Spherical Lignin-Derived Activated Carbons for the Adsorption of Phenol from Aqueous Media
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Spherical Lignin and Corresponding Carbon Particles
2.2. The Effect of the Chemical Activation of Lignin-Derived Carbons
2.2.1. Morphology
2.2.2. Porosity and Graphitization
2.2.3. Surface Composition
2.2.4. Adsorption Capacity
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Synthesis
3.3. Characterization
3.4. Adsorption Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, D.; Kannan, K.; Tan, H.; Zheng, Z.; Feng, Y.-L.; Wu, Y.; Widelka, M. Bisphenol Analogues Other Than BPA: Environmental Occurrence, Human Exposure, and Toxicity—A Review. Environ. Sci. Technol. 2016, 50, 5438–5453. [Google Scholar] [CrossRef] [PubMed]
- Jin, P.; Wang, T.; Liu, N.; Dupont, S.; Beardall, J.; Boyd, P.W.; Riebesell, U.; Gao, K. Ocean acidification increases the accumulation of toxic phenolic compounds across trophic levels. Nat. Commun. 2015, 6, 8714. [Google Scholar] [CrossRef] [PubMed]
- Ndwabu, S.; Malungana, M.; Mahlambi, P. Phenolic compounds—Occurrence in water, sediment and sludge, and ecological risk evaluation. CLEAN Soil Air Water 2023, 51, 2200404. [Google Scholar] [CrossRef]
- Saltveit, M.E. Synthesis and Metabolism of Phenolic Compounds. In Fruit and Vegetable Phytochemicals: Chemistry, Nutritional Value, and Stability; de la Rosa, L.A., Alvarez-Parrilla, E., González-Aguilar, G.A., Eds.; Wiley-Blackwell: Ames, IA, USA, 2010; pp. 89–100. [Google Scholar]
- Chae, Y.; Kim, L.; Kim, D.; Cui, R.; Lee, J.; An, Y.-J. Deriving hazardous concentrations of phenol in soil ecosystems using a species sensitivity distribution approach. J. Hazard. Mater. 2020, 399, 123036. [Google Scholar] [CrossRef]
- Pavithra, K.G.; Rajan, P.S.; Arun, J.; Brindhadevi, K.; Le, Q.H.; Pugazhendhi, A. A review on recent advancements in extraction, removal and recovery of phenols from phenolic wastewater: Challenges and future outlook. Environ. Res. 2023, 237, 117005. [Google Scholar] [CrossRef] [PubMed]
- Rayaroth, M.P.; Marchel, M.; Boczkaj, G. Advanced oxidation processes for the removal of mono and polycyclic aromatic hydrocarbons—A review. Sci. Total Environ. 2023, 857, 159043. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Rasul, M.G.; Martens, W.N.; Brown, R.; Hashib, M.A. Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments. Desalination 2010, 261, 3–18. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, M.; Zhao, H.; Zhang, L.; Wei, G.; Zhao, G. Preferential and efficient degradation of phenolic pollutants with cooperative hydrogen-bond interactions in photocatalytic process. Chemosphere 2021, 269, 129404. [Google Scholar] [CrossRef]
- Mahboob, I.; Shafique, S.; Shafiq, I.; Akhter, P.; Belousov, A.S.; Show, P.-L.; Park, Y.-K.; Hussain, M. Mesoporous LaVO4/MCM-48 nanocomposite with visible-light-driven photocatalytic degradation of phenol in wastewater. Environ. Res. 2023, 218, 114983. [Google Scholar] [CrossRef]
