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Abstract: In this work, a synthesis and activation path, which enabled the preparation of spherical
activated carbon from a lignin precursor, characterized by high adsorption capacity in the removal of
phenolic compounds from water, was successfully developed. Two industrial by-products, i.e., Kraft
lignin and sodium lignosulfonate, were used to form spherical nanometric lignin grains using pH
and solvent shift methods. The obtained materials became precursors to form porous activated
carbons via chemical activation (using K2CO3 or ZnCl2 as activating agents) and carbonization (in
the temperature range of 600–900 ◦C). The thermal stabilization step at 250 ◦C was necessary to
ensure the sphericity of the grains during high-temperature heat treatment. The study investigated
the influence of the type of chemical activator used, its quantity, and the method of introduction into
the lignin precursor, along with the carbonization temperature, on various characteristics including
morphology (examined by scanning electron microscopy), the degree of graphitization (evaluated
by powder X-ray diffraction), the porosity (assessed using low-temperature N2 adsorption), and
the surface composition (analyzed with X-ray photoelectron spectroscopy) of the produced carbons.
Finally, the carbon materials were tested as adsorbents for removing phenol from an aqueous solution.
A conspicuous impact of microporosity and a degree of graphitization on the performance of the
investigated adsorbents was found.

Keywords: lignocellulosic biomass; lignin-derived activated carbons; chemical activation; phenolic
compounds; adsorption

1. Introduction

Access to clean air and safe water is crucial for the existence of life on Earth. Meanwhile,
the rapid development of industries, population growth, and continuous improvement in
the standard of living have resulted in an increased demand for usable water, and have also
had a devastating impact on the water resources through the release of large amounts of
contaminants. An important group of emitted pollutants are organic compounds dissolved
in water, including phenols and their derivatives, which can bioaccumulate in the envi-
ronment [1–3]. It should be remembered that these substances are formed naturally as a
result of the decomposition of organic matter by microorganisms or the metabolic processes
of many species of plants and fungi [4]. However, currently, the chemical industry has
become a substantial source of phenol emissions, where these compounds are widely used
in the production of plastics, paints, dyes, and phenolic resins. Phenolic compounds are
also intermediates for the production of pesticides, herbicides, bactericides, and fungicides,
all commonly used as plant protection agents. Furthermore, both food industries and
households contribute to the increasing concentration of these substances in groundwater,
rivers, and water reservoirs. The presence of phenolic compounds in drinking water has a
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detrimental impact on human and animal health [5,6]. Therefore, efforts have been made
to minimize the content of these harmful pollutants by developing appropriate elimination
methods, including (photo)catalytic oxidation [7–10], biodegradation [11–13], and mem-
brane technologies [14,15]. Particularly significant benefits, however, are achieved through
the use of adsorbents, which enable the quick, easy, and effective removal of phenols,
for example, in batch or flow systems. This process enables the recovery of adsorbed
compounds through desorption, coupled with the regeneration of the adsorbent bed.

Activated carbons, produced from almost any natural organic carbon-enriched ma-
terial, are highly effective adsorbents of phenols [16–21]. The accumulation of phenolic
compound molecules appearing at the surface of activated carbon during the adsorption
process usually results from the interaction of the π electrons of the phenyl ring with the
π electrons of the graphene layers in the structure of the carbon material or the forma-
tion of hydrogen bonds between surface groups, containing heteroatoms and hydroxyl
groups in phenol molecules. The formation of donor–acceptor complexes between surface
electron-donor groups and the acidic (electrophilic) aromatic ring is also possible [22,23].

