application in conductive thin films. J. Electron. Mater. 2021, 50, 2789–2799. [Google Scholar] [CrossRef]
- Junaidi, J.; Saputra, M.W.; Marjunus, R.; Sembiring, S.; Hadi, S. The quenching and sonication effect on the mechanical strength of silver nanowires synthesized using the polyol method. Molecules 2021, 26, 2167. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, J.; Chen, X.; Wan, J.; Qian, Y. A simple hydrothermal route to large-scale synthesis of uniform silver nanowires. Chem. A Eur. J. 2004, 11, 160–163. [Google Scholar] [CrossRef] [PubMed]
- Jeevika, A.; Shankaran, D.R. Seed-free synthesis of 1D silver nanowires ink using clove oil (Syzygium Aromaticum) at room temperature. J. Colloid. Interface Sci. 2015, 458, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Sosnin, I.M.; Turkov, M.N.; Shafeev, M.R.; Shulga, E.V.; Kink, I.; Vikarchuk, A.A.; Romanov, A.E. Synthesis of silver nanochains with a chemical method. Mater. Phys. Mech. 2017, 32, 198–206. Available online: https://mpm.spbstu.ru/article/2017.55.12/ (accessed on 1 February 2024).
- Britton, G.C.; Hankus, D.; Schmulbach, C.D. David Schmulbach, Silver(I) Sulfamate. Inorg. Synth. 1978, 18, 201–203. [Google Scholar] [CrossRef]
- Ma, D.; Zhang, M.; Xi, G.; Zhang, J.; Qian, Y. Fabrication and characterization of ultralong Ag/C nanocables, carbonaceous nanotubes, and chainlike beta-Ag2Se nanorods inside carbonaceous nanotubes. Inorg. Chem. 2006, 45, 4845–4849. [Google Scholar] [CrossRef] [PubMed]
- Jharimune, S.; Pfukwa, R.; Chen, Z.; Anderson, J.; Klumperman, B.; Rioux, R.M. Chemical identity of poly(N-vinylpyrrolidone) end groups impact shape evolution during the synthesis of Ag nanostructures. J. Am. Chem. Soc. 2021, 143, 184–195. [Google Scholar] [CrossRef]
- Hoppe, C.E.; Lazzari, M.; Pardiñas-Blanco, I.; López-Quintela, M.A. One-step synthesis of gold and silver hydrosols using poly(N-vinyl-2-pyrrolidone) as a reducing agent. Langmuir 2006, 22, 7027–7034. [Google Scholar] [CrossRef]
- Abdel-Rahim, R.D.; Nagiub, A.M.; Pharghaly, O.A.; Taher, M.A.; Yousef, E.S.; Shaaban, E.R. Optical properties for flexible and transparent silver nanowires electrodes with different diameters. Opt. Mater. 2021, 117, 111123. [Google Scholar] [CrossRef]
- Washio, I.; Xiong, Y.; Yin, Y.; Xia, Y. Reduction by the end groups of poly(vinyl pyrrolidone): A new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates. Adv. Mater. 2006, 18, 1745–1749. [Google Scholar] [CrossRef]
- Xiong, Y.; Washio, I.; Chen, J.; Cai, H.; Li, Z.-Y.; Xia, Y. Poly(vinyl pyrrolidone): A dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir 2006, 22, 8563–8570. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; Guo, X.; Fu, H. One-step, template-free route to silver porous hollow spheres and their optical property. Appl. Surf. Sci. 2011, 257, 2367–2370. [Google Scholar] [CrossRef]
- Zheng, R.; Yang, X.; Hu, H.; Qian, Y. Template ion exchange route to nanocrystalline MIn2S4 (M = Mn, Zn). Mater. Res. Bull. 2004, 39, 933–937. [Google Scholar] [CrossRef]
- Sun, J.; Yu, X.; Li, Z.; Zhao, J.; Zhu, P.; Dong, X.; Yu, Z.; Zhao, Z.; Shi, D.; Wang, J.; et al. Ultrasonic modification of Ag nanowires and their applications in flexible transparent film heaters and SERS detectors. Materials 2019, 12, 893. [Google Scholar] [CrossRef]
