Insights into ThB40: Stability, Electronic Structure, and Interaction
Abstract
1. Introduction
2. Results and Discussion
2.1. Stability of ThB40
2.2. Geometries and Electronic Structures
2.3. Interactions between Th and B40
2.4. Simulated IR Spectra of D2d-B40 and Th@D2d-B40
3. Calculation Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, M.; Xu, Y.E.; Song, Y.X. Ab initio study on nonmetal and nonmagnetic metal atoms doped arsenene. JETP Lett. 2017, 106, 434–439. [Google Scholar] [CrossRef]
- Li, M.Y.; Cui, J.B.; Zhao, Y.X.; Zhao, P.; Li, Q.Z.; Zhao, X. Unexpected diverseness on electronic density and bonding behaviours for Sc2X@C2v(63751)-C86 and Sc2X@C1(63755)-C86 (X = S and 0). Chem. Phys. Lett. 2018, 707, 93–100. [Google Scholar] [CrossRef]
- Ifthikar, J.; Shahib, I.I.; Jawad, A.; Gendy, E.A.; Wang, S.Q.; Wu, B.B.; Chen, Z.Q.; Chen, Z.L. The excursion covered for the elimination of chromate by exploring the coordination mechanisms between chromium species and various functional groups. Coord. Chem. Rev. 2021, 437, 213868. [Google Scholar] [CrossRef]
- Dimic, D.; Eichhorn, T.; Milenkovic, D.; Kaluderovic, G.N. Synthesis, Structural, and Quantum Chemical Analysis of Neutral and Cationic Ruthenium(II) Complexes with Nicotinate-Polyethylene Glycol Ester Ligands. Inorganics 2023, 11, 460. [Google Scholar] [CrossRef]
- Mato, M.; Cornella, J. Bismuth in Radical Chemistry and Catalysis. Angew. Chem. Int. Ed. 2023, 63, e202315046. [Google Scholar] [CrossRef] [PubMed]
- Weinhold, F.; Glendening, E.D. Natural resonance-theoretic conceptions of extreme electronic delocalization in soft materials. Phys. Chem. Chem. Phys. 2024, 26, 2815–2822. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, A.; Chen, Z.; Jiao, H. Spherical Aromaticity in Ih Symmetrical Fullerenes The 2(N+1)2 Rule. Angew. Chem. Int. Ed. 2000, 39, 3915–3917. [Google Scholar] [CrossRef]
- Popov, A.A.; Dunsch, L. Bonding in endohedral metallofullerenes as studied by quantum theory of atoms in molecules. Chemistry 2009, 15, 9707–9729. [Google Scholar] [CrossRef]
- Canchaya, J.G.; Wang, Y.; Alcami, M.; Martin, F.; Busnengo, H.F. Study of the interaction between short alkanethiols from ab initio calculations. Phys. Chem. Chem. Phys. 2010, 12, 7555–7565. [Google Scholar] [CrossRef]
- Rodriguez-Fortea, A.; Balch, A.L.; Poblet, J.M. Endohedral metallofullerenes: A unique host-guest association. Chem. Soc. Rev. 2011, 40, 3551–3563. [Google Scholar] [CrossRef]
- Yang, S.; Liu, F.; Chen, C.; Jiao, M.; Wei, T. Fullerenes encaging metal clusters—Clusterfullerenes. Chem. Commun. 2011, 47, 11822–11839. [Google Scholar] [CrossRef]
- Lu, X.; Feng, L.; Akasaka, T.; Nagase, S. Current status and future developments of endohedral metallofullerenes. Chem. Soc. Rev. 2012, 41, 7723–7760. [Google Scholar] [CrossRef]
- Bao, L.; Peng, P.; Lu, X. Bonding inside and outside Fullerene Cages. Acc. Chem. Res. 2018, 51, 810–815. [Google Scholar] [CrossRef] [PubMed]
- Heath, J.; O’Brien, S.; Zhang, Q.; Liu, Y.; Curl, R.; Tittel, F.; Smalley, R. Lanthanum complexes of spheroidal carbon shells. J. Am. Chem. Soc. 1985, 107, 7779–7780. [Google Scholar] [CrossRef]
- Alvarez, M.M.; Gillan, E.G.; Holczer, K.; Kaner, R.B.; Min, K.S.; Whetten, R.L. Lanthanum carbide (La2C80): A soluble dimetallofullerene. J. Phys. Chem. 1991, 95, 10561–10563. [Google Scholar] [CrossRef]