- Panigrahy, N.; Priyadarshini, A.; Sahoo, M.M.; Verma, A.K.; Daverey, A.; Sahoo, N.K. A comprehensive review on eco-toxicity and biodegradation of phenolics: Recent progress and future outlook. Environ. Technol. Innov. 2022, 27, 102423. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, Z.; Luo, Y.; Bai, Y.; Fan, J. Bioremediation of phenolic pollutants by algae—Current status and challenges. Bioresour. Technol. 2022, 350, 126930. [Google Scholar] [CrossRef]
- Surkatti, R.; Al-Zuhair, S. Microalgae cultivation for phenolic compounds removal. Environ. Sci. Pollut. Res. 2018, 25, 33936–33956. [Google Scholar] [CrossRef]
- Suliman, S.S.; Othman, N.; Noah, N.F.M.; Kahar, I.N.S. Separation of phenolic compounds from fruit processing wastewater using liquid membrane technology: A short review. Biochem. Eng. J. 2023, 200, 109096. [Google Scholar] [CrossRef]
- Raza, W.; Lee, J.; Raza, N.; Luo, Y.; Kim, K.-H.; Yang, J. Removal of phenolic compounds from industrial waste water based on membrane-based technologies. J. Ind. Eng. Chem. 2019, 71, 1–18. [Google Scholar] [CrossRef]
- Dąbrowski, A.; Podkościelny, P.; Hubicki, Z.; Barczak, M. Adsorption of phenolic compounds by activated carbon—A critical review. Chemosphere 2005, 58, 1049–1070. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.-S.; Zheng, T.; Wang, P.; Jiang, J.-P.; Li, N. Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chem. Eng. J. 2010, 157, 348–356. [Google Scholar] [CrossRef]
- Fierro, V.; Torné-Fernández, V.; Montané, D.; Celzard, A. Adsorption of phenol onto activated carbons having different textural and surface properties. Microporous Mesoporous Mater. 2008, 111, 276–284. [Google Scholar] [CrossRef]
- Sidor, K.; Berniak, T.; Łątka, P.; Rokicińska, A.; Michalik, M.; Kuśtrowski, P. Tailoring Properties of Resol Resin-Derived Spherical Carbons for Adsorption of Phenol from Aqueous Solution. Molecules 2021, 26, 1736. [Google Scholar] [CrossRef] [PubMed]
- El-Bery, H.M.; Saleh, M.; El-Gendy, R.A.; Saleh, M.R.; Thabet, S.M. High adsorption capacity of phenol and methylene blue using activated carbon derived from lignocellulosic agriculture wastes. Sci. Rep. 2022, 12, 5499. [Google Scholar] [CrossRef]
- Nwabanne, J.T.; Iheanacho, O.C.; Obi, C.C.; Onu, C.E. Linear and nonlinear kinetics analysis and adsorption characteristics of packed bed column for phenol removal using rice husk-activated carbon. Appl. Water Sci. 2022, 12, 91. [Google Scholar] [CrossRef]
- Allahkarami, E.; Monfared, A.D.; Silva, L.F.O.; Dotto, G.L. Toward a mechanistic understanding of adsorption behavior of phenol onto a novel activated carbon composite. Sci. Rep. 2023, 13, 167. [Google Scholar] [CrossRef]
- Mohana, D.; Sarswat, A.; Singha, V.K.; Alexandre-Franco, M.; Pittman, C.U. Development of magnetic activated carbon from almond shells for trinitrophenol removal from water. Chem. Eng. J. 2011, 172, 1111–1125. [Google Scholar] [CrossRef]
- Gayathiri, M.; Pulingam, T.; Lee, K.T.; Sudesh, K. Activated carbon from biomass waste precursors: Factors affecting production and adsorption mechanism. Chemosphere 2022, 294, 133764. [Google Scholar] [CrossRef]
