Water-Soluble Trityl Radicals for Fluorescence Imaging
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Optical Characterization of Radicals Carrying OEG Chains in Organic Solvents
2.3. Quantum Chemical Calculations
2.4. Water-Soluble TTM
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdurahman, A.; Hele, T.J.H.; Gu, Q.; Zhang, J.; Peng, Q.; Zhang, M.; Friend, R.H.; Li, F.; Evans, E.W. Understanding the luminescent nature of organic radicals for efficient doublet emitters and pure-red light-emitting diodes. Nat. Mater. 2020, 19, 1224–1229. [Google Scholar] [CrossRef]
- Ding, J.; Dong, S.; Zhang, M.; Li, F.J. Efficient pure near-infrared organic light-emitting diodes based on tris (2, 4, 6-trichlorophenyl) methyl radical derivatives. Mater. Chem. C Mater. 2022, 10, 14116–14121. [Google Scholar] [CrossRef]
- Gamero, V.; Velasco, D.; Latorre, S.; López-Calahorra, F.; Brillas, E.; Juliá, L. [4-(N-carbazolyl)-2,6-dichlorophenyl]bis(2,4,6-trichlorophenyl)methyl radical an efficient red light-emitting paramagnetic molecule. Tetrahedron Lett. 2006, 47, 2305–2309. [Google Scholar] [CrossRef]
- Ai, X.; Evans, E.W.; Dong, S.; Gillett, A.J.; Guo, H.; Chen, Y.; Hele, T.J.H.; Friend, R.H.; Li, F. Efficient radical-based light-emitting diodes with doublet emission. Nature 2018, 563, 536–540. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Obolda, A.; Zhang, M.; Li, F. Organic Light-Emitting Diodes Using a Neutral π Radical as Emitter: The Emission from a Doublet. Angew. Chem. Int. Ed. 2015, 54, 7091–7095. [Google Scholar] [CrossRef] [PubMed]
- Obolda, A.; Ai, X.; Zhang, M.; Li, F. Up to 100% Formation Ratio of Doublet Exciton in Deep-Red Organic Light-Emitting Diodes Based on Neutral π-Radical. ACS Appl. Mater. Interfaces 2016, 8, 35472–35478. [Google Scholar] [CrossRef] [PubMed]
- Kuppusamy, P.; Wang, P.; Chzhan, M.; Zweier, J.L. High resolution electron paramagnetic resonance imaging of biological samples with a single line paramagnetic label. Magn. Reason. Med. 1997, 37, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Rudolf, T.; Blinder, R.; Suryadevara, N.; Dalmeida, A.; Welscher, P.J.; Lamla, M.; Arnold, M.; Herr, U.; Jelezko, F.; et al. Red-Fluorescing Paramagnetic Conjugated Polymer Nanoparticles—Triphenyl Methyl Radicals as Monomers in C–C Cross-Coupling Dispersion Polymerization. Macromolecules 2023, 56, 2104–2112. [Google Scholar] [CrossRef]
- Mesa, J.A.; Velázquez-Palenzuela, A.; Brillas, E.; Torres, J.L.; Juliá, L. Synthesis of a new stable and water-soluble tris (4-hydroxysulfonyltetrachlorophenyl) methyl radical with selective oxidative capacity. Tetrahedron 2011, 67, 3119–3123. [Google Scholar] [CrossRef]
- Mesa, J.A.; Velázquez-Palenzuela, A.; Brillas, E.; Coll, J.; Torres, J.L.; Juliá, L.J. Preparation and Characterization of Persistent Maltose-Conjugated Triphenylmethyl Radicals. Org. Chem. 2012, 77, 1081–1086. [Google Scholar] [CrossRef]
- Bai, X.; Tan, W.; Abdurahman, A.; Li, X.; Li, F. Stable red nanoparticles loaded neutral luminescent radicals for fluorescence imaging. Dye. Pigment. 2022, 202, 110260. [Google Scholar] [CrossRef]
- Blasi, D.; Gonzalez-Pato, N.; Rodriguez, X.R.; Diez-Zabala, I.; Srinivasan, S.Y.; Camarero, N.; Esquivias, O.; Roldán, M.; Guasch, J.; Laromaine, A.; et al. Ratiometric Nanothermometer Based on a Radical Excimer for In Vivo Sensing. Small 2023, 19, e2207806. [Google Scholar] [CrossRef]
- Gonzalez-Pato, N.; Blasi, D.; Nikolaidou, D.M.; Bertocchi, F.; Cerdá, J.; Terenziani, F.; Ventosa, N.; Aragó, J.; Lapini, A.; Veciana, J.; et al. Nanothermometer Based on Polychlorinated Trityl Radicals Showing Two-Photon Excitation and Emission in the Biological Transparency Window: Temperature Monitoring of Biological Tissues. Small Methods, 2023; Early View. [Google Scholar] [CrossRef]
- Chen, L.; Arnold, M.; Kittel, Y.; Blinder, R.; Jelezko, F.; Kuehne, A.J.C. 2,7-Substituted N-Carbazole Donors on Tris(2,4,6-trichlorophenyl)methyl Radicals with High Quantum Yield. Adv. Opt. Mater. 2022, 10, 2102101. [Google Scholar] [CrossRef]