- Chai, Y.; Guo, T.; Jin, C.; Haufler, R.E.; Chibante, L.F.; Fure, J.; Wang, L.; Alford, J.M.; Smalley, R.E. Fullerenes with metals inside. J. Phys. Chem. 1991, 95, 7564–7568. [Google Scholar] [CrossRef]
- Moreno-Vicente, A.; Roselló, Y.; Chen, N.; Echegoyen, L.; Dunk, P.W.; Rodríguez-Fortea, A.; de Graaf, C.; Poblet, J.M. Are U–U Bonds Inside Fullerenes Really Unwilling Bonds? J. Am. Chem. Soc. 2023, 145, 6710–6718. [Google Scholar] [CrossRef] [PubMed]
- Li, M.Y.; Luo, X.L.; Zhao, Y.X.; Zhang, W.X.; Yuan, K.; Zhao, X. Metal Atoms (Li, Na, and K) Tuning the Configuration of Pyrrole for the Selective Recognition of C60. Inorg. Chem. 2023, 62, 4618–4624. [Google Scholar] [CrossRef]
- Jiang, H.; Yu, X.; Guo, M.; Yao, Y.-R.; Meng, Q.; Echegoyen, L.; Autschbach, J.; Chen, N. USc2C2 and USc2NC Clusters with U–C Triple Bond Character Stabilized Inside Fullerene Cages. J. Am. Chem. Soc. 2023, 145, 5645–5654. [Google Scholar] [CrossRef]
- Cai, W.; Abella, L.; Zhuang, J.; Zhang, X.; Feng, L.; Wang, Y.; Morales-Martinez, R.; Esper, R.; Boero, M.; Metta-Magana, A.; et al. Synthesis and Characterization of Non-Isolated-Pentagon-Rule Actinide Endohedral Metallofullerenes U@ C1(17418)-C76, U@C1(28324)-C80, and Th@C1(28324)-C80: Low-Symmetry Cage Selection Directed by a Tetravalent Ion. J. Am. Chem. Soc. 2018, 140, 18039–18050. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Li, M.Y.; Zhao, P.; Ehara, M.; Zhao, X. New Insight into U@C80: Missing U@D3(31921)-C80 and Nuanced Enantiomers of U@C1(28324)-C80. Inorg. Chem. 2019, 58, 14159–14166. [Google Scholar] [CrossRef]
- Liu, F.; Spree, L. Molecular spinning top: Visualizing the dynamics of M3N@C80 with variable temperature single crystal X-ray diffraction. Chem. Commun. 2019, 55, 13000–13003. [Google Scholar] [CrossRef]
- Yan, Y.; Morales-Martinez, R.; Zhuang, J.; Yao, Y.R.; Li, X.; Poblet, J.M.; Rodriguez-Fortea, A.; Chen, N. Th@D5h(6)-C80: A highly symmetric fullerene cage stabilized by a single metal ion. Chem. Commun. 2021, 57, 6624–6627. [Google Scholar] [CrossRef]
- Jin, M.; Zhuang, J.; Wang, Y.; Yang, W.; Liu, X.; Chen, N. Th@Td(19151)-C76: A Highly Symmetric Fullerene Cage Stabilized by a Tetravalent Actinide Metal Ion. Inorg. Chem. 2019, 58, 16722–16726. [Google Scholar] [CrossRef]
- Shen, Y.; Yu, X.; Meng, Q.; Yao, Y.-R.; Autschbach, J.; Chen, N. ThC2@C82 versus Th@C84: Unexpected formation of triangular thorium carbide cluster inside fullerenes. Chem. Sci. 2023, 13, 12980–12986. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Y.; Morales-Martínez, R.; Zhong, J.; de Graaf, C.; Rodríguez-Fortea, A.; Poblet, J.M.; Echegoyen, L.; Feng, L.; Chen, N. U2@Ih(7)-C80: Crystallographic Characterization of a Long-Sought Dimetallic Actinide Endohedral Fullerene. J. Am. Chem. Soc. 2018, 140, 3907–3915. [Google Scholar] [CrossRef]
- Zhuang, J.; Morales-Martínez, R.; Zhang, J.; Wang, Y.; Yao, Y.R.; Pei, C.; Rodríguez-Fortea, A.; Wang, S.; Echegoyen, L.; de Graaf, C.; et al. Characterization of a strong covalent Th3+-Th3+ bond inside an Ih(7)-C80 fullerene cage. Nat. Commun. 2021, 12, 2372. [Google Scholar] [CrossRef]
- Zhao, Y.F.; Lusk, M.T.; Dillon, A.C.; Heben, M.J.; Zhang, S.B. Boron-based organometallic nanostructures: Hydrogen storage properties and structure stability. Nano Lett. 2008, 8, 157–161. [Google Scholar] [CrossRef]
- Ramachandrant, P.V.; Burghardt, T.E. Recent developments in the chiral synthesis of homoallylic amines via organoboranes. Pure Appl. Chem. 2006, 78, 1397–1406. [Google Scholar] [CrossRef]
