Enhancing the Efficacy of Chiral Ligands and Catalysts: Siloxane-Substituted Oxazoline Ferrocenes as Next-Generation Candidates
Abstract
:1. Introduction
2. Synthetic Strategies of Siloxane-Substituted Oxazoline Ferrocene Ligands
2.1. Enantiopure Siloxane-Substituted Oxazoline Ferrocenes
2.2. Synthesis of Planar Chiral Oxazoline Ferrocene Derivatives
2.2.1. Sulfur and Phosphine Ligands
2.2.2. Bisphosphine Ligands
2.2.3. Hydroxyl Ligands (Catalysts)
3. Applications of Siloxane-Substituted Oxazoline Ferrocene Ligand in Transition Metal-Catalyzed Reactions
3.1. Pd-Catalyzed Asymmetric Allylic Alkylation
3.2. Cu-Catalyzed [3 + 2] 1,3-Dipolar Cycloaddition
3.3. Cu-Catalyzed Self-Michael Reaction
3.4. Further Derivation of Siloxane-Substituted Oxazoline Ferrocenes
4. Summary and Outlook
Author Contributions
Funding
Conflicts of Interest
List of Abbreviations
BSA | N,O-bis(trimethlysilyl)acetamide |
d.r. | diastereoselectivity ratio |
DAST | diethylaminosulphur trifluoride |
DCM | dichloromethane |
DIPEA | N,N-diisopropylethylamine |
DMAP | 4-(dimethylamino)pyridine |
DMF | N,N-dimethylformamide |
ee | enantiomeric excess |
FOXAP | oxazoline phosphine ferrocene (ligands) |
IL | ionic liquids |
o-Tol | 2-methylphenyl |
PEG | polyethylene glycol |
rt | room temperature |
TBAF | tetrabutylammonium fluoride |
TBS | tert-butyldimethylsilyl |
TEA | triethylamine |
THF | tetrahydrofuran |
TMEDA | N,N,N′,N′-tetramethylethylenediamine |
TMS | trimethylsilyl |
TsCl | tosyl chloride |
References
- Richards, C.J.; Damalidis, T.; Hibbs, D.E.; Hursthouse, M.B. Synthesis of 2-[2-(Diphenylphosphino)ferrocenyl]oxazoline Ligands. Synlett 1995, 1, 74–76. [Google Scholar] [CrossRef]
- Sammakia, T.; Latham, H.A.; Schaad, D.R. Highly Diastereoselective Ortho Lithiations of Chiral Oxazoline-Substituted Ferrocenes. J. Org. Chem. 1995, 60, 10–11. [Google Scholar] [CrossRef]
- Nishibayashi, Y.; Uemura, S. Asymmetric Synthesis and Highly Diastereoselective Ortho-Lithiation of Oxazolinylferrocenes. Synlett 1995, 1, 79–81. [Google Scholar] [CrossRef]
- Hartung, J.; Greszler, S.N.; Klix, R.C.; Kallemeyn, J.M. Development of an Enantioselective [3 + 2] Cycloaddition to Synthesize the Pyrrolidine Core of ABBV-3221 on Multikilogram Scale. Org. Process Res. Dev. 2019, 23, 2532–2537. [Google Scholar] [CrossRef]
- Greszler, S.N.; Zhao, G.; Buchman, M.; Searle, X.B.; Liu, B.; Voight, E.A. General Asymmetric Synthesis of Densely Functionalized Pyrrolidines via endo-Selective [3 + 2] Cycloaddition of β-Quaternary-Substituted Nitroalkenes and Azomethine Ylides. J. Org. Chem. 2020, 85, 7620–7632. [Google Scholar] [CrossRef]
- Zou, X.; Yang, W.; Zhu, J.; Deng, W. Catalytic Enantioselective Formal Synthesis of MDM2 Antagonist RG7388 and Its Analogues. Chin. J. Chem. 2020, 38, 435–438. [Google Scholar] [CrossRef]
