Simple and Safe Synthesis of Yolk-Shell-Structured Silicon/Carbon Composites with Enhanced Electrochemical Properties
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Neumann, J.; Petranikova, M.; Meeus, M.; Gamarra, J.D.; Younesi, R.; Winter, M.; Nowak, S. Recycling of Lithium-Ion Batteries—Current State of the Art, Circular Economy, and Next Generation Recycling. Adv. Energy Mater. 2022, 12, 2102917. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abbas, Q.; Al Makky, A.; Abdelkareem, M.A. Supercapacitors as next Generation Energy Storage Devices: Properties and Applications. Energy 2022, 248, 123617. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Liu, T.; Yang, X.-G.; Ge, S.; Stanley, N.V.; Rountree, E.S.; Leng, Y.; McCarthy, B.D. Fast Charging of Energy-Dense Lithium-Ion Batteries. Nature 2022, 611, 485–490. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, T.; Ashirov, T.; Kazzi, M.E.; Cancellieri, C.; Jeurgens, L.P.H.; Choi, J.W.; Coskun, A. Fluorinated Ether Electrolyte with Controlled Solvation Structure for High Voltage Lithium Metal Batteries. Nat. Commun. 2022, 13, 2575. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Peng, D.; Kimura, H.; Zhang, X.; Sun, X.; Pashameah, R.A.; Alzahrani, E.; Wang, B.; Guo, Z.; Du, W.; et al. Honeycomb-like Nitrogen-Doped Porous Carbon Decorated with Co3O4 Nanoparticles for Superior Electrochemical Performance Pseudo-Capacitive Lithium Storage and Supercapacitors. Adv. Compos. Hybrid. Mater. 2022, 5, 3146–3157. [Google Scholar] [CrossRef]
- Wang, Q.; Zhu, M.; Chen, G.; Dudko, N.; Li, Y.; Liu, H.; Shi, L.; Wu, G.; Zhang, D. High-Performance Microsized Si Anodes for Lithium-Ion Batteries: Insights into the Polymer Configuration Conversion Mechanism. Adv. Mater. 2022, 34, 2109658. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Han, J.; Chen, M.; Zhou, W.; Wang, X.; Xu, M.; Lin, H.; Liu, H.; Chen, H.; Chen, J.; et al. Enabling Robust Structural and Interfacial Stability of Micron-Si Anode toward High-Performance Liquid and Solid-State Lithium-Ion Batteries. Energy Storage Mater. 2022, 52, 547–561. [Google Scholar] [CrossRef]
- An, Y.; Tian, Y.; Liu, C.; Xiong, S.; Feng, J.; Qian, Y. One-Step, Vacuum-Assisted Construction of Micrometer-Sized Nanoporous Silicon Confined by Uniform Two-Dimensional N-Doped Carbon toward Advanced Li Ion and MXene-Based Li Metal Batteries. ACS Nano 2022, 16, 4560–4577. [Google Scholar] [CrossRef]
- He, Z.; Xiao, Z.; Yue, H.; Jiang, Y.; Zhao, M.; Zhu, Y.; Yu, C.; Zhu, Z.; Lu, F.; Jiang, H.; et al. Single-Walled Carbon Nanotube Film as an Efficient Conductive Network for Si-Based Anodes. Adv. Funct. Mater. 2023, 33, 2300094. [Google Scholar] [CrossRef]
- Xu, Z.; Zheng, E.; Xiao, Z.; Shao, H.; Liu, Y.; Wang, J. Photo-Initiated in Situ Synthesis of Polypyrrole Fe-Coated Porous Silicon Microspheres for High-Performance Lithium-Ion Battery Anodes. Chem. Eng. J. 2023, 459, 141543. [Google Scholar] [CrossRef]
- Zhang, R.; Xiao, Z.; Lin, Z.; Yan, X.; He, Z.; Jiang, H.; Yang, Z.; Jia, X.; Wei, F. Unraveling the Fundamental Mechanism of Interface Conductive Network Influence on the Fast-Charging Performance of SiO-Based Anode for Lithium-Ion Batteries. Nano-Micro Lett. 2023, 16, 43. [Google Scholar] [CrossRef]