- Heidarinejad, Z.; Dehghani, M.H.; Heidari, M.; Javedan, G.; Ali, I.; Sillanpää, M. Methods for preparation and activation of activated carbon: A review. Environ. Chem. Lett. 2020, 18, 393–415. [Google Scholar] [CrossRef]
- Sun, Y.; Wei, J.; Wang, Y.; Yang, G.; Zhang, J. Production of activated carbon by K2CO3 activation treatment of cornstalk lignin and its performance in removing phenol and subsequent bioregeneration. Environ. Technol. 2010, 31, 53–61. [Google Scholar] [CrossRef] [PubMed]
- El-Hendawy, A.N.A. An insight into the KOH activation mechanism through the production of microporous activated carbon for the removal of Pb2+ cations. Appl. Surf. Sci. 2009, 255, 3723–3730. [Google Scholar] [CrossRef]
- Zubir, M.H.M.; Zaini, M.A.A. Twigs-derived activated carbons via H3PO4/ZnCl2 composite activation for methylene blue and congo red dyes removal. Sci. Rep. 2020, 10, 14050. [Google Scholar] [CrossRef] [PubMed]
- Mujtaba, M.; Fraceto, L.C.; Fazeli, M.; Mukherjee, S.; Savassa, S.M.; de Medeiros, G.A.; Pereira, A.E.S.; Mancini, S.D.; Lipponen, J.; Vilaplana, F. Lignocellulosic biomass from agricultural waste to the circular economy: A review with focus on biofuels, biocomposites and bioplastics. J. Clean. Prod. 2023, 402, 136815. [Google Scholar] [CrossRef]
- Miao, C.; Hamad, W.Y. Controlling lignin particle size for polymer blend applications. J. Appl. Polym. Sci. 2017, 134, 44669. [Google Scholar] [CrossRef]
- Wang, F.; Ouyang, D.; Zhou, Z.; Page, S.J.; Liu, D.; Zhao, X. Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage. J. Energy Chem. 2021, 57, 247–280. [Google Scholar] [CrossRef]
- Laurichesse, S.; Avérous, L. Chemical modification of lignins: Towards biobased polymers. Prog. Polym. Sci. 2014, 39, 1266–1290. [Google Scholar] [CrossRef]
- Tang, Q.; Qian, Y.; Yang, D.; Qiu, X.; Qin, Y.; Zhou, M. Lignin-Based Nanoparticles: A Review on Their Preparations and Applications. Polymers 2020, 12, 2471. [Google Scholar] [CrossRef]
- Haq, I.; Mazumder, P.; Kalamdah, A.S. Recent advances in removal of lignin from paper industry wastewater and its industrial applications—A review. Bioresour. Technol. 2020, 312, 123636. [Google Scholar] [CrossRef]
- Lievonen, M.; Valle-Delgado, J.J.; Mattinen, M.-L.; Hult, E.-L.; Lintinen, K.; Kostiainen, M.A.; Paananen, A.; Szilvay, G.R.; Setäläb, H.; Österberg, M. A simple process for lignin nanoparticle preparation. Green Chem. 2016, 18, 1416–1422. [Google Scholar] [CrossRef]
- Liu, W.-J.; Jiang, H.; Yu, H.-Q. Thermochemical conversion of lignin to functional materials: A review and future directions. Green Chem. 2015, 17, 4888–4907. [Google Scholar] [CrossRef]
- Ibrahim, M.M.; Ghani, A.M.; Nen, N. Formulation of lignin phenol formaldehyde resins as a wood adhesive. Malays. J. Anal. Sci. 2007, 11, 213–218. [Google Scholar]