- Wang, H.; Li, J.; Peng, L.; Song, J.; Guo, C. Cu-Catalyzed Switchable Asymmetric Defluoroalkylation and [3 + 2] Cycloaddition of Trifluoropropene. Org. Lett. 2022, 24, 7828–7833. [Google Scholar] [CrossRef]
- Wang, K.; Chen, J.; Liu, W.; Kong, W. Nickel-Catalyzed Defluorinative Asymmetric Cyclization of Fluoroalkyl-Substituted 1,6-Enynes for the Synthesis of Seletracetam. Angew. Chem. Int. Ed. 2022, 61, e202212664. [Google Scholar] [CrossRef]
- Xiao, L.; Chang, X.; Xu, H.; Xiong, Q.; Dang, Y.; Wang, C.-J. Cooperative Catalyst-Enabled Regio- and Stereodivergent Synthesis of α-Quaternary α-Amino Acids via Asymmetric Allylic Alkylation of Aldimine Esters with Racemic Allylic Alcohols. Angew. Chem. Int. Ed. 2022, 61, e202212948. [Google Scholar] [CrossRef]
- Zhang, Q.-X.; Gu, Q.; You, S.-L. Palladium(0)-Catalyzed Intermolecular Asymmetric Allylic Dearomatization of Substituted β-Naphthols with Morita-Baylis-Hillman (MBH) Adducts. Org. Lett. 2022, 24, 8031–8035. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, Q.; Zi, W. Synergistic Pd/Cu-Catalyzed Enantioselective Csp2-F Bond Alkylation of Fluoro-1,3-Dienes with Aldimine Esters. Nat. Commun. 2022, 13, 2470. [Google Scholar] [CrossRef]
- Zhao, L.; Luo, Y.; Xiao, J.; Huo, X.; Ma, S.; Zhang, W. Stereodivergent Synthesis of Allenes with α,β-Adjacent Central Chiralities Empowered by Synergistic Pd/Cu Catalysis. Angew. Chem. Int. Ed. 2023, 62, e202218146. [Google Scholar] [CrossRef]
- Wang, C.; Hu, X.; Xu, C.; Ge, Q.; Yang, Q.; Xiong, J.; Duan, W.-L. Synthesis of P-Stereogenic Phosphine Oxides via Nickel-Catalyzed Asymmetric Cross-Coupling of Secondary Phosphine Oxides with Alkenyl and Aryl Bromides. Angew. Chem. Int. Ed. 2023, 62, e202300011. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, X.; Liao, J.; Wang, M. Copper-Catalyzed Enantioselective Fluoroalkenylation of Cyclic Imino Esters. Org. Chem. Front. 2023, 10, 163–168. [Google Scholar] [CrossRef]
- Liang, R.-X.; Tang, H.-W.; Liu, J.-L.; Xu, J.-F.; Chen, L.-J.; Jia, Y.-X. Cobalt-Catalyzed Enantioselective Desymmetrizing Reductive Cyclization of Alkynyl Cyclodiketones. Chem. Sci. 2023, 14, 6393–6398. [Google Scholar] [CrossRef] [PubMed]
- Furuya, S.; Muroi, K.; Kanemoto, K.; Fukuzawa, S.-i. Dipolarophile-Steered Formal Stereodivergent Synthesis of 2,5-Cis/Trans-Pyrrolidines Based on Asymmetric 1,3-Dipolar Cycloaddition of Imino Lactones. Chem. A Eur. J. 2023, 29, e202302609. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Liu, X.-T.; Li, F.; Yang, Y.; Chung, L.W.; Wang, C.-J. Electron-Rich Benzofulvenes as Effective Dipolarophiles in Copper(I)-Catalyzed Asymmetric 1,3-Dipolar Cycloaddition of Azomeyhine Ylides. Chem. Sci. 2023, 14, 5460–5469. [Google Scholar] [CrossRef]
- Zhu, B.-K.; Xu, H.; Xiao, L.; Chang, X.; Wei, L.; Teng, H.; Dang, Y.; Dong, X.-Q.; Wang, C.-J. Enantio- and Diastereodivergent Synthesis of Fused Indolizines Enabled by Synergistic Cu/Ir Catalysis. Chem. Sci. 2023, 14, 4134–4142. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Cui, R.-R.; Zhang, Q.-W. Nickel-Catalyzed Asymmetric Arylation of H-Phosphinates. Synlett 2023, 34, 1819–1823. [Google Scholar] [CrossRef]
