Degradation of Orange G Using PMS Triggered by NH2-MIL-101(Fe): An Amino-Functionalized Metal–Organic Framework
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalyst Characterization
2.2. Degradation of OG under Different Conditions
2.2.1. Effect of Different Systems, Initial pH, Temperature, Catalyst Dosage, and PMS Concentration on Degradation Experiments
2.2.2. Effect of Inorganic Anions on OG Degradation
2.2.3. Catalyst Recycling Test
2.2.4. Active Radicals in Degradation
2.2.5. UV–Vis Spectrum of OG Solution in Different Stage
2.2.6. Performance Comparison of Different Advanced Oxidation Systems
2.3. Reaction Mechanism Analysis
2.4. Pathway Analysis of OG Degradation
3. Materials and Methods
3.1. Experimental Reagents
3.2. Preparation of MIL-101(Fe) and NH2-MIL-101(Fe)
3.3. Characterization Methods
3.4. Degradation Tests
3.5. Regeneration Performance Test of Catalyst
4. Conclusions
- With 100 mL of OG solution (50 mg/L), 20 mg of catalyst, and 1 mL of PMS solution (100 mmol/L) were added. Under the conditions of 25 °C and pH = 7.3, the degradation rate of OG with the MIL-101(Fe) system was only 36.6% within 60 min, while the NH2-MIL-101(Fe)/PMS system could reached 97.9%. The improved system had a good effect in the pH range of 3~9, with a degradation rate of more than 92.7%.
- In the anion interference experiments, SO42− and NO3− did not significantly inhibit the degradation experiments, except for Cl− and HCO3−. The free-radical quenching experiments showed that the NH2-MIL-101(Fe)/PMS system produced three kinds of reactive substances, SO4•−, •OH, and 1O2. The degradation rate of OG was still more than 73.1% with the recycling of NH2-MIL-101(Fe) three times.
- In a shorter time, the NH2-MIL-101(Fe)/PMS system was able to efficiently degrade the OG in comparison to other advanced oxidation technologies. This work supported the investigation into the impact of adding amino functional groups in PMS activation for the breakdown of azo fuel. It is anticipated that the technology will also be used to treat the actual wastewater of azo dyes.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amjlef, A.; Farsad, S.; Chaoui, A.; Hamou, A.B.; Ezzahery, M.; Et-Taleb, S.; El Alem, N. Effective adsorption of Orange G dye using chitosan cross-linked by glutaraldehyde and reinforced with quartz sand. Int. J. Biol. Macromol. 2023, 239, 124373. [Google Scholar] [CrossRef]
- Wang, R.F.; Deng, L.G.; Li, K.; Fan, X.J.; Li, W.; Lu, H.Q. Fabrication and characterization of sugarcane bagasse–calcium carbonate composite for the efficient removal of crystal violet dye from wastewater. Ceram. Int. 2020, 46, 27484–27492. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, M.; Zhu, L. Activation of peroxymonosulfate by iron-based catalysts for orange G degradation: Role of hydroxylamine. RSC Adv. 2016, 6, 47562–47569. [Google Scholar] [CrossRef]
- Sang, W.; Lu, W.; Mei, L.; Jia, D.; Cao, C.; Li, Q.; Wang, C.; Li, M. Research on different oxidants synergy with dielectric barrier discharge plasma in degradation of Orange G: Efficiency and mechanism. Sep. Purif. Technol. 2021, 277, 119473. [Google Scholar] [CrossRef]
- Lu, W.; Sang, W.; Jia, D.; Zhang, Q.; Li, C.; Zhang, S.; Zhan, C.; Mei, L.; Li, M. Improvement of degradation of Orange G in aqueous solution by Fe2+ added in dielectric barrier discharge plasma system. J. Water Process Eng. 2022, 47, 102707. [Google Scholar] [CrossRef]