- Bigmore, H.R.; Lawrence, S.C.; Mountford, P.; Tredget, C.S. Coordination, organometallic and related chemistry of tris(pyrazolyl) methane ligands. Dalton Transact. 2005, 1, 635–651. [Google Scholar] [CrossRef]
- Xue, K.; Li, H.Y.; Pan, L.; Li, C.J.; Zhang, X.W.; Zou, J.J. Preparation and performance characterization of functionalized boron-based energetic-microcapsules with uniform size. Chem. Eng. J. 2023, 469, 143917. [Google Scholar] [CrossRef]
- Ali, F.; Hosmane, N.S.; Zhu, Y.H. Boron Chemistry for Medical Applications. Molecules 2020, 25, 828. [Google Scholar] [CrossRef]
- Chen, W.H.; Liu, J.Y.; Sun, W.M.; He, H.M.; Yu, S.S.; Li, Y.; Li, Z.R. Metalloborospherenes with the stabilized classical fullerene-like borospherene B36 as electric field manipulated second-order nonlinear optical switches. New J. Chem. 2022, 46, 22246–22255. [Google Scholar] [CrossRef]
- Soliman, K.A.; Aal, S.A. Ti, Ni, and Cu decorated borospherene as potential molecular sensor for phosgene. Mat. Sci. Semicon. Proc. 2022, 144, 106574. [Google Scholar] [CrossRef]
- Pei, L.; Zhang, L.J.; Li, D.Z. Theoretical study on exohedral complexes C6H6TMB40 (TM = Sc-Ni). Phys. Chem. Chem. Phys. 2022, 24, 21794–21799. [Google Scholar] [CrossRef]
- Kaur, H.; Kaur, J.; Kumar, R. Comparative study of symmetrical and asymmetrical B40 molecular junctions. J. Comput. Electron 2022, 21, 599–607. [Google Scholar] [CrossRef]
- Chinnalagu, D.K.; Murugesan, B.; Arumugam, M.; Chinniah, K.; Ganesan, S.; Cai, Y.R.; Mahalingam, S. Fabrication of 2D-Borophene nanosheets anchored S, N-mesoporous carbon nanocomposite (SNC-Bp//SNC-Bp) symmetric device for high-performance supercapacitor application. J. Energy Storage 2023, 74, 109328. [Google Scholar] [CrossRef]
- Wang, L.S. Photoelectron spectroscopy of size-selected boron clusters: From planar structures to borophenes and borospherenes. Int. Rev. Phys. Chem. 2016, 35, 69–142. [Google Scholar] [CrossRef]
- Zhai, H.J.; Zhao, Y.F.; Li, W.L.; Chen, Q.; Bai, H.; Hu, H.S.; Piazza, Z.A.; Tian, W.J.; Lu, H.G.; Wu, Y.B.; et al. Observation of an all-boron fullerene. Nat. Chem. 2014, 6, 727–731. [Google Scholar] [CrossRef]
- Yan, Q.Q.; Zhao, X.; Zhang, T.; Li, S.D. Perfect Core-Shell Octahedral B@B38+, Be@B38, and Zn@B38 with an Octa-Coordinate Center as Superatoms Following the Octet Rule. ChemPhysChem 2023, 24, e202200947. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, M.; Lu, X.-Q.; Yan, Q.-Q.; Zhao, X.-N.; Li, S.-D. Sc@B28−, Ti@B28, V@B28+, and V@B292−: Spherically Aromatic Endohedral Seashell-like Metallo-Borospherenes. Molecules 2023, 28, 3892. [Google Scholar] [CrossRef]
- Müller, M.; Hansen, A.; Grimme, S. An atom-in-molecule adaptive polarized valence single-ζ atomic orbital basis for electronic structure calculations. J. Chem. Phys. 2023, 159, 164108. [Google Scholar] [CrossRef]
- Ishihara, M.; Hatano, H.; Kawase, M.; Sakagami, H. Estimation of Relationship Between the Structure of 1,2,3,4-Tetrahydroisoquinoline Derivatives Determined by a Semiempirical Molecular-Orbital Method and their Cytotoxicity. Anticancer Res. 2009, 29, 2265–2271. [Google Scholar]
- Conradie, M.M.; Conradie, J.; Ghosh, A. Capturing the spin state diversity of iron(III)-aryl porphyrins OLYP is better than TPSSh. J. Inorg. Biochem. 2011, 105, 84–91. [Google Scholar] [CrossRef]
- Jensen, K.P. Bioinorganic Chemistry Modeled with the TPSSh Density Functional. Inorg. Chem. 2008, 47, 10357–10365. [Google Scholar] [CrossRef]