- Bera, M.; Tambe, S.D.; Hwang, H.S.; Kim, S.; Cho, E.J. Base-Free NiH-Catalyzed Regio- and Stereo-Selective Hydroacylation of Allenes: A New Route to Synthesis of tetra-Substituted Olefins. Chem Catal. 2023, 3, 100606. [Google Scholar] [CrossRef]
- Yan, X.; Li, Z.; Fan, L.; Li, J.; Liu, G. Highly Regio- and Enantioselective Cu/Pd Co-catalyzed Allylic Alkylation of A-pyridyl-α-fluoroesters: Construction of Quaternary C-F Stereocenters. Chem.—Asian J. 2023, 18, e202300160. [Google Scholar] [CrossRef]
- Liu, Z.-C.; Wang, Z.-Q.; Zhang, X.; Yin, L. Copper(I)-Catalyzed Asymmetric Alkylation of α-Imino-Esters. Nat. Commun. 2023, 14, 2187. [Google Scholar] [CrossRef]
- You, S.-L.; Zhu, X.-Z.; Luo, Y.-M.; Hou, X.-L.; Dai, L.-X. Highly Regio- and Enantioselective Pd-Catalyzed Allylic Alkylation and Amination of Monosubstituted Allylic Acetates with Novel Ferrocene P,N-Ligands. J. Am. Chem. Soc. 2001, 123, 7471–7472. [Google Scholar] [CrossRef]
- Huang, J.-Q.; Liu, W.; Zheng, B.-H.; Liu, X.Y.; Yang, Z.; Ding, C.-H.; Li, H.; Peng, Q.; Hou, X.-L. Pd-Catalyzed Asymmetric Cyclopropanation Reaction of Acyclic Amides with Allyl and Polyenyl Carbonates. Experimental and Computational Studies for the Origin of Cyclopropane Formation. ACS Catal. 2018, 8, 1964–1972. [Google Scholar] [CrossRef]
- Suo, J.-J.; Du, J.; Jiang, Y.-J.; Chen, D.; Ding, C.-H.; Hou, X.-L. Diastereo- and Enantioselective Palladium-Catalyzed Dearomative [4 + 2] Cycloaddition of 3-Nitroindoles. Chin. Chem. Lett. 2019, 30, 1512–1514. [Google Scholar] [CrossRef]
- Bai, D.; Liu, X.; Li, H.; Ding, C.; Hou, X. Tandem Thorpe Reaction/Palladium Catalyzed Asymmetric Allylic Alkylation: Access to Chiral β-Enaminonitriles with Excellent Enantioselectivity. Chem.—Asian J. 2017, 12, 212–215. [Google Scholar] [CrossRef]
- Patti, A.; Lotz, M.; Knochel, P. Synthesis of α,β-Disubstituted Ferrocenes via a Ferrocenylepoxide Intermediate. Preparation and Catalytic Activity of a New Chiral Ferrocenyloxazoline. Tetrahetron Asymmetry 2001, 12, 3375–3380. [Google Scholar] [CrossRef]
- Moreno, R.M.; Bueno, A.; Moyano, A. 4-Ferrocenyl-1,3-oxazoline Derivatives as Ligands for Catalytic Asymmetric Allylation Reactions. J. Organomet. Chem. 2002, 660, 62–70. [Google Scholar] [CrossRef]
- Arthurs, R.A.; Hughes, D.L.; Richards, C.J. Stereoselective Synthesis of All Possible Phosferrox Ligand Diastereoisomers Displaying Three Elements of Chirality: Stereochemical Optimization for Asymmetric Catalysis. J. Org. Chemistry. 2020, 85, 4838–4847. [Google Scholar] [CrossRef] [PubMed]
- Arthurs, R.A.; Richards, C.J. Deuterium as a Stereochemically Invisible Blocking Group for Chiral Ligand Synthesis. Org. Lett. 2017, 19, 702–705. [Google Scholar] [CrossRef] [PubMed]