- Teh, C.Y.; Budiman, P.M.; Shak, K.P.Y.; Wu, T.Y. Recent advancement of coagulation–flocculation and its application in wastewater treatment. Ind. Eng. Chem. Res. 2016, 55, 4363–4389. [Google Scholar] [CrossRef]
- Ghaemi, N.; Madaeni, S.S.; Daraei, P.; Rajabi, H.; Shojaeimehr, T.; Rahimpour, F.; Shirvani, B. PES mixed matrix nanofiltration membrane embedded with polymer wrapped MWCNT: Fabrication and performance optimization in dye removal by RSM. J. Hazard. Mater. 2015, 298, 111–121. [Google Scholar] [CrossRef]
- Yang, L.; Chen, W.; Sheng, C.; Wu, H.; Mao, N.; Zhang, H. Fe/N-codoped carbocatalysts loaded on carbon cloth (CC) for activating peroxymonosulfate (PMS) to degrade methyl orange dyes. Appl. Surf. Sci. 2021, 549, 149300. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar] [CrossRef]
- Sepyani, F.; Soltani, R.D.C.; Jorfi, S.; Godini, H.; Safari, M. Implementation of continuously electro-generated Fe3O4 nanoparticles for activation of persulfate to decompose amoxicillin antibiotic in aquatic media: UV254 and ultrasound intensification. J. Environ. Manag. 2018, 224, 315–326. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, G.; Meng, Y.; Pan, G.; Ni, Z.; Xia, S. Direct Z-scheme CeO2@LDH core–shell heterostructure for photodegradation of Rhodamine B by synergistic persulfate activation. J. Hazard. Mater. 2021, 408, 124908. [Google Scholar] [CrossRef]
- Jiang, D.; Fang, D.; Zhou, Y.; Wang, Z.; Yang, Z.; Zhu, J.; Liu, Z. Strategies for improving the catalytic activity of metal-organic frameworks and derivatives in SR-AOPs: Facing emerging environmental pollutants. Environ. Pollut. 2022, 306, 119386. [Google Scholar] [CrossRef]
- Gao, Y.; Zhu, Y.; Chen, Z.; Zeng, Q.; Hu, C. Insights into the difference in metal-free activation of peroxymonosulfate and peroxydisulfate. Chem. Eng. J. 2020, 394, 123936. [Google Scholar] [CrossRef]
- Wacławek, S.; Lutze, H.V.; Grübel, K.; Padil, V.V.; Černík, M.; Dionysiou, D.D. Chemistry of persulfates in water and wastewater treatment: A review. Chem. Eng. J. 2017, 330, 44–62. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Z.; Zhang, Y.; Gu, W.; Huang, W.; Xi, J.; Cao, T.; Yang, M.; Ke, L. Establishing an efficient way via TiO2/MXene catalyst for photoelectro activating PMS degradation of BPA. J. Electroanal. Chem. 2023, 929, 117053. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, M.; Dionysiou, D.D. What is the role of light in persulfate-based advanced oxidation for water treatment? Water Res. 2021, 189, 116627. [Google Scholar] [CrossRef]
- Yang, Q.; Ma, Y.; Chen, F.; Yao, F.; Sun, J.; Wang, S.; Yi, K.; Hou, L.; Li, X.; Wang, D. Recent advances in photo-activated sulfate radical-advanced oxidation process (SR-AOP) for refractory organic pollutants removal in water. Chem. Eng. J. 2019, 378, 122149. [Google Scholar] [CrossRef]
- Van Nguyen, T.; Phan, N.M.; Kim, K.J.; Huy, N.N.; Dung, N.T. Orange G degradation by heterogeneous peroxymonosulfate activation based on magnetic MnFe2O4/α-MnO2 hybrid. J. Environ. Sci. 2023, 124, 379–396. [Google Scholar]
- Pu, M.; Guan, Z.; Ma, Y.; Wan, J.; Wang, Y.; Brusseau, M.L.; Chi, H. Synthesis of iron-based metal-organic framework MIL-53 as an efficient catalyst to activate persulfate for the degradation of Orange G in aqueous solution. Appl. Catal. A Gen. 2018, 549, 82–92. [Google Scholar] [CrossRef]
- Xiong, P.; Zhang, H.; Li, G.; Liao, C.; Jiang, G. Adsorption removal of ibuprofen and naproxen from aqueous solution with Cu-doped Mil-101 (Fe). Sci. Total Environ. 2021, 797, 149179. [Google Scholar] [CrossRef]
