A Chiral-LC-MS Method for the Simultaneous Quantification of Short-Chain Fatty Acids and D/L-Lactate in the Ruminal Fluid of Dairy Cows
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Ruminal Fluid Samples
4.2. Chemicals
4.3. Derivatization
4.4. LC-MS Conditions
4.5. Method Validation
4.6. Method Applications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Bai, Y.; Liu, F.; Kohn, R.A.; Tadesse, D.A.; Sarria, S.; Li, R.W.; Song, J. Rumen microbial predictors for short-chain fatty acid levels and the grass-fed regimen in Angus cattle. Animals 2022, 12, 2995. [Google Scholar] [CrossRef] [PubMed]
- He, B.; Fan, Y.; Wang, H. Lactate uptake in the rumen and its contributions to subacute rumen acidosis of goats induced by high-grain diets. Front. Vet. Sci. 2022, 9, 964027. [Google Scholar] [CrossRef] [PubMed]
- Primec, M.; Mičetić-Turk, D.; Langerholc, T. Analysis of short-chain fatty acids in human feces: A scoping review. Anal. Biochem. 2017, 526, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, N.; Erickson, H.E.; Bala, V.; Chhonker, Y.S.; Murry, D.J. A concise review of liquid chromatography-mass spectrometry-based quantification methods for short chain fatty acids as endogenous biomarkers. Int. J. Mol. Sci. 2022, 23, 13486. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, W.R.; Vinolo, M.A.R.; Calixto, L.A.; Ferreira, C.M. Use of gas chromatography to quantify short chain fatty acids in the serum, colonic luminal content and feces of mice. Bio. Protoc. 2018, 8, e3089. [Google Scholar] [CrossRef] [PubMed]
- Scortichini, S.; Boarelli, M.C.; Silvi, S.; Fiorini, D. Development and validation of a GC-FID method for the analysis of short chain fatty acids in rat and human faeces and in fermentation fluids. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020, 1143, 121972. [Google Scholar] [CrossRef]
- Rohde, J.K.; Fuh, M.M.; Evangelakos, I.; Pauly, M.J.; Schaltenberg, N.; Siracusa, F.; Gagliani, N.; Tödter, K.; Heeren, J.; Worthmann, A. A gas chromatography mass spectrometry-based method for the quantification of short chain fatty acids. Metabolites 2022, 12, 170. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, F.; Mao, Y.; Kong, W.; Wang, J.; Zhang, G. Influence of parturition on rumen bacteria and SCFAs in Holstein cows based on 16S rRNA sequencing and targeted metabolomics. Animals 2023, 13, 782. [Google Scholar] [CrossRef]
- Kang, S.; Yun, J.; Park, H.Y.; Lee, J.E. Analytical factors for eight short-chain fatty acid analyses in mouse feces through headspace solid-phase microextraction–triple quadrupole gas chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 2023, 415, 6227–6235. [Google Scholar] [CrossRef]
- He, L.; Prodhan, M.A.I.; Yuan, F.; Yin, X.; Lorkiewicz, P.K.; Wei, X.; Feng, W.; McClain, C.; Zhang, X. Simultaneous quantification of straight-chain and branched-chain short chain fatty acids by gas chromatography mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018, 1092, 359–367. [Google Scholar] [CrossRef]
- Li, M.; Zhu, R.; Song, X.; Wang, Z.; Weng, H.; Liang, J. A sensitive method for the quantification of short-chain fatty acids by benzyl chloroformate derivatization combined with GC-MS. Analyst 2020, 145, 2692–2700. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Jasbi, P.; Patterson, J.; Jin, Y. Enhanced detection of short-chain fatty acids using gas chromatography mass spectrometry. Curr. Protoc. 2021, 1, e177. [Google Scholar] [CrossRef] [PubMed]