- Hussin, M.H.; Samad, N.S.; Latif, N.H.A.; Rozuli, N.A.; Yusoff, S.B.; Gambier, F.; Brosse, N. Production of oil palm (Elaeis guineensis) fronds lignin-derived non-toxic aldehyde for eco-friendly wood adhesive. Int. J. Biol. Macromol. 2018, 113, 1266–1272. [Google Scholar] [CrossRef] [PubMed]
- Tayeb, A.H.; Tajvidi, M.; Bousfield, D. Paper-Based Oil Barrier Packaging using Lignin-Containing Cellulose Nanofibrils. Molecules 2020, 25, 1344. [Google Scholar] [CrossRef]
- Azadi, P.; Inderwildi, O.R.; Farnood, R.; King, D.A. Liquid fuels, hydrogen and chemicals from lignin: A critical review. Renew. Sust. Energ. Rev. 2013, 21, 506–523. [Google Scholar] [CrossRef]
- Strassberger, Z.; Tanase, S.; Rothenberg, G. The pros and cons of lignin valorisation in an integrated biorefinery. RSC Adv. 2014, 4, 25310–25318. [Google Scholar] [CrossRef]
- Ayyachamy, M.; Cliffe, F.E.; Coyne, J.M.; Collier, J.; Tuohy, M.G. Lignin: Untapped biopolymers in biomass conversion technologies. Biomass Conv. Bioref. 2013, 3, 255–269. [Google Scholar] [CrossRef]
- Kai, D.; Zhang, K.; Jiang, L.; Wong, H.Z.; Li, Z.; Zhang, Z.; Loh, X.J. Sustainable and antioxidant lignin–polyester copolymers and nanofibers for potential healthcare applications. ACS Sustain. Chem. Eng. 2017, 5, 6016–6025. [Google Scholar] [CrossRef]
- Xing, Q.; Buono, P.; Ruch, D.; Dubois, P.; Wu, L.; Wang, W.-J. Biodegradable UV-Blocking Films through Core-Shell Lignin-Melanin Nanoparticles in Poly(butylene adipate-co-terephthalate). ACS Sustain. Chem. Eng. 2019, 7, 4147–4157. [Google Scholar] [CrossRef]
- Liao, J.J.; Latif, N.H.A.; Trache, D.; Brosse, N.; Hussin, M.H. Current advancement on the isolation, characterization and application of lignin. Int. J. Biol. Macromol. 2020, 162, 985–1024. [Google Scholar] [CrossRef] [PubMed]
- Supanchaiyamat, N.; Jetsrisuparb, K.; Knijnenburg, J.; Tsang, D. Lignin materials for adsorption: Current trend, perspectives and opportunities. Bioresour. Technol. 2019, 272, 570–581. [Google Scholar] [CrossRef]
- Hayashi, J.; Kazehaya, A.; Muroyama, K.; Watkinson, A.P. Preparation of activated carbon from lignin by chemical activation. Carbon 2000, 38, 1873–1878. [Google Scholar] [CrossRef]
- Rowlandson, J.L.; O’Brien, J.C.; Edler, K.J.; Tian, M.; Ting, V.P. Application of Experimental Design to Hydrogen Storage: Optimisation of Lignin-Derived Carbons. C 2019, 5, 82. [Google Scholar] [CrossRef]
- Yang, Z.; Gleisner, R.; Mann, D.H.; Xu, J.; Jiang, J.; Zhu, J.Y. Lignin Based Activated Carbon Using H3PO4 Activation. Polymers 2020, 12, 2829. [Google Scholar] [CrossRef]
- Ho, H.C.; Bonnesen, P.V.; Nguyen, N.A.; Cullen, D.A.; Uhrig, D.; Goswami, M.; Keum, J.K.; Naskar, A.K. Method to Synthesize Micronized Spherical Carbon Particles from Lignin. Ind. Eng. Chem. Res. 2020, 59, 9–17. [Google Scholar] [CrossRef]
- Tang, Q.; Zhou, M.; Li, Y.; Qiu, X.; Yang, D. Formation of Uniform Colloidal Spheres Based on Lignosulfonate, a Renewable Biomass Resource Recovered from Pulping Spent Liquor. ACS Sustain. Chem. Eng. 2018, 6, 1379–1386. [Google Scholar] [CrossRef]