- Han, D.; Xiang, S.; Cunha, J.; Xie, Y.; Zhou, M.; Hou, Z.; Yin, H. Pre-Lithiated Silicon/Carbon Nanosphere Anode with Enhanced Cycling Ability and Coulombic Efficiency for Lithium-Ion Batteries. J. Energy Storage 2024, 79, 110183. [Google Scholar] [CrossRef]
- Dai, X.; Liu, H.; Liu, X.; Liu, Z.; Liu, Y.; Cao, Y.; Tao, J.; Shan, Z. Silicon Nanoparticles Encapsulated in Multifunctional Crosslinked Nano-Silica/Carbon Hybrid Matrix as a High-Performance Anode for Li-Ion Batteries. Chem. Eng. J. 2021, 418, 129468. [Google Scholar] [CrossRef]
- Imtiaz, S.; Amiinu, I.S.; Storan, D.; Kapuria, N.; Geaney, H.; Kennedy, T.; Ryan, K.M. Dense Silicon Nanowire Networks Grown on a Stainless-Steel Fiber Cloth: A Flexible and Robust Anode for Lithium-Ion Batteries. Adv. Mater. 2021, 33, 2105917. [Google Scholar] [CrossRef]
- Jing, S.; Xiao, J.; Shen, Y.; Hong, B.; Gu, D.; Xiao, W. Silicate-Mediated Electrolytic Silicon Nanotube from Silica in Molten Salts. Small 2022, 18, 2203251. [Google Scholar] [CrossRef]
- An, W.; He, P.; Che, Z.; Xiao, C.; Guo, E.; Pang, C.; He, X.; Ren, J.; Yuan, G.; Du, N.; et al. Scalable Synthesis of Pore-Rich Si/C@C Core–Shell-Structured Microspheres for Practical Long-Life Lithium-Ion Battery Anodes. ACS Appl. Mater. Interfaces 2022, 14, 10308–10318. [Google Scholar] [CrossRef]
- Peng, J.; Li, W.; Wu, Z.; Li, H.; Zeng, P.; Chen, G.; Chang, B.; Zhang, X.; Wang, X. Si/C Composite Embedded Nano-Si in 3D Porous Carbon Matrix and Enwound by Conductive CNTs as Anode of Lithium-Ion Batteries. Sustain. Mater. Technol. 2022, 32, e00410. [Google Scholar] [CrossRef]
- Liu, X.H.; Zhong, L.; Huang, S.; Mao, S.X.; Zhu, T.; Huang, J.Y. Size-Dependent Fracture of Silicon Nanoparticles During Lithiation. ACS Nano 2012, 6, 1522–1531. [Google Scholar] [CrossRef] [PubMed]
- Liao, Q.; Li, S.; Xi, F.; Tong, Z.; Chen, X.; Wan, X.; Ma, W.; Deng, R. High-Performance Silicon Carbon Anodes Based on Value-Added Recycling Strategy of End-of-Life Photovoltaic Modules. Energy 2023, 281, 128345. [Google Scholar] [CrossRef]
- Zhu, T.; Sternlicht, H.; Ha, Y.; Fang, C.; Liu, D.; Savitzky, B.H.; Zhao, X.; Lu, Y.; Fu, Y.; Ophus, C.; et al. Formation of Hierarchically Ordered Structures in Conductive Polymers to Enhance the Performances of Lithium-Ion Batteries. Nat. Energy 2023, 8, 129–137. [Google Scholar] [CrossRef]
- Xu, C.; Shen, L.; Zhang, W.; Huang, Y.; Sun, Z.; Zhao, G.; Lin, Y.; Zhang, Q.; Huang, Z.; Li, J. Efficient Implementation of Kilogram-Scale, High-Capacity and Long-Life Si-C/TiO2 Anodes. Energy Storage Mater. 2023, 56, 319–330. [Google Scholar] [CrossRef]
- Li, Z.; Han, M.; Yu, P.; Lin, J.; Yu, J. Macroporous Directed and Interconnected Carbon Architectures Endow Amorphous Silicon Nanodots as Low-Strain and Fast-Charging Anode for Lithium-Ion Batteries. Nano-Micro Lett. 2024, 16, 98. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Huang, Y.; Liu, N.; Wang, X.; Zhang, Y.; Guo, Y.; Wu, H.-H.; Chen, H.; Tang, X.; Zhang, Q. N-Doped Porous Carbon Nanofibers Sheathed Pumpkin-like Si/C Composites as Free-Standing Anodes for Lithium-Ion Batteries. J. Energy Chem. 2021, 54, 727–735. [Google Scholar] [CrossRef]
- Lee, B.-S.; Yang, H.-S.; Lee, K.H.; Han, S.; Yu, W.-R. Rational Design of a Si–Sn–C Ternary Anode Having Exceptional Rate Performance. Energy Storage Mater. 2019, 17, 62–69. [Google Scholar] [CrossRef]