- Fa, W.; Chen, S.; Pande, S.; Zeng, X.C. Stability of Metal-Encapsulating Boron Fullerene B40. J. Phys. Chem. A 2015, 119, 11208–11214. [Google Scholar] [CrossRef]
- Zhao, P.; Ehara, M. Theoretical Insights into Monometallofullerene Th@C76: Strong Covalent Interaction between Thorium and the Carbon Cage. Inorg. Chem. 2018, 57, 2961–2964. [Google Scholar] [CrossRef]
- Muñoz-Castro, A.; King, R.B. Th@C86, Th@C82, Th@C80, and Th@C76: Role of thorium encapsulation in determining spherical aromatic and bonding properties on medium-sized endohedral metallofullerenes. Phys. Chem. Chem. Phys. 2020, 22, 23920–23928. [Google Scholar] [CrossRef]
- Bridgeman, A.J.; Cavigliasso, G.; Ireland, L.R.; Rothery, J. The Mayer bond order as a tool in inorganic chemistry. J. Chem. Soc. Dalton 2001, 1, 2095–2108. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F.W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Cao, H.; Han, X.Y.; Wu, H.Y. Efficient atom-molecule conversion in Bose-Einstein condensates based on nonlinear dressed-state scheme. Chaos Soliton Fract. 2023, 174, 113882. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H. Gaussian 16, Revision C.01; Gaussian Inc.: Wallingford, CT, USA, 2019. [Google Scholar]
- Prascher, B.P.; Woon, D.E.; Peterson, K.A.; Dunning, T.H.; Wilson, A.K. Gaussian basis sets for use in correlated molecular calculations. VII. Valence, core-valence, and scalar relativistic basis sets for Li, Be, Na, and Mg. Theor. Chem. Acc. 2011, 128, 69–82. [Google Scholar] [CrossRef]
- Woon, D.E.; Dunning, T.H. Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 1993, 98, 1358–1371. [Google Scholar] [CrossRef]
- Glendening, E.D.; Landis, C.R.; Weinhold, F. Natural bond orbital methods. WIR Comput. Mol. Sci. 2012, 2, 1–42. [Google Scholar] [CrossRef]
Isomers | ΔE (kcal/mol) | Gap (eV) | Isomers | ΔE (kcal/mol) | Gap (eV) |
---|---|---|---|---|---|
three2-Th@D2d-B40 | 0.0 | 0.80 | hexa1-Th@Cs-B40 | 64.2 | 0.86 |
hepta-Th@D2d-B40 | 0.0 | 0.80 | Th@Cs-B40 | 66.6 | 1.0 |
three-Th@D2d-B40 | 0.0 | 0.80 | three-Th@Cs-B40 | 80.9 | 0.87 |
two-Th@D2d-B40 | 0.0 | 0.80 | hexa2-Th@Cs-B40 | 91.7 | 0.97 |
center-Th@D2d-B40 | 0.0 | 0.80 | - | - | - |
hexa-Th@D2d-B40 | 0.0 | 0.80 | - | - | - |
hexa2-Th@D2d-B40 | 84.2 | 0.98 | - | - | - |
hexa3-Th@D2d-B40 | 91.6 | 1.12 | - | - | - |
Atoms | Populations |
---|---|
Th | 7s0.015f0.376d0.147p0.528s0.19 |
B | 2s0.532p2.453s0.013p0.02 |
Bonds | Mayer Bond Order | Bond Length |
---|---|---|
Th-B7 | 0.342 | 2.94 |
Th-B10 | 0.269 | 3.26 |
Th-B17 | 0.342 | 2.94 |
Th-B32 | 0.290 | 2.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, Y.; Zhou, Z.; Gao, Y.; Chen, Y.; Zhang, G.; Ma, C. Insights into ThB40: Stability, Electronic Structure, and Interaction. Molecules 2024, 29, 1222. https://doi.org/10.3390/molecules29061222
Li Y, Wang Y, Zhou Z, Gao Y, Chen Y, Zhang G, Ma C. Insights into ThB40: Stability, Electronic Structure, and Interaction. Molecules. 2024; 29(6):1222. https://doi.org/10.3390/molecules29061222
Chicago/Turabian StyleLi, Yutian, Yingying Wang, Zhanrong Zhou, Yang Gao, Yiming Chen, Guoqing Zhang, and Chao Ma. 2024. "Insights into ThB40: Stability, Electronic Structure, and Interaction" Molecules 29, no. 6: 1222. https://doi.org/10.3390/molecules29061222
APA StyleLi, Y., Wang, Y., Zhou, Z., Gao, Y., Chen, Y., Zhang, G., & Ma, C. (2024). Insights into ThB40: Stability, Electronic Structure, and Interaction. Molecules, 29(6), 1222. https://doi.org/10.3390/molecules29061222