- Beisl, S.; Miltner, A.; Friedl, A. Lignin from Micro- to Nanosize: Production Methods. Int. J. Mol. Sci. 2017, 18, 1244. [Google Scholar] [CrossRef] [PubMed]
- Börcsök, Z.; Pásztory, Z. The role of lignin in wood working processes using elevated temperatures: An abbreviated literature survey. Eur. J. Wood Wood Prod. 2021, 79, 511–526. [Google Scholar] [CrossRef]
- Braun, J.L.; Holtman, K.M.; Kadla, J.F. Lignin-based carbon fibers: Oxidative thermostabilization of kraft lignin. Carbon 2005, 43, 385–394. [Google Scholar] [CrossRef]
- Zhao, B.; Borghei, M.; Zou, T.; Wang, L.; Johansson, L.; Majoinen, J.S.; Sipponen, M.H.; Österberg, M.; Mattos, B.D.; Rojas, O.J. Lignin-Based Porous Supraparticles for Carbon Capture. ACS Nano 2021, 15, 6774–6786. [Google Scholar] [CrossRef]
- Wang, L.; Feng, X.; Li, X.; Ma, H.; Wu, J.; Chen, Y.; Zhou, J. Valorization of lignin: Application of lignin-derived activated carbon in capacitors and investigation of its textural properties and electrochemical performance. Diam. Relat. Mater. 2022, 122, 108791. [Google Scholar] [CrossRef]
- Dai, J.; Xie, A.; Zhang, R.; Ge, W.; Chang, Z.; Tian, S.; Li, C.; Yan, Y. Scalable preparation of hierarchical porous carbon from lignin for highly efficient adsorptive removal of sulfamethazine antibiotic. J. Mol. Liq. 2018, 256, 203–212. [Google Scholar] [CrossRef]
- Li, M.; Mu, J.; Liu, Y.; Wang, H.; Wang, Y.; Song, H. Removal of phenol by lignin-based activated carbon as an efficient adsorbent for adsorption of phenolic wastewater. Res. Chem. Intermed. 2023, 49, 2209–2232. [Google Scholar] [CrossRef]
- Liu, X.Y.; Huang, M.; Ma, H.L.; Zhang, Z.Q.; Gao, J.M.; Zhu, Y.L.; Han, X.J.; Guo, X.Y. Preparation of a carbon-based solid acid catalyst by sulfonating activated carbon in a chemical reduction process. Molecules 2010, 15, 7188–7196. [Google Scholar] [CrossRef]
- Szewczyk, I.; Rokicińska, A.; Michalik, M.; Chen, J.; Jaworski, A.; Aleksis, R.; Pell, A.J.; Hedin, N.; Slabon, A.; Kuśtrowski, P. Electrochemical Denitrification and Oxidative Dehydrogenation of Ethylbenzene over N-doped Mesoporous Carbon: Atomic Level Understanding of Catalytic Activity by 15N NMR Spectroscopy. Chem. Mater. 2020, 32, 7263–7273. [Google Scholar] [CrossRef]
- Biesinger, M.C. Accessing the robustness of adventitious carbon for charge referencing (correction) purposes in XPS analysis: Insights from a multi-user facility data review. Appl. Surf. Sci. 2022, 597, 153681. [Google Scholar] [CrossRef]
- X-ray Photoelectron Spectroscopy (XPS) Reference Pages: Potassium. Available online: www.xpsfitting.com/2020/02/potassium.html (accessed on 7 January 2024).
- Li, W.; Zhang, Y.; Das, L.; Wang, Y.; Li, M.; Wanninayake, N.; Pu, Y.; Kim, D.Y.; Cheng, Y.-T.; Ragauskas, A.J.; et al. Linking lignin source with structural and electrochemical properties of lignin-derived carbon materials. RSC Adv. 2018, 8, 38721–38732. [Google Scholar] [CrossRef] [PubMed]
- Leskinen, T.; Smyth, M.; Xiao, Y.; Lintinen, K.; Mattinen, M.-L.; Kostiainen, M.; Oinas, P.; Österberg, M. Scaling Up Production of Colloidal Lignin Particles. Nord. Pulp Pap. Res. J. 2017, 32, 586–596. [Google Scholar] [CrossRef]