In addition to carbonization, the preparation of activated carbons often includes ac-
tivation processes, leading to the formation and development of porosity, thus directly
influencing adsorption capacity [24,25]. Typically, the previously carbonized carbon ma-
terial is activated, but the activation process can be also combined with carbonization in
order to obtain an active adsorbent in one step. Activation is often based on mixing a
raw material with an activating agent (e.g., H3PO4, ZnCl2, KOH, K2CO3) [26–28]. As a
result, much higher porosities of carbon materials compared to non-activated carbons are
generated. The above described procedure is called chemical activation. Alternatively,
physical activation is also used, which involves increasing the porosity of carbon via inter-
action with air or another gasifying agent (e.g., CO2 and/or water vapor). The adsorption
capacity of activated carbon towards a specific type of adsorbate changes significantly,
depending on its surface composition which is determined by the type and distribution of
functional groups. Therefore, for activated carbons with comparable textural properties,
which are produced using various methods or subjected to other activation, modification,
or pre-carbonization processes, completely different adsorption capacities can be found.

An important raw material for the production of activated carbon may be lignocellu-
losic biomass, consisting mainly of cellulose, hemicellulose, and lignin, produced by plants
in an amount of approximately 181.5 billion tons per year [29]. The least valuable compo-
nent of this raw material is lignin. This is a burdensome waste product, formed during the
production of cellulose pulp in the pulp and paper industry [30]. Due to the fact that lignin
is a three-dimensional amorphous polymer which is mainly composed of phenyl propane
units, its chemical composition varies depending on the plant raw material used, which
in turn significantly limits the possibilities of its wider use [31–33]. The lignin produced
during the processing of wood into paper, isolated using the Kraft process (based on the
hot leaching of wood chips with an aqueous mixture of sodium base and sodium sulfide,
leading to the breaking of bonds in lignocellulosic biomass) is most often burned to cover
the energy demand of the entire process [34,35]. Only a small amount (2–5%) [34,36] is
utilized for the production of lignin-based wood adhesives [37,38], lamination-coatings [39],
biobased polymers [32], biofuels [40,41], antioxidants [42,43], UV-blocking agents [44], and
carbon materials [45].

The use of lignin as a biopolymer with high carbon content seems to be the most
economical path for the production of activated carbons [46]. Hayashi et al. [47] used
black liquor from the Kraft process as a source of lignin, which was mixed with water and
various activators (K2CO3, Na2CO3, KOH, NaOH, ZnCl2, H3PO4). The highest surface
areas (approx. 2000 m2·g−1) were observed for the carbonized K2CO3-activated precursors.
Rowlandson et al. [48] used lignin from the organosolv process, which was then thermally
treated at various temperatures in an inert gas without the use of chemical activators. The
produced activated carbons exhibited surface areas as high as 1400 m2·g−1, and showcased
favorable performances in hydrogen storage (1.9 wt% at 77 K, 1 bar). Utilizing low sulfur
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acid hydrotropic lignin activated with H3PO4 at 450 ◦C resulted in activated carbons with
expanded surface areas (up to 2000 m2·g−1). These activated carbons proved to be effective
adsorbents of organic compounds [49]. The adsorption capacity for the Congo red dye
reached ca. 65 mg·g−1, whereas the methylene blue reached −535 mg·g−1.

In the presented work, a synthesis and activation method was developed to obtain
spherical lignin-derived carbons, characterized by high adsorption capacity in the removal
of phenolic compounds from aqueous solutions. The inspiration came from the paper by
Lievonen et al. [35], who used tetrahydrofuran (THF) as a solvent for lignin, which precipi-
tated when introduced into water. However, the described procedure is not applicable to
other lignins, and it is necessary to regulate the pH during precipitation. On the other hand,
the most important challenge was the activation of lignin-derived carbon in the phenol
adsorption process, while maintaining the spherical shape of the grains. Extensive research
was conducted on the influence of both lignin precursors and the conditions of chemical
activation (including the type, quantity, and method of introducing the ZnCl2 or K2CO3
activator), as well as thermal treatment (involving stabilization and carbonization) on vari-
ous aspects such as sphericity, textural parameters, surface composition, and consequently,
the adsorption capacity of the resulting carbon materials.