- Ploychompoo, S.; Chen, J.; Luo, H.; Liang, Q. Fast and efficient aqueous arsenic removal by functionalized MIL-100 (Fe)/rGO/δ-MnO2 ternary composites: Adsorption performance and mechanism. J. Environ. Sci. 2020, 91, 22–34. [Google Scholar] [CrossRef]
- Jia, T.; Gu, Y.; Li, F. Progress and potential of metal-organic frameworks (MOFs) for gas storage and separation: A review. J. Environ. Chem. Eng. 2022, 10, 108300. [Google Scholar] [CrossRef]
- El Asmar, R.; Baalbaki, A.; Abou Khalil, Z.; Naim, S.; Bejjani, A.; Ghauch, A. Iron-based metal organic framework MIL-88-A for the degradation of naproxen in water through persulfate activation. Chem. Eng. J. 2021, 405, 126701. [Google Scholar] [CrossRef]
- Sun, Q.; Huang, S.; Li, Z.; Su, D.; Sun, J. Synergistic activation of persulfate by heat and cobalt-doped-bimetallic-MOFs for effective methylene blue degradation: Synthesis, kinetics, DFT calculation, and mechanisms. J. Environ. Chem. Eng. 2023, 11, 109065. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, L.; Hong, P.; He, X.; Gao, S.; Yu, Y.; Liao, B.; Pang, H. Densely stacked lamellate Co-MOF for boosting the recycling performance in ofloxacin degradation. J. Environ. Chem. Eng. 2023, 11, 111480. [Google Scholar] [CrossRef]
- Askari, S.; Khodaei, M.M.; Benassi, E.; Jafarzadeh, M. MIL-101-NH2-TFR and MIL-101-NH2-TFR/Cu2+ as novel hybrid materials for efficient adsorption of iodine and reduction of Cr (VI). Mater. Today Commun. 2023, 35, 105990. [Google Scholar] [CrossRef]
- Zhang, M.W.; Lin, K.Y.A.; Huang, C.F.; Tong, S. Enhanced degradation of toxic azo dye, amaranth, in water using Oxone catalyzed by MIL-101-NH2 under visible light irradiation. Sep. Purif. Technol. 2019, 227, 115632. [Google Scholar] [CrossRef]
- Liu, R.; Chi, L.; Wang, X.; Wang, Y.; Sui, Y.; Xie, T.; Arandiyan, H. Effective and selective adsorption of phosphate from aqueous solution via trivalent-metals-based amino-MIL-101 MOFs. Chem. Eng. J. 2019, 357, 159–168. [Google Scholar] [CrossRef]
- Mahdipoor, H.R.; Halladj, R.; Babakhani, E.G.; Amjad-Iranagh, S.; Ahari, J.S. Adsorption of CO2, N2 and CH4 on a Fe-based metal organic framework, MIL-101 (Fe)-NH2. Colloids Surf. A Physicochem. Eng. Asp. 2021, 619, 126554. [Google Scholar] [CrossRef]
- Tu, H.; Wang, H.; Zhang, J.; Ou, Y.; Zhang, Z.; Chen, G.; Wei, C.; Xiang, X.; Xie, Z. A novel hierarchical 0D/3D NH2-MIL-101 (Fe)/ZnIn2S4 S-scheme heterojunction photocatalyst for efficient Cr (VI) reduction and photo-Fenton-like removal of 2-nitrophenol. J. Environ. Chem. Eng. 2023, 12, 111695. [Google Scholar] [CrossRef]
- Xu, Q.; Sun, Y.; Lv, T.; Liu, H. Selective CO2 photoreduction into CO over Ti3C2 quantum dots decorated NH2-MIL-101 (Fe) heterostructures. J. Alloys Compd. 2023, 954, 170088. [Google Scholar] [CrossRef]
- Lighvan, Z.M.; Hosseini, S.R.; Norouzbahari, S.; Sadatnia, B.; Ghadimi, A. Synthesis, characterization, and selective gas adsorption performance of hybrid NH2-MIL-101 (Fe)/ZIF-8 metal organic framework (MOF). Fuel 2023, 351, 128991. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Qiao, S.; Zhou, J. Green water-etching synthesized La-MIL-101 (Fe)-NH2@SiO2 yolk-shell nanocomposites with superior pH stability for efficient and selective phosphorus recovery. J. Water Process Eng. 2023, 53, 103821. [Google Scholar] [CrossRef]