- Largitte, L.; Pasquier, R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem. Eng. Res. Des. 2016, 109, 495–504. [Google Scholar] [CrossRef]
- Wu, F.-C.; Tseng, R.-L.; Juang, R.-S. Characteristics of pseudo-second-order kinetic model for liquid-phase adsorption: A mini-review. Chem. Eng. J. 2009, 151, 1–9. [Google Scholar] [CrossRef]
Sample Code | Lignin Precursor | Initial Solution | Final Solution | |
---|---|---|---|---|
THF/H2O (v/v) | THF/H2O (v/v) | HCl Conc. (mol·L−1) | ||
a | Kraft | 3/1 | 15/73 | 0 |
b | 15/73 | 0.045 | ||
c | Sodium lignosulfonate | 3/17 | 0.800 | |
d | Acylated sodium lignosulfonate | 15/73 | 0.045 |
Sample Code | SBET (m2·g−1) | SLangmuir (m2·g−1) | Vtotal (cm3·g−1) | Vmeso (cm3·g−1) | Vmicro (cm3·g−1) |
---|---|---|---|---|---|
No activation, carbonization at 800 °C | |||||
LS_C | 187 | 273 | 0.181 | 0.088 | 0.075 |
Activation with K2CO3 (various contents), carbonization at 800 °C | |||||
LS_K_1.5_800_WET | 1711 | 2531 | 1.118 | 0.528 | 0.568 |
LS_K_1.5_800_DRY | 1457 | 2129 | 1.045 | 0.255 | 0.612 |
LS_K_2.5_800_WET | 1674 | 2471 | 0.973 | 0.274 | 0.647 |
L_K_2.5_800_WET | 1763 | 2622 | 1.358 | 0.618 | 0.449 |
LS_C_K_2.5_800_WET | 920 | 1348 | 0.592 | 0.189 | 0.374 |
LS_K_2.5_800_DRY | 1759 | 2586 | 1.202 | 0.292 | 0.693 |
LS_K_3.0_800_WET | 2036 | 3036 | 1.138 | 0.418 | 0.663 |
LS_K_3.0_800_DRY | 1840 | 2720 | 1.261 | 0.352 | 0.676 |
LS_K_4.0_800_WET | 1874 | 2784 | 1.052 | 0.349 | 0.645 |
LS_K_4.0_800_DRY | 1807 | 2681 | 1.267 | 0.431 | 0.630 |
Activation with K2CO3 (2.5 eq), carbonization at various temperatures | |||||
LS_K_2.5_600_WET | 771 | 1116 | 0.419 | 0.041 | 0.365 |
LS_K_2.5_600_DRY | 514 | 745 | 0.420 | 0.072 | 0.232 |
LS_K_2.5_700_WET | 1179 | 1707 | 0.642 | 0.065 | 0.557 |
LS_K_2.5_700_DRY | 1058 | 1533 | 0.769 | 0.119 | 0.485 |
LS_K_2.5_900_WET | 1851 | 2732 | 1.162 | 0.460 | 0.677 |
Sample Code | Content of O Species (at.%) | Content of C Species (at.%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
C=O | O=C–O | C–O | Total | sp2, sp3 | C–OH | C=O | COOH | π–π* | Total | |
No activation, carbonization at 800 °C | ||||||||||
LS_C | 1.49 | 4.37 | 0.69 | 6.60 | 76.16 | 1.71 | 1.54 | 2.06 | 4.11 | 85.60 |
Activation with K2CO3 (various contents), carbonization at 800 °C | ||||||||||
LS_K_1.5_800_WET | 2.65 | 3.78 | 1.43 | 7.90 | 72.04 | 1.32 | 2.24 | 1.96 | 7.37 | 84.90 |
LS_K_1.5_800_DRY | 0.78 | 1.85 | 0.79 | 3.40 | 86.18 | 0.78 | 0.78 | 1.55 | 7.28 | 96.60 |
LS_K_2.5_800_WET | 2.65 | 5.52 | 0.75 | 8.90 | 62.51 | 0.61 | 1.69 | 2.60 | 5.96 | 73.40 |
LS_K_2.5_800_DRY | 1.94 | 1.20 | 1.35 | 4.50 | 79.83 | 1.87 | 2.28 | 2.25 | 6.88 | 93.10 |
LS_K_3.0_800_WET | 5.93 | 4.48 | 1.93 | 12.30 | 60.20 | 1.36 | 4.14 | 2.13 | 5.93 | 73.80 |
LS_K_3.0_800_DRY | 1.14 | 2.51 | 1.36 | 5.00 | 83.86 | 1.50 | 1.14 | 1.43 | 5.29 | 93.20 |
LS_K_4.0_800_WET | 4.00 | 5.28 | 1.00 | 10.30 | 65.80 | 0.95 | 4.13 | 2.66 | 5.09 | 78.60 |