- McCartney, D.; Nottingham, C.; Muller-Bunz, H.; Guiry, P.J. Exploiting the gem-Disubstitution Effect in FcPHOX and HetPHOX P,N Ligands: Synthesis and Applications in Pd-Catalyzed Intermolecular Heck Reactions. J. Org. Chem. 2015, 80, 10151–10162. [Google Scholar] [CrossRef]
- Nottingham, C.; Benson, R.; Muller-Bunz, H.; Guiry, P.J. Synthesis of Ferrocene Oxazoline N,O ligands and Their Application in Asymmetric Ethyl- and Phenylzinc Additions to Aldehydes. J. Org. Chem. 2015, 80, 10163–10176. [Google Scholar] [CrossRef]
- Jones, G.; Richards, C.J. (S)-Serine Derived N-O and N-P Oxazoline Ligands for Asymmetric Catalysis. Tetrahedron Asymmetry 2004, 15, 653–664. [Google Scholar] [CrossRef]
- Jones, G.; Richards, C.J. Simple Phosphinite-Oxazoline Ligands for Asymmetric Catalysis. Tetrahedron Lett. 2001, 42, 5553–5555. [Google Scholar] [CrossRef]
- Zhao, W.-X.; Liu, G.-J.; Wang, J.; Li, F.; Liu, L. Synthesis of MeO-PEG2000-Supported Chiral Ferrocenyl Oxazoline Carbinol Ligand and its Application in Asymmetric Catalysis. Tetrahedron Asymmetry 2016, 27, 1139–1144. [Google Scholar] [CrossRef]
- Sutcliffe, O.B.; Bryce, M.R. Planar Chiral 2-Ferrocenyloxazolines and 1,1′-Bis(Oxazolinyl)Ferrocenes-Syntheses and Applications in Asymmetric Catalysis. Tetrahedron Asymmetry 2003, 14, 2297–2325. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, Y.; Tian, F.; Zhang, Y.J.; Zhang, W. Development of Planar Chiral Diarylphosphino-oxazoline Ligands and Their Applications to Asymmetric Catalysis. Chin. J. Org. Chem. 2009, 29, 1487–1498. [Google Scholar]
- Miyake, Y.; Nishibayashi, Y.; Uemura, S. Optically Active Chiral Ligands, Ferrocenyloxazolinylphosphines (FOXAPs): Development and Application to Catalytic Asymmetric Reactions. Synlett 2008, 12, 1747–1758. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, J.; Dai, L. Chiral Oxazolinyl Hydroxyl Ferrocene Catalysts: Synthesis and Applications in Asymmetric Reactions. ChemistrySelect 2020, 5, 9443–9456. [Google Scholar] [CrossRef]
- Dai, L.; Xu, D.; Yang, M.-J. Synthesis of 2-Oxazoline Ferrocenes: Towards High-Efficient Chiral Ligands and Catalysts. J. Organomet. Chem. 2023, 999, 122831. [Google Scholar] [CrossRef]
- Manoury, E.; Fossey, J.S.; Aït-Haddou, H.; Daran, J.-C.; Balavoine, G.G.A. New Ferrocenyloxazoline for the Preparation of Ferrocenes with Planar Chirality. Organometallics 2000, 19, 3736–3739. [Google Scholar] [CrossRef]
- Dai, L.; Xu, D.; Dong, X.; Zhou, Z. The Design, Synthesis and Application of Imidazolium-Tagged Ferrocenyl Oxazoline Phosphine Ligands for the Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylides with Nitroalkenes: Ion Effect for Enhancing the Reactivity, Stereoselectivity and Recyclability. Tetrahedron Asymmetry 2015, 26, 350–360. [Google Scholar] [CrossRef]
- Sammakia, T.; Latham, H.A. On the Mechanism of Oxazoline-Directed Metalations: Evidence for Nitrogen-Directed Reactions. J. Org. Chem. 1996, 61, 1629–1635. [Google Scholar] [CrossRef] [PubMed]