- Gong, Y.; Ding, Y.; Tang, Q.; Lian, F.; Bai, C.; Xie, R.; Xie, H.; Zhao, X. Plasmonic Ag nanoparticles decorated MIL-101(Fe) for enhanced photocatalytic degradation of bisphenol A with peroxymonosulfate under visible-light irradiation. Chin. Chem. Lett. 2024, 35, 108475. [Google Scholar] [CrossRef]
- Teng, Y.; Li, W.; Wang, J.; Jia, S.; Zhang, H.; Yang, T.; Li, X.; Wang, C. A green hydrothermal synthesis of polyacrylonitrile@carbon/MIL-101(Fe) composite nanofiber membrane for efficient selective removal of tetracycline. Sep. Purif. Technol. 2023, 315, 123610. [Google Scholar] [CrossRef]
- Zhu, K.; Qin, W.; Gan, Y.; Huang, Y.; Jiang, Z.; Chen, Y.; Li, X.; Yan, K. Acceleration of Fe3+/Fe2+ cycle in garland-like MIL-101 (Fe)/MoS2 nanosheets to promote peroxymonosulfate activation for sulfamethoxazole degradation. Chem. Eng. J. 2023, 470, 144190. [Google Scholar] [CrossRef]
- Song, X.; Zhu, T.; Yu, S.; Wang, J.; Liu, J.; Zhang, S. A novel nitrogenous core-shell MIL-101 (Fe)-based nanocomposite for enhanced adsorption and photo-degradation of organic pollutant under visible light. J. Alloys Compd. 2023, 938, 168479. [Google Scholar] [CrossRef]
- Wang, Z.; Jing, C.; Zhai, W.; Li, Y.; Liu, W.; Zhang, F.; Li, S.; Wang, H.; Yu, D. MIL-101(Fe)/polysulfone hollow microspheres from pickering emulsion template for effective photocatalytic degradation of methylene blue. Colloids Surf. A Physicochem. Eng. Asp. 2023, 667, 131394. [Google Scholar] [CrossRef]
- Liu, Z.; Su, R.; Sun, X.; Zhou, W.; Gao, B.; Yue, Q.; Li, Q. The obvious advantage of amino-functionalized metal-organic frameworks: As a persulfate activator for bisphenol F degradation. Sci. Total Environ. 2020, 741, 140464. [Google Scholar] [CrossRef]
- Liu, H.; Yin, H.; Yu, X.; Zhu, M.; Dang, Z. Amino-functionalized MIL-88B as heterogeneous photo-Fenton catalysts for enhancing tris-(2-chloroisopropyl) phosphate (TCPP) degradation: Dual excitation pathways accelerate the conversion of Fe III to Fe II under visible light irradiation. J. Hazard. Mater. 2022, 425, 127782. [Google Scholar] [CrossRef]
- Miao, J.; Wang, P.; Zhou, X.; Zhang, N.; Zhang, R.; Wei, X.; Peng, S. Cobalt oxide/polypyrrole derived Co/NC to activate peroxymonosulfate for benzothiazole degradation: Enhanced conversion efficiency of PMS to free radicals. J. Water Process Eng. 2024, 57, 104639. [Google Scholar] [CrossRef]
- Bi, H.; Liu, C.; Li, J.; Tan, J. Insights into the visible-light-driving MIL-101 (Fe)/g–C3N4 materials-activated persulfate system for efficient hydrochloride water purification. J. Solid State Chem. 2022, 306, 122741. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, X.; Zhao, Y.; Wang, S.; Ren, Y.; Wang, X. Highly efficient catalyst of Crednerite CuMnO2 for PMS activation: Synthesis, performance and mechanism. Surf. Interfaces 2023, 42, 103522. [Google Scholar] [CrossRef]
- Cheng, H.; Liu, H.; Huang, C.; Xu, J.; Tian, H.; Yang, J.; Wang, P.; Cai, J.; Cheng, M.; Liu, Z. Tungsten carbide induced acceleration of Fe3+/Fe2+cycle in Fe2+/PMS process for rapid degradation of tetracycline hydrochloride. Sep. Purif. Technol. 2024, 330, 125311. [Google Scholar] [CrossRef]
- Elansary, M.; Belaiche, M.; Oulhakem, O.; Alaoui, K.B.; Lemine, O.M.; Mouhib, Y.; Iffer, E.; Salameh, B.; Alsmadi, A.M. In-depth study of the photocatalytic performance of novel magnetic catalysts for efficient photocatalytic degradation of the dye orange G. Mater. Res. Bull. 2024, 170, 112598. [Google Scholar] [CrossRef]