2. Results and Discussion
2.1. Synthesis of Spherical Lignin and Corresponding Carbon Particles

In the first stage of the research, the formation of spherical lignin nanograins from two
different, commercially available precursors—Kraft lignin and sodium lignosulfonate—was
investigated. The use of methods was based on time-consuming procedures, such as
solvothermal synthesis [50], as well as those involving expensive surfactants [51], and
this was therefore abandoned. Instead, the facile synthesis strategy, based on pH shifts
(shifting the pH of the mixture with dissolved lignin to a range where it is insoluble) and
solvent shifts (adding a solvent that does not dissolve lignin into a mixture with dissolved
lignin) was applied [52]. It should be noted that Kraft lignin is soluble in some organic
solvents and in alkali, while water is a decent solvent for lignosulfonate. Therefore, the
solvent shift method was tested first by introducing the Kraft lignin, dissolved in THF,
into the excess water. However, SEM images revealed an aggregation of the formed lignin
spheres (Figure 1a). More homogeneous and separated lignin nanospheres were obtained
by lowering the pH of the final solution by adding 2M HCl (Figure 1b).
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Figure 1. SEM images collected for lignin precipitated from solutions containing Kraft lignin (a,b) or
sodium lignosulfonate (c,d). The synthesis conditions are summarized in Table 1.

On the other hand, similar conditions did not result in the precipitation of dissolved
lignosulfonate. It proved necessary to shift the pH using 2 M HCl. However, the processed
lignin created structures that were severely aggregated (Figure 1c). Slightly greater spheric-
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ity of the lignosulfonate-derived lignin material was achieved by the initial modifications,
for example, by acylation (Figure 1d), to reduce the lignin solubility at low pH levels.
Nevertheless, these treatments did not bring satisfactory results. Hence, it was finally
decided to use the Kraft lignin as a carbon precursor in order to obtain the expected lignin
spheres for further research.

Spherical lignin nanoparticles produced in path b were subsequently carbonized. The
SEM image shown in Figure 2a discloses that direct high-temperature carbonization at
800 ◦C leads to the sintering of the grains and a total loss of their sphericity. This effect is
most likely related to the phase transformation of lignin. The glass transition temperature
of lignin depends on many factors, including moisture content, the degree of branching,
and molecular weight, but is typically found in the range of 110–235 ◦C [53]. Therefore, it
was proposed to introduce an additional stage of pre-carbonization of the lignin precursor
via a very gradual increase in temperature, reaching around 250 ◦C (a temperature ramp of
0.05 ◦C·min−1), and then maintaining that for the next 2 h [54,55]. Such stabilization of the
lignin precursor allowed for the retaining of its original morphology, therefore obtaining
the spherical grains of the corresponding carbon material (Figure 2b,c).
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Figure 2. SEM images collected for spherical lignin precursor after (a) direct carbonization at
800 ◦C (heating rate of 1 ◦C·min−1), (b) stabilization at 250 ◦C (heating rate of 0.05 ◦C·min−1), and
(c) carbonization at 800 ◦C (heating rate of 1 ◦C·min−1) preceded by stabilization at 250 ◦C (heating
rate of 0.05 ◦C·min−1).

Table 1. Conditions used during the precipitation of spherical lignin particles.

Sample Code Lignin Precursor
Initial Solution Final Solution

THF/H2O (v/v) THF/H2O (v/v) HCl Conc. (mol·L−1)

a
Kraft

3/1

15/73 0

b 15/73 0.045

c Sodium lignosulfonate 3/17 0.800

d Acylated sodium lignosulfonate 15/73 0.045

2.2. The Effect of the Chemical Activation of Lignin-Derived Carbons
2.2.1. Morphology

The effect on the properties of the formed carbons when using salts for chemical
activation (i.e., ZnCl2 and K2CO3) was extensively studied. Considering the glass transition
observed for the lignin polymer chains at approx. 250 ◦C, stabilized lignin was then selected
for modification. As confirmed by the SEM micrographs compiled in Figure 3a–d, for such
selected materials, a different degree of the preservation of spherical morphology and the
aggregation of grains is observed, depending on the modification path.