- Tian, M.; Ben, L.; Jin, Z.; Ji, H.; Yu, H.; Zhao, W.; Huang, X. Excellent Low-Temperature Electrochemical Cycling of an Anode Consisting of Si Nanoparticles Seeded in Sn Nanowires for Lithium-Ion Batteries. Electrochim. Acta 2021, 396, 139224. [Google Scholar] [CrossRef]
- Liu, N.; Wu, H.; McDowell, M.T.; Yao, Y.; Wang, C.; Cui, Y. A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes. Nano Lett. 2012, 12, 3315–3321. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.; Kim, J.-C.; Kim, D.-W. Waste Glass Microfiber Filter-Derived Fabrication of Fibrous Yolk-Shell Structured Silicon/Carbon Composite Freestanding Electrodes for Lithium-Ion Battery Anodes. J. Power Sources 2020, 468, 228407. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, F.; Zhang, Y.; Dang, M.; Li, B.; Ma, J.; Du, X. Ni/NiO/SiO2/C Nanofibers with Strong Wideband Microwave Absorption and Robust Hydrophobicity. Appl. Surf. Sci. 2022, 588, 152964. [Google Scholar] [CrossRef]
- Su, H.; Li, X.; Liu, C.; Shang, Y.; Liu, H. Scalable Synthesis of Micrometer-Sized Porous Silicon/Carbon Composites for High-Stability Lithium-Ion Battery Anodes. Chem. Eng. J. 2023, 451, 138394. [Google Scholar] [CrossRef]
- Li, J.; Huang, Y.; Huang, W.; Tao, J.; Lv, F.; Ye, R.; Lin, Y.; Li, Y.Y.; Huang, Z.; Lu, J. Simple Designed Micro–Nano Si–Graphite Hybrids for Lithium Storage. Small 2021, 17, 2006373. [Google Scholar] [CrossRef]
- Wang, J.; Gao, C.; Yang, Z.; Zhang, M.; Li, Z.; Zhao, H. Carbon-Coated Mesoporous Silicon Shell-Encapsulated Silicon Nano-Grains for High Performance Lithium-Ion Batteries Anode. Carbon 2022, 192, 277–284. [Google Scholar] [CrossRef]
- Yang, X.; Kong, W.; Du, G.; Li, S.; Tang, Y.; Cao, J.; Lu, X.; Tan, R.; Qian, G. Synthesis of a Yolk-Shell Nanostructured Silicon-Based Anode for High-Performance Li-Ion Batteries. Batteries 2023, 9, 446. [Google Scholar] [CrossRef]
- Liu, X.; Liu, H.; Cao, Y.; Wu, X.; Shan, Z. Silicon Nanoparticles Embedded in Chemical-Expanded Graphite through Electrostatic Attraction for High-Performance Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2023, 15, 9457–9464. [Google Scholar] [CrossRef]
- Lei, Y.; Li, S.; Du, M.; Mi, J.; Gao, D.-C.; Hao, L.; Jiang, L.-J.; Luo, M.; Jiang, W.-Q.; Li, F.; et al. Preparation of Double-Shell Si@SnO2@C Nanocomposite as Anode for Lithium-Ion Batteries by Hydrothermal Method. Rare Met. 2023, 42, 2972–2981. [Google Scholar] [CrossRef]
- Yang, D.; Shi, J.; Shi, J.; Yang, H. Simple Synthesis of Si/Sn@C-G Anodes with Enhanced Electrochemical Properties for Li-Ion Batteries. Electrochim. Acta 2018, 259, 1081–1088. [Google Scholar] [CrossRef]
- Yi, X.; Zhang, F.; Wang, J.; Wang, S.; Tong, H.; An, T.; Yu, W.-J. Facile Synthesis of N-C/Si@G Nanocomposite as a High-Performance Anode Material for Li-Ion Batteries. J. Alloys Compd. 2021, 872, 159716. [Google Scholar] [CrossRef]
- Nyamtara, K.J.; Song, J.K.; Karima, N.C.; Kim, S.H.; Nguyen, M.C.; Duong, T.P.M.; Lee, K.J.; Ahn, W. Two Step Pyrolysis Synthesis Method of Graphite-Enhanced Nano-Si/Pitch Composite as Long Cycle Life Anode for Lithium-Ion Batteries. J. Alloys Compd. 2024, 976, 173229. [Google Scholar] [CrossRef]