LS_K_4.0_800_DRY | 1.47 | 7.76 | 1.58 | 10.80 | 73.40 | 1.44 | 1.34 | 3.91 | 4.16 | 84.30 |
Activation with K2CO3 (2.5 eq), carbonization at various temperatures | ||||||||||
LS_K_2.5_600_WET | 5.05 | 3.80 | 1.09 | 9.90 | 72.55 | 1.09 | 4.75 | 1.75 | 4.09 | 84.20 |
LS_K_2.5_600_DRY | 6.09 | 4.10 | 2.09 | 12.30 | 69.04 | 2.17 | 2.46 | 2.52 | 4.37 | 80.60 |
LS_K_2.5_700_WET | 8.80 | 2.95 | 1.61 | 13.40 | 61.46 | 1.25 | 2.96 | 1.54 | 6.04 | 73.30 |
LS_K_2.5_700_DRY | 3.03 | 3.28 | 1.49 | 7.80 | 77.04 | 1.77 | 3.13 | 1.57 | 4.71 | 88.20 |
LS_K_2.5_900_WET | 3.44 | 5.24 | 1.06 | 9.70 | 66.40 | 2.85 | 2.00 | 2.40 | 6.64 | 80.30 |
Sample Code | Pseudo-First Order | Pseudo-Second Order | ||||
---|---|---|---|---|---|---|
(mg∙g−1) | (min−1) | R2 | (mg∙g−1) | (g∙mg−1∙min−1) | R2 | |
Activation with K2CO3 (various contents), carbonization at 800 °C | ||||||
LS_K_1.5_800_WET | 237.71 | 2.089 | 0.9984 | 239.52 | 0.0342 | 0.9963 |
LS_K_1.5_800_DRY | 147.97 | 1.069 | 0.9997 | 148.94 | 0.0275 | 0.9999 |
LS_K_2.5_800_WET | 218.88 | 1.163 | 0.9999 | 219.01 | 0.0359 | 0.9999 |
LS_K_2.5_800_DRY | 231.05 | 2.317 | 0.9997 | 233.16 | 0.0348 | 0.9966 |
LS_K_3.0_800_WET | 231.23 | 1.821 | 0.9996 | 234.00 | 0.0231 | 0.9962 |
LS_K_3.0_800_DRY | 223.06 | 1.540 | 0.9996 | 225.72 | 0.0792 | 0.9999 |
LS_K_4.0_800_WET | 235.53 | 1.770 | 0.9993 | 238.23 | 0.0234 | 0.9956 |
LS_K_4.0_800_DRY | 197.05 | 2.644 | 0.9995 | 197.67 | 0.1099 | 0.9989 |
Activation with K2CO3 (2.5 eq), carbonization at various temperatures | ||||||
LS_K_2.5_600_WET | 143.97 | 0.980 | 0.9883 | 138.01 | 0.0096 | 0.9767 |
LS_K_2.5_600_DRY | 75.99 | 1.255 | 0.9988 | 76.77 | 0.0587 | 0.9993 |
LS_K_2.5_700_WET | 207.33 | 1.091 | 0.9998 | 207.94 | 0.0573 | 0.9997 |
LS_K_2.5_700_DRY | 144.11 | 0.777 | 0.9954 | 145.71 | 0.0185 | 0.9966 |
LS_K_2.5_900_WET | 239.56 | 2.387 | 0.9991 | 242.14 | 0.0330 | 0.9946 |
Kinetic Model | Non-Linear |
---|---|
Pseudo-first order (PFO) | |
Pseudo-second order (PSO) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łątka, P.; Olszański, B.; Żurowska, M.; Dębosz, M.; Rokicińska, A.; Kuśtrowski, P. Spherical Lignin-Derived Activated Carbons for the Adsorption of Phenol from Aqueous Media. Molecules 2024, 29, 960. https://doi.org/10.3390/molecules29050960
Łątka P, Olszański B, Żurowska M, Dębosz M, Rokicińska A, Kuśtrowski P. Spherical Lignin-Derived Activated Carbons for the Adsorption of Phenol from Aqueous Media. Molecules. 2024; 29(5):960. https://doi.org/10.3390/molecules29050960
Chicago/Turabian StyleŁątka, Piotr, Bazyli Olszański, Magdalena Żurowska, Marek Dębosz, Anna Rokicińska, and Piotr Kuśtrowski. 2024. "Spherical Lignin-Derived Activated Carbons for the Adsorption of Phenol from Aqueous Media" Molecules 29, no. 5: 960. https://doi.org/10.3390/molecules29050960
APA StyleŁątka, P., Olszański, B., Żurowska, M., Dębosz, M., Rokicińska, A., & Kuśtrowski, P. (2024). Spherical Lignin-Derived Activated Carbons for the Adsorption of Phenol from Aqueous Media. Molecules, 29(5), 960. https://doi.org/10.3390/molecules29050960