- Nakamura, K.; Matsuda, K.; Rui, X.; Furukori, M.; Miyata, S.; Hosokai, T.; Anraku, K.; Nakao, K.; Albrecht, K. Effects of halogen atom substitution on luminescent radicals: A case study on tris(2,4,6-trichlorophenyl)methyl radical-carbazole dyads. Faraday Discuss 2023. [Google Scholar] [CrossRef]
- Arnold, M.E.; Kuehne, A.J.C. (2,6-Dichloro-4-iodophenyl)bis(2,4,6-trichlorophenyl)methane as a precursor in efficient cross-coupling reactions for donor and acceptor functionalized triphenylmethyl radicals. Dye. Pigment. 2022, 208, 110863. [Google Scholar] [CrossRef]
- Armet, O.; Veciana, J.; Rovira, C.; Riera, J.; Castañer, J.; Molins, E.; Rius, J.; Miravitlles, C.; Olivella, S.; Brichfeus, J.J. Inert carbon free radicals. 8. Polychlorotriphenylmethyl radicals: Synthesis, structure, and spin-density distribution. Phys. Chem. 1987, 91, 5608–5616. [Google Scholar] [CrossRef]
- Gross, M.; Zhang, F.; Arnold, M.E.; Ravat, P.; Kuehne, A.J.C. Aza[7]helicene Functionalized Triphenylmethyl Radicals with Circularly Polarized Doublet Emission. Adv. Opt. Mater. 2023, 12, 2301707. [Google Scholar] [CrossRef]
- Fajarí, L.; Papoular, R.; Reig, M.; Brillas, E.; Jorda, J.L.; Vallcorba, O.; Rius, J.; Velasco, D.; Juliá, L.J. Charge transfer States in stable neutral and oxidized radical adducts from carbazole derivatives. Org. Chem. 2014, 79, 1771–1777. [Google Scholar]
- Dong, S.; Xu, W.; Guo, H.; Yan, W.; Zhang, M.; Li, F. Effects of substituents on luminescent efficiency of stable triaryl methyl radicals. Phys. Chem. Chem. Phys. 2018, 20, 18657–18662. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Cho, E.; Wan, K.; Wu, C.; Gao, Y.; Coropceanu, V.; Brédas, J.L.; Li, F. Achieving Nearly 100% Photoluminescence Quantum Efficiency in Organic Radical Emitters by Fine-Tuning the Effective Donor-Acceptor Distance. Adv. Funct. Mater. 2024; Early View. [Google Scholar] [CrossRef]
- He, C.; Li, Z.; Lei, Y.; Zou, W.; Suo, B.J. Unraveling the Emission Mechanism of Radical-Based Organic Light-Emitting Diodes. Phys. Chem. Lett. 2019, 10, 574–580. [Google Scholar] [CrossRef] [PubMed]
- Hattori, Y.; Kusamoto, T.; Nishihara, H. Highly photostable luminescent open-shell (3,5-dihalo-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radicals: Significant effects of halogen atoms on their photophysical and photochemical properties. RSC Adv. 2015, 5, 64802–64805. [Google Scholar] [CrossRef]
- Abroshan, H.; Coropceanu, V.; Brédas, J.L. Radiative and Nonradiative Recombinations in Organic Radical Emitters: The Effect of Guest–Host Interactions. Adv. Funct. Mater. 2020, 30, 2002916. [Google Scholar] [CrossRef]
- Wu, B.; Zhang, Z.W.; Huang, M.H.; Peng, Y. Polymerizable ionic liquids and polymeric ionic liquids: Facile synthesis of ionic liquids containing ethylene oxide repeating unit via methanesulfonate and their electrochemical properties. RSC Adv. 2017, 7, 5394–5401. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Adamo, C.; Barone, V.J. Toward reliable density functional methods without adjustable parameters: The PBE0 model. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef]
- Dennington, R.; Keith, T.; Millam, J. GaussView; Semichem Inc.: Shawnee Mission, KS, USA, 2019. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arnold, M.E.; Schoeneburg, L.; Lamla, M.; Kuehne, A.J.C. Water-Soluble Trityl Radicals for Fluorescence Imaging. Molecules 2024, 29, 995. https://doi.org/10.3390/molecules29050995
Arnold ME, Schoeneburg L, Lamla M, Kuehne AJC. Water-Soluble Trityl Radicals for Fluorescence Imaging. Molecules. 2024; 29(5):995. https://doi.org/10.3390/molecules29050995
Chicago/Turabian StyleArnold, Mona E., Larissa Schoeneburg, Markus Lamla, and Alexander J. C. Kuehne. 2024. "Water-Soluble Trityl Radicals for Fluorescence Imaging" Molecules 29, no. 5: 995. https://doi.org/10.3390/molecules29050995
APA StyleArnold, M. E., Schoeneburg, L., Lamla, M., & Kuehne, A. J. C. (2024). Water-Soluble Trityl Radicals for Fluorescence Imaging. Molecules, 29(5), 995. https://doi.org/10.3390/molecules29050995