- Song, H.E.; Lee, H.Y.; Kim, S.J.; Back, S.H.; Yoo, H.J. A facile profiling method of short chain fatty acids using liquid chromatography-mass spectrometry. Metabolites 2019, 9, 173. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Liu, Z.; Bath, C.; Marett, L.; Pryce, J.; Rochfort, S. Optimised method for short-chain fatty acid profiling of bovine milk and serum. Molecules 2022, 27, 436. [Google Scholar] [CrossRef] [PubMed]
- Bihan, D.G.; Rydzak, T.; Wyss, M.; Pittman, K.; McCoy, K.D.; Lewis, I.A. Method for absolute quantification of short chain fatty acids via reverse phase chromatography mass spectrometry. PLoS ONE 2022, 17, e0267093. [Google Scholar] [CrossRef] [PubMed]
- Vagaggini, C.; Brai, A.; Bonente, D.; Lombardi, J.; Poggialini, F.; Pasqualini, C.; Barone, V.; Nicoletti, C.; Bertelli, E.; Dreassi, E. Development and validation of derivatization-based LC-MS/MS method for quantification of short-chain fatty acids in human, rat, and mouse plasma. J. Pharm. Biomed. Anal. 2023, 235, 115599. [Google Scholar] [CrossRef] [PubMed]
- Norton, D.; Crow, B.; Bishop, M.; Kovalcik, K.; George, J.; Bralley, J.A. High performance liquid chromatography–tandem mass spectrometry (HPLC/MS/MS) assay for chiral separation of lactic acid enantiomers in urine using a teicoplanin based stationary phase. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 850, 190–198. [Google Scholar] [CrossRef]
- Henry, H.; Marmy Conus, N.; Steenhout, P.; Béguin, A.; Boulat, O. Sensitive determination of D-lactic acid and L-lactic acid in urine by high-performance liquid chromatography-tandem mass spectrometry. Biomed. Chromatogr. 2012, 26, 425–428. [Google Scholar] [CrossRef]
- Scheijen, J.; Hanssen, N.M.J.; van de Waarenburg, M.P.H.; Jonkers, D.M.A.E.; Stehouwer, C.D.A.; Schalkwijk, C.G. L(+) and D(−) lactate are increased in plasma and urine samples of type 2 diabetes as measured by a simultaneous quantification of L(+) and D(−) lactate by reversed-phase liquid chromatography tandem mass spectrometry. Exp. Diabetes Res. 2012, 2012, 234812. [Google Scholar] [CrossRef]
- Song, K.-Y. Preliminary data on the ratio of D(–)-lactate and L(+)-lactate levels in various lactic acid bacteria as evaluated using an enzymatic method. J. Dairy Sci. Biotechnol. 2022, 40, 15–22. [Google Scholar] [CrossRef]
- Saha, S.; Day-Walsh, P.; Shehata, E.; Kroon, P.A. Development and validation of a LC-MS/MS technique for the analysis of short chain fatty acids in tissues and biological fluids without derivatisation using isotope labelled internal standards. Molecules 2021, 26, 6444. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, J.S.; Auldist, M.J.; Marett, L.C.; Hannah, M.C.; Jacobs, J.L.; Wales, W.J. Ruminal pH and whole-tract digestibility in dairy cows consuming fresh cut herbage plus concentrates and conserved forage fed either separately or as a partial mixed ration. Anim. Prod. Sci. 2014, 54, 1056–1063. [Google Scholar] [CrossRef]
- Geishauser, T. An instrument for collection and transfer of ruminal fluid and for administration of water-soluble drugs in adult cattle. Bov. Pract. 1993, 27, 38–42. [Google Scholar] [CrossRef]
- Moate, P.J.; Williams, S.R.O.; Torok, V.; Hannah, M.C.; Ribaux, B.E.; Tavendale, M.; Eckard, R.J.; Jacobs, J.L.; Auldist, M.J.; Wales, W.J. Grape marc reduces methane emissions when fed to dairy cows. J. Dairy Sci. 2014, 97, 5073–5087. [Google Scholar] [CrossRef]
- NHMRC. Australian Code for the Care and Use of Animals for Scientific Purposes, 8th ed.; National Health and Medical Research Council: Canberra, Australia, 2013. Available online: http://www.nhmrc.gov.au/publications/synopses/ea16syn.htm (accessed on 10 April 2022).