- Gan, G.; Liu, J.; Zhu, Z.; Yang, Z.; Zhang, C.; Hou, X. A novel magnetic nanoscaled Fe3O4/CeO2 composite prepared by oxidation-precipitation process and its application for degradation of orange G in aqueous solution as Fenton-like heterogeneous catalyst. Chemosphere 2017, 168, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yan, C.; Liang, T.; Sun, Q.; Wang, H. Photocatalytic degradation of Orange G using sepiolite-TiO2 nanocomposites: Optimization of physicochemical parameters and kinetics studies. Chem. Eng. Sci. 2018, 183, 231–239. [Google Scholar] [CrossRef]
- Sun, J.; Wang, X.; Sun, J.; Sun, R.; Sun, S.; Qiao, L. Photocatalytic degradation and kinetics of Orange G using nano-sized Sn (IV)/TiO2/AC photocatalyst. J. Mol. Catal. A Chem. 2006, 260, 241–246. [Google Scholar] [CrossRef]
- Yang, Z.; Ren, X.; Ding, S.; Chen, R.; Tian, M. Preparation of 1 T-WS2 under different conditions and its enhancement of Fe (III)/Fe (II) cycle, synergistic catalysis of PMS activation and degradation of organic pollutants. J. Environ. Chem. Eng. 2023, 11, 111444. [Google Scholar] [CrossRef]
- Yang, Z.; Guo, S.; Huan, Z.; Zhu, Y.; Zhang, T.; Li, S. In situ interface oxidation-adsorption by ferrate (VI)/PMS self-excitation: Unique dual-reaction platform for phenylarsonic acid degradation and immobilization. Sep. Purif. Technol. 2023, 325, 124651. [Google Scholar] [CrossRef]
- Huang, P.; Yao, L.; Chang, Q.; Sha, Y.; Jiang, G.; Zhang, S.; Li, Z. Room-temperature preparation of highly efficient NH2-MIL-101 (Fe) catalyst: The important role of -NH2 in accelerating Fe (III)/Fe (II) cycling. Chemosphere 2022, 291, 133026. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Peng, X.; Li, X.; Qi, K.; Gao, L. Stable CuFeO/Kaolin-based catalytic particle electrode in 3D heterogeneous electro-Fenton system for orange G removal: Synthesis, performance and mechanism. J. Environ. Chem. Eng. 2023, 11, 109562. [Google Scholar] [CrossRef]
Catalysts | Dosage | Oxidizing Agent and Concentration | Added Energy | VOG, COG | Removal Rate and Time | The Literature |
---|---|---|---|---|---|---|
Fe3O4/CeO2-OX | 2.0 g/L | H2O2, 26 mmol | - | 50 mL, 50 mg/L | 98.2%, 120 min | [46] |
MnFe2O4/α-MnO2 (1:9) | 0.1 g/L | PMS, 1000 mg/L | - | 50 mL, 50 mg/L | 96.8%, 30 min | [18] |
Sepiolite-TiO2 NCs | 0.8 g/L | - | UV 300 W | -, 10 mg/L | 98.8%, 150 min | [47] |
Sn/TiO2/AC | 12.5 g/L | H2O2, 1.5 mL/L | UV 300 W | 2500 mL, 50 mg/L | 99.1%, 60 min | [48] |
MIL-53(Fe) | 1.0 g/L | PS, 32 mmol | - | -, 0.2 mmol | 93.7%, 180 min | [19] |
NH2-MIL-101(Fe) | 0.2 g/L | PMS, 0.1 mmol | - | 100 mL, 50 mg/L | 97.9%, 60 min | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mo, L.; Chen, G.; Wang, H. Degradation of Orange G Using PMS Triggered by NH2-MIL-101(Fe): An Amino-Functionalized Metal–Organic Framework. Molecules 2024, 29, 1488. https://doi.org/10.3390/molecules29071488
Mo L, Chen G, Wang H. Degradation of Orange G Using PMS Triggered by NH2-MIL-101(Fe): An Amino-Functionalized Metal–Organic Framework. Molecules. 2024; 29(7):1488. https://doi.org/10.3390/molecules29071488
Chicago/Turabian StyleMo, Lijie, Guangzhou Chen, and Hua Wang. 2024. "Degradation of Orange G Using PMS Triggered by NH2-MIL-101(Fe): An Amino-Functionalized Metal–Organic Framework" Molecules 29, no. 7: 1488. https://doi.org/10.3390/molecules29071488
APA StyleMo, L., Chen, G., & Wang, H. (2024). Degradation of Orange G Using PMS Triggered by NH2-MIL-101(Fe): An Amino-Functionalized Metal–Organic Framework. Molecules, 29(7), 1488. https://doi.org/10.3390/molecules29071488