- Ai, W.; Kirkaldy, N.; Jiang, Y.; Offer, G.; Wang, H.; Wu, B. A Composite Electrode Model for Lithium-Ion Batteries with Silicon/Graphite Negative Electrodes. J. Power Sources 2022, 527, 231142. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, H.; Lin, R. Improving the Electrochemical Performance of Silicon Materials by SnO2 through Structural Design and Conductivity. Appl. Surf. Sci. 2022, 581, 152230. [Google Scholar] [CrossRef]
- Liu, X.; Liu, J.; Zhao, X.; Chai, D.; Ding, N.; Zhang, Q.; Li, X. Turning Complexity into Simplicity: In Situ Synthesis of High-Performance Si@C Anode in Battery Manufacturing Process by Partially Carbonizing the Slurry of Si Nanoparticles and Dual Polymers. Molecules 2024, 29, 175. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Yin, X.; Xiao, R.; Mu, T.; Huo, H.; Zuo, P.; Ma, Y.; Cheng, X.; Gao, Y.; Yin, G.; et al. Layered Porous Silicon Encapsulated in Carbon Nanotube Cage as Ultra-Stable Anode for Lithium-Ion Batteries. Chem. Eng. J. 2022, 431, 133982. [Google Scholar] [CrossRef]
- Kim, J.; Choi, J.; Park, K.; Kim, S.; Nam, K.W.; Char, K.; Choi, J.W. Host–Guest Interlocked Complex Binder for Silicon–Graphite Composite Electrodes in Lithium Ion Batteries. Adv. Energy Mater. 2022, 12, 2103718. [Google Scholar] [CrossRef]
- Liang, B.; Tan, W.; Chen, M.; Yi, M.; Hu, J.; Zeng, K.; Wang, Y.; Li, Y.; Yang, G. Facile Synthesis of Two-Dimensional Carbon/Si Composite Assembled by Ultrasonic Atomization-Assisted-Ice Template Technology as Electrode for Lithium-Ion Battery. J. Alloys Compd. 2024, 976, 173030. [Google Scholar] [CrossRef]
- Hao, Q.; Hou, J.; Ye, J.; Yang, H.; Du, J.; Xu, C. Hierarchical Macroporous Si/Sn Composite: Easy Preparation and Optimized Performances towards Lithium Storage. Electrochim. Acta 2019, 306, 427–436. [Google Scholar] [CrossRef]
- Wang, C.; Yuan, M.; Shi, W.; Liu, X.; Wu, L.; Hu, Z.-Y.; Chen, L.; Li, Y.; Su, B.-L. Chelation-Assisted Formation of Carbon Nanotubes Interconnected Yolk-Shell Silicon/Carbon Anodes for High-Performance Lithium-Ion Batteries. J. Colloid. Interface Sci. 2023, 641, 747–757. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, K.; Zhang, H.; Wang, X.; Zhou, Y.; He, W.; Cui, J.; Sun, J. Constructing Biomass-Based Ultrahigh-Rate Performance SnOy@C/SiOx Anode for LIBs via Disproportionation Effect. Small 2023, 19, 2204867. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Li, R.; Xu, J.; Tang, Y.; Huang, F. Long-Life and High Volumetric Capacity Bi2Sn2O7 Anode with Interpenetrating Bi–O and Sn–O Networks. Cell Rep. Phys. Sci. 2022, 3, 101109. [Google Scholar] [CrossRef]
- Gao, R.; Tang, J.; Zhang, K.; Ozawa, K.; Qin, L.-C. A Sandwich-like Silicon–Carbon Composite Prepared by Surface-Polymerization for Rapid Lithium-Ion Storage. Nano Energy 2020, 78, 105341. [Google Scholar] [CrossRef]
- Yan, Z.; Jiang, J.; Zhang, Y.; Yang, D.; Du, N. Functionalization-Assistant Ball Milling towards Si/Graphene Anodes in High Performance Li-Ion Batteries. Mater. Today Nano 2022, 18, 100175. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Y.; Hu, Q.; Li, H.; Jiao, F.; Wang, W.; Zhang, S.; Du, H. In Situ Copper Coating on Silicon Particles Enables Long Durable Anodes in Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2024, 16, 5058–5066. [Google Scholar] [CrossRef]
- Wang, X.; Wen, K.; Chen, T.; Chen, S.; Zhang, S. Supercritical Fluid-Assisted Preparation of Si/CNTs@FG Composites with Hierarchical Conductive Networks as a High-Performance Anode Material. Appl. Surf. Sci. 2020, 522, 146507. [Google Scholar] [CrossRef]