Name | Calculated Mass (m/z) | Measured Mass (m/z) | Mass Error (ppm) | Linear Range (µg/mL) | R2 |
---|---|---|---|---|---|
Acetate | 194.0566 | 194.0560 | -3.09 | 0.033 to 20 | 1.0000 |
Propionate | 208.0723 | 208.0717 | -2.88 | 0.033 to 20 | 1.0000 |
Isobutyrate | 222.0879 | 222.0872 | -3.15 | 0.033 to 20 | 0.9999 |
Butyrate | 222.0879 | 222.0872 | -3.15 | 0.033 to 20 | 0.9999 |
2-methylbutyrate | 236.1036 | 236.1029 | -2.96 | 0.033 to 20 | 0.9999 |
Isovalerate | 236.1036 | 236.1029 | -2.96 | 0.033 to 20 | 0.9999 |
Valerate | 236.1036 | 236.1029 | -2.96 | 0.033 to 20 | 0.9999 |
Hexanoate | 250.1192 | 280.1185 | -2.80 | 0.033 to 20 | 1.0000 |
D-lactate | 224.0672 | 224.0666 | -2.68 | 0.033 to 20 | 0.9999 |
L-lactate | 224.0672 | 224.0666 | -2.68 | 0.033 to 20 | 0.9979 |
Name | Sample 1 | Sample 2 | Sample 3 | Sample 4 | ||||
---|---|---|---|---|---|---|---|---|
Mean | RSD | Mean | RSD | Mean | RSD | Mean | RSD | |
Acetate | 2295.8 | 0.1 | 1388.0 | 1.1 | 1981.8 | 0.6 | 2078.1 | 1.1 |
Propionate | 861.8 | 0.2 | 452.9 | 1.0 | 670.8 | 0.8 | 791.4 | 1.0 |
Isobutyrate | 58.0 | 2.5 | 35.0 | 4.0 | 53.4 | 1.2 | 56.9 | 0.7 |
Butyrate | 1054.9 | 0.3 | 535.9 | 1.4 | 760.9 | 0.8 | 842.0 | 0.3 |
2-methylbutyrate | 46.6 | 1.0 | 27.8 | 0.7 | 71.9 | 1.3 | 60.0 | 1.0 |
Isovalerate | 45.3 | 1.3 | 29.3 | 0.7 | 40.9 | 0.8 | 43.1 | 0.8 |
Valerate | 124.3 | 1.4 | 52.4 | 0.7 | 80.3 | 0.8 | 99.9 | 1.4 |
Hexanoate | 37.9 | 1.0 | 14.1 | 1.2 | 16.2 | 1.4 | 31.8 | 0.6 |
D-lactate | 21.3 | 0.9 | 17.3 | 2.1 | 59.1 | 0.9 | 4.2 | 2.3 |
L-lactate | 9.5 | 4.3 | 6.4 | 0.7 | 29.9 | 1.8 | 6.9 | 4.3 |
Analyte | 40-Fold Diluted Matrix | 20-Fold Diluted Matrix | ||
---|---|---|---|---|
Low Spike | High Spike | Low Spike | High Spike | |
Crotonate | 96.7 ± 1.1 | 100.0 ± 2.7 | 93.4 ± 0.6 | 94.5 ± 0.8 |
D-lactate | 100.8 ± 4.6 | 102.7 + 2.8 | 88.2 ± 4.4 | 92.9 ± 1.3 |
Name | Concentration (µg/mL) | RSD (%) |
---|---|---|
Acetate | 1165.4 to 2842.5 | 20.6 |
Butyrate | 469.5 to 1417.8 | 24.9 |
Propionate | 333.3 to 1055.6 | 24.8 |
Valerate | 32.3 to 140.6 | 31.4 |
Isobutyrate | 26.3 to 97.7 | 26.5 |
Isovalerate | 18.5 to 76.1 | 29.4 |
2-methylbutyrate | 17.1 to 81.3 | 34.4 |
Hexanoate | 10.4 to 44.9 | 37.9 |
L-lactate | 2.0 to 31.6 | 73.0 |
D-lactate | 1.2 to 60.9 | 81.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Williams, S.R.O.; Jacobs, J.L.; Neachtain, A.S.O.; Rochfort, S. A Chiral-LC-MS Method for the Simultaneous Quantification of Short-Chain Fatty Acids and D/L-Lactate in the Ruminal Fluid of Dairy Cows. Molecules 2024, 29, 1398. https://doi.org/10.3390/molecules29061398
Liu Z, Williams SRO, Jacobs JL, Neachtain ASO, Rochfort S. A Chiral-LC-MS Method for the Simultaneous Quantification of Short-Chain Fatty Acids and D/L-Lactate in the Ruminal Fluid of Dairy Cows. Molecules. 2024; 29(6):1398. https://doi.org/10.3390/molecules29061398
Chicago/Turabian StyleLiu, Zhiqian, S. Richard O. Williams, Joe L. Jacobs, Aodan S. O. Neachtain, and Simone Rochfort. 2024. "A Chiral-LC-MS Method for the Simultaneous Quantification of Short-Chain Fatty Acids and D/L-Lactate in the Ruminal Fluid of Dairy Cows" Molecules 29, no. 6: 1398. https://doi.org/10.3390/molecules29061398
APA StyleLiu, Z., Williams, S. R. O., Jacobs, J. L., Neachtain, A. S. O., & Rochfort, S. (2024). A Chiral-LC-MS Method for the Simultaneous Quantification of Short-Chain Fatty Acids and D/L-Lactate in the Ruminal Fluid of Dairy Cows. Molecules, 29(6), 1398. https://doi.org/10.3390/molecules29061398