- Howell, J.A.S.; Yates, P.C.; Fey, N.; McArdle, P.; Cunningham, D.; Parsons, S.; Rankin, D.W.H. Molecular Mechanics Analysis of Structure and Diastereoselectivity toward Lithiation in Amido- and α-Aminoferrocene Complexes. Organometallics 2002, 21, 5272–5286. [Google Scholar] [CrossRef]
- Chadwick, S.T.; Ramirez, A.; Gupta, L.; Collum, D.B. n-Butyllithium/N,N,N′,N′-Tetramethylethylenediamine-Mediated Ortholithiations of Aryl Oxazolines: Substrate-Dependent Mechanisms. J. Am. Chem. Soc. 2007, 129, 2259–2268. [Google Scholar] [CrossRef] [PubMed]
- Škvorcová, A.; Šebesta, R. Computational Study of Diastereoselective Ortho-Lithiations of Chiral Ferrocenes. Org. Biomol. Chem. 2014, 12, 132–140. [Google Scholar] [CrossRef]
- Dai, L.; Xu, D.; Tang, L.; Zhou, Z. A CuII-N,P Oxazolinylferrocene Ligand Complex for the Asymmetric [3+2] 1,3-Dipolar Cycloaddition of Azomethine Ylide with Malonates. ChemCatChem 2015, 7, 1078–1082. [Google Scholar] [CrossRef]
- Xu, D.; Dai, L.; Zhi, Y.-Q.; Zhang, J.; Xu, C. Unsymmetrical 1-Oxazolinyl 1′,2-Bisphosphine Ferrocene Silyl Ether: Preparation and Lithiation Mechanism. J. Organomet. Chem. 2019, 904, 120998. [Google Scholar] [CrossRef]
- Hayashi, T.; Mise, T.; Fukushima, M.; Kagotani, M.; Nagashima, N.; Matsumoto, A.; Kawakami, S.; Konishi, M.; Yamamoto, K.; Kumada, M. Asymmetric Synthesis Catalyzed by Chiral Ferrocenylphosphine-Transition Metal Complexes. I. Preparation of Chiral Ferrocenylphosphines. Bull. Chem. Soc. Jpn. 1980, 53, 1138–1151. [Google Scholar] [CrossRef]
- Dai, L.; Xu, D.; Song, P.-F.; Zhang, J. Preparation of Planar Chiral Oxazolinyl Hydroxyl Ferrocene Silyl Ethers and Their Desilylation Derivatives. J. Organomet. Chem. 2023, 984, 122575. [Google Scholar] [CrossRef]
- Adrio, J.; Carretero, J.C. Novel Dipolarophiles and Dipoles in the Metal-Catalyzed Enantioselective 1,3-Dipolar Cycloaddition of Azomethine Ylides. Chem. Commun. 2011, 47, 6784–6794. [Google Scholar] [CrossRef]
- Adrio, J.; Carretero, J.C. Recent Advances in the Catalytic Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylides. Chem. Commun. 2014, 50, 12434–12446. [Google Scholar] [CrossRef] [PubMed]
- Bdiri, B.; Zhao, B.-J.; Zhou, Z.-M. Recent Advances in the Enantioselective 1,3-Dipolar Cycloaddition of Azomethine Ylides and Dipolarophiles. Tetrahedron Asymmetry 2017, 28, 876–899. [Google Scholar] [CrossRef]
- Fang, X.; Wang, C.-J. Catalytic Asymmetric Construction of Spiropyrrolidines via 1,3-Dipolar Cycloaddition of Azomethine Ylides. Org. Biomol. Chem. 2018, 16, 2591–2601. [Google Scholar] [CrossRef] [PubMed]
- Adrio, J.; Carretero, J.C. Stereochemical Diversity in Pyrrolidine Synthesis by Catalytic Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylides. Chem. Commun. 2019, 55, 11979–11991. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Chang, X.; Wang, C.-J. Catalytic Asymmetric Reactions with N-Metallated Azomethine Ylides. Acc. Chem. Res. 2020, 53, 1084–1100. [Google Scholar] [CrossRef] [PubMed]