- Zhang, K.; Zhu, L.; Li, H.; Zheng, M.; Zhang, J.; Zheng, Y.; Zheng, R. From corn husks to scalable, strong, transparent bio-plastic using direct delignification-splicing strategy. Adv. Sustain. Syst. 2022, 6, 2100495. [Google Scholar] [CrossRef]
- Zheng, M.; Zhang, K.; Zhang, J.; Zhu, L.; Du, G.; Zheng, R. Cheap, high yield, and strong corn husk-based textile bio-fibers with low carbon footprint via green alkali retting-splicing-twisting strategy. Ind. Crop. Prod. 2022, 188, 115699. [Google Scholar] [CrossRef]
- Zhu, L.; Dang, B.; Zhang, K.; Zhang, J.; Zheng, M.; Zhang, N.; Du, G.; Chen, Z.; Zheng, R. Transparent bioplastics from super-low lignin wood with abundant hydrophobic cellulose crystals. ACS Sustain. Chem. Eng. 2022, 10, 13775–13785. [Google Scholar] [CrossRef]
- Wu, S.; Yao, S.; Liu, Y.; Hu, X.; Huang, H.H.; Zhu, Y. Buckle-delamination-enabled stretchable silver nanowire conductors. ACS Appl. Mater. Interfaces 2020, 12, 41696–41703. [Google Scholar] [CrossRef]
- Xiang, X.; Gong, W.; Kuang, M.; Wang, L. Progress in application and preparation of silver nanowires. Rare Metals 2016, 35, 289–298. [Google Scholar] [CrossRef]
- Sun, X.; Li, Y. Cylindrical silver nanowires: Preparation, structure, and optical properties. Adv. Mater. 2005, 17, 2626–2630. [Google Scholar] [CrossRef]
- Guo, S.; Huang, L.; Wang, E. A novel hybrid nanostructure based on SiO2@carbon nanotube coaxial nanocable. New J. Chem. 2007, 31, 575–579. [Google Scholar] [CrossRef]
- Yin, Y.; Lu, Y.; Sun, Y.; Xia, Y. Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica. Nano Lett. 2002, 2, 427–430. [Google Scholar] [CrossRef]
- Gugliotti, L.A.; Feldheim, D.L.; Eaton, B.E. RNA-Mediated Metal-Metal Bond Formation in the Synthesis of Hexagonal Palladium Nanoparticles. Science 2004, 304, 850–852. [Google Scholar] [CrossRef] [PubMed]
- Watzky, M.A.; Finke, R.G. Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when hydrogen is the reductant: Slow, continuous nucleation and fast autocatalytic surface growth. J. Am. Chem. Soc. 1997, 119, 10382–10400. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ying, Y.; Zheng, R.; Zheng, Y.; Wang, H.; Niu, J.; Xia, H. Synthesis and Reduction Processes of Silver Nanowires in a Silver(I) Sulfamate–Poly (Vinylpyrrolidone) Hydrothermal System. Molecules 2024, 29, 1558. https://doi.org/10.3390/molecules29071558
Ying Y, Zheng R, Zheng Y, Wang H, Niu J, Xia H. Synthesis and Reduction Processes of Silver Nanowires in a Silver(I) Sulfamate–Poly (Vinylpyrrolidone) Hydrothermal System. Molecules. 2024; 29(7):1558. https://doi.org/10.3390/molecules29071558
Chicago/Turabian StyleYing, Yongling, Rongbo Zheng, Yongjun Zheng, Hongyan Wang, Junfeng Niu, and Housheng Xia. 2024. "Synthesis and Reduction Processes of Silver Nanowires in a Silver(I) Sulfamate–Poly (Vinylpyrrolidone) Hydrothermal System" Molecules 29, no. 7: 1558. https://doi.org/10.3390/molecules29071558
APA StyleYing, Y., Zheng, R., Zheng, Y., Wang, H., Niu, J., & Xia, H. (2024). Synthesis and Reduction Processes of Silver Nanowires in a Silver(I) Sulfamate–Poly (Vinylpyrrolidone) Hydrothermal System. Molecules, 29(7), 1558. https://doi.org/10.3390/molecules29071558