- He, Y.; Ye, Z.; Chamas, M.; Sougrati, M.T.; Lippens, P.-E. Si/Cu-Zn(Ox)/C Composite as Anode Material for Li-Ion Batteries. Solid State Ion. 2021, 372, 115774. [Google Scholar] [CrossRef]
- Li, Z.; Li, Z.; Zhong, W.; Li, C.; Li, L.; Zhang, H. Facile Synthesis of Ultrasmall Si Particles Embedded in Carbon Framework Using Si-Carbon Integration Strategy with Superior Lithium Ion Storage Performance. Chem. Eng. J. 2017, 319, 1–8. [Google Scholar] [CrossRef]
- Shen, X.; Jiang, W.; Sun, H.; Wang, Y.; Dong, A.; Hu, J.; Yang, D. Ionic Liquid Assist to Prepare Si@N-Doped Carbon Nanoparticles and Its High Performance in Lithium Ion Batteries. J. Alloys Compd. 2017, 691, 178–184. [Google Scholar] [CrossRef]
- Ashuri, M.; He, Q.; Liu, Y.; Zhang, K.; Emani, S.; Sawicki, M.S.; Shamie, J.S.; Shaw, L.L. Hollow Silicon Nanospheres Encapsulated with a Thin Carbon Shell: An Electrochemical Study. Electrochim. Acta 2016, 215, 126–141. [Google Scholar] [CrossRef]
- Dong, H.; Fu, X.; Wang, J.; Wang, P.; Ding, H.; Song, R.; Wang, S.; Li, R.; Li, S. In-Situ Construction of Porous Si@C Composites with LiCl Template to Provide Silicon Anode Expansion Buffer. Carbon 2021, 173, 687–695. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, H.; Liu, C.; Li, D.; Kim, H.-K.; Harris, C.; Lao, C.; Abdelkader, A.; Xi, K. Facile Mechanochemical Synthesis of Non-Stoichiometric Silica-Carbon Composite for Enhanced Lithium Storage Properties. J. Alloys Compd. 2019, 801, 658–665. [Google Scholar] [CrossRef]
- Li, G.; Huang, L.-B.; Yan, M.-Y.; Li, J.-Y.; Jiang, K.-C.; Yin, Y.-X.; Xin, S.; Xu, Q.; Guo, Y.-G. An Integral Interface with Dynamically Stable Evolution on Micron-Sized SiOx Particle Anode. Nano Energy 2020, 74, 104890. [Google Scholar] [CrossRef]
- Yuan, T.; Tang, R.; Xiao, F.; Zuo, S.; Wang, Y.; Liu, J. Modifying SiO as a Ternary Composite Anode Material((SiOx/G/SnO2)@C) for Lithium Battery with High Li-Ion Diffusion and Lower Volume Expansion. Electrochim. Acta 2023, 439, 141655. [Google Scholar] [CrossRef]
- Gao, R.; Tang, J.; Terabe, K.; Yu, X.; Sasaki, T.; Hashimoto, A.; Asano, K.; Suzuki, M.; Nakura, K. Preparation of Layered Si Materials as Anode for Lithium-Ion Batteries. Chem. Phys. Lett. 2019, 730, 198–205. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Wu, M.; Du, Q.; Zhai, G.; He, H. Simple and Safe Synthesis of Yolk-Shell-Structured Silicon/Carbon Composites with Enhanced Electrochemical Properties. Molecules 2024, 29, 1301. https://doi.org/10.3390/molecules29061301
Li J, Wu M, Du Q, Zhai G, He H. Simple and Safe Synthesis of Yolk-Shell-Structured Silicon/Carbon Composites with Enhanced Electrochemical Properties. Molecules. 2024; 29(6):1301. https://doi.org/10.3390/molecules29061301
Chicago/Turabian StyleLi, Jinhuan, Min Wu, Quan Du, Gangpeng Zhai, and Haiyong He. 2024. "Simple and Safe Synthesis of Yolk-Shell-Structured Silicon/Carbon Composites with Enhanced Electrochemical Properties" Molecules 29, no. 6: 1301. https://doi.org/10.3390/molecules29061301
APA StyleLi, J., Wu, M., Du, Q., Zhai, G., & He, H. (2024). Simple and Safe Synthesis of Yolk-Shell-Structured Silicon/Carbon Composites with Enhanced Electrochemical Properties. Molecules, 29(6), 1301. https://doi.org/10.3390/molecules29061301