- Breugst, M.; Reissig, H. The Huisgen Reaction: Milestones of the 1,3-Dipolar Cycloaddition. Angew. Chem. Int. Ed. 2020, 59, 12293–12307. [Google Scholar] [CrossRef]
- Wei, L.; Wang, C. Synergistic Catalysis with Azomethine Ylides. Chin. J. Chem. 2021, 39, 15–24. [Google Scholar] [CrossRef]
- Tang, L.; Zhao, B.; Dai, L.; Zhang, M.; Zhou, Z. Asymmetric Construction of Pyrrolidines Bearinga Trifluoromethylated Quaternary Stereogenic Center via CuI-Catalyzed 1,3-Dipolar Cycloaddition of Azomethine Ylides with β-CF3-β, β-Disubstituted Nitroalkenes. Chem.—Asian J. 2016, 11, 2470–2477. [Google Scholar] [CrossRef]
- Bdiri, B.; Dai, L.; Zhou, Z.-M. CuII-Catalysed Asymmetric 1,3-Dipolar Cycloaddition of Azomethine Ylides with a Chiral Ferrocene-Derived P,N-Ligand. Tetrahedron Lett. 2017, 58, 2475–2481. [Google Scholar] [CrossRef]
- Xu, D.; Dai, L.; Li, L.; Zhou, Z.; Zhang, J. Enantioselective Synthesis of New Dimeric Chromene Derivatives by A Ferrocene-Copper Catalyst System. J. Chem. Res. 2015, 39, 226–229. [Google Scholar] [CrossRef]
- Xu, D.; Zhou, Z.-M.; Dai, L.; Tang, L.-W.; Zhang, J. Asymmetric Hydrogenation of Aromatic Ketones by New Recyclable Ionic Tagged Ferrocene-Ruthenium Catalyst System. Bioorganic Med. Chem. Lett. 2015, 25, 1961–1964. [Google Scholar] [CrossRef] [PubMed]
Chiral Product | Run | Yield % | ee % |
---|---|---|---|
1 | 99 | >99.9 | |
2 | 99 | 99.9 | |
3 | 97 | 97.8 | |
4 | 84 | 93.4 | |
5 | 73 | 92.5 | |
6 | 67 | 92.2 |
Chiral Product | Run | Yield % | d.r. (exo:endo) | ee % (exo) |
---|---|---|---|---|
1 | 85 | 94:6 | 97.0 | |
2 | 71 | 85:15 | 92.6 | |
3 | 68 | 93:7 | 93.8 | |
4 | 74 | 82:18 | 91.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, L.; Zhao, L.; Xu, D.; Yang, C.; Zhang, X.-K. Enhancing the Efficacy of Chiral Ligands and Catalysts: Siloxane-Substituted Oxazoline Ferrocenes as Next-Generation Candidates. Molecules 2024, 29, 968. https://doi.org/10.3390/molecules29050968
Dai L, Zhao L, Xu D, Yang C, Zhang X-K. Enhancing the Efficacy of Chiral Ligands and Catalysts: Siloxane-Substituted Oxazoline Ferrocenes as Next-Generation Candidates. Molecules. 2024; 29(5):968. https://doi.org/10.3390/molecules29050968
Chicago/Turabian StyleDai, Li, Li Zhao, Di Xu, Chen Yang, and Xin-Kuan Zhang. 2024. "Enhancing the Efficacy of Chiral Ligands and Catalysts: Siloxane-Substituted Oxazoline Ferrocenes as Next-Generation Candidates" Molecules 29, no. 5: 968. https://doi.org/10.3390/molecules29050968
APA StyleDai, L., Zhao, L., Xu, D., Yang, C., & Zhang, X. -K. (2024). Enhancing the Efficacy of Chiral Ligands and Catalysts: Siloxane-Substituted Oxazoline Ferrocenes as Next-Generation Candidates. Molecules, 29(5), 968. https://doi.org/10.3390/molecules29050968