In the case of the WET method, regardless of the type of salt used, a clear degradation
of the spherical structure of lignin nanoparticles is visible; however, the application of
ZnCl2 leads to the greatest changes. On the other hand, the dry incorporation of the salt
allows for the better protection of the morphology of the starting material. For ZnCl2, there
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is little sintering of the grains at the junction of lignin spheres observed, whereas the similar
effect is not found in the K2CO3-activated material.
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Figure 3. SEM images collected for stabilized lignin, chemically activated with 2.5 eq of ZnCl2
((a)—WET method, (b)—DRY method) and K2CO3 ((c)—WET method, (d)—DRY method), and
carbonized at 800 ◦C.

The positive effect of maintaining spherical morphology during activation with K2CO3
directed further research towards the use of this modifier. Different carbon materials were
prepared using various carbonization temperatures (from 600 to 900 ◦C for constant K2CO3
content −2.5 eq), as well as varying ratios of K2CO3/carbon precursor (1.5 eq, 2.5 eq, 3.0 eq
and 4.0 eq at the selected carbonization temperature of 800 ◦C), using both DRY and WET
methods. In the case of the DRY method, raising the carbonization temperature to 900 ◦C
results in the complete burning of the carbon material. On the other hand, it is possible to
carbonize the sample at such a high temperature after the WET modification. However, it
was found that the morphology of the carbon precursor is disturbed already at the stage
of introducing salt from the aqueous solution, which is then fixed in the carbonization
process. The use of the WET method results in the partial disintegration of spherical grains
across all materials, and the sintering of grains into larger aggregates, in contrast to the
DRY method, in which the grain morphology is retained.

Figure 4a–d shows the SEM images for the carbon materials obtained using different
amounts of the K2CO3 activator, introduced by the DRY method. It is observed that the
activated carbons produced using lower salt/precursor ratios (1.5 eq and 2.5 eq) retain a
morphology consisting of homogeneous and separated spheres. With increasing amounts
of activating salt (3.0 eq and 4.0 eq), a tendency for the sintering of lignin-derived carbon
grains is detected, resulting in a higher content of larger, non-uniform particles with
undefined shapes across the entire volume of the material. It should therefore be stated that,
when using larger amounts of the activating agent, its dispersion throughout the entire
volume of the modified material begins to play a very important role in the carbonization
process. An uneven distribution of the activator causes more intensive degradation of
the material, which ultimately leads to the loss of the sphericality of the grains. However,
even in the materials synthesized using the higher K2CO3 contents, a significant fraction of
spherical-shaped lignin-derived carbon particles is still observed.
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carbonized at 800 ◦C.

2.2.2. Porosity and Graphitization

The porosity of the synthesized carbons was studied using low-temperature N2 adsorp-
tion measurements. The BET and Langmuir models revealed specific surface areas (SBET and
SLangmuir, respectively), while the total pore volumes (Vtotal), mesopore volumes (Vmeso), and
micropore volumes (Smicro) were determined using the single-point, BJH, and t-plot methods,
respectively. The textural parameters of the studied materials are shown in Table 2.

Table 2. The textural parameters of the selected activated carbons obtained on the basis of lignin.

Sample Code SBET
(m2·g−1)

SLangmuir
(m2·g−1)

Vtotal
(cm3·g−1)

Vmeso
(cm3·g−1)

Vmicro
(cm3·g−1)

No activation, carbonization at 800 ◦C

LS_C 187 273 0.181 0.088 0.075

Activation with K2CO3 (various contents), carbonization at 800 ◦C

LS_K_1.5_800_WET 1711 2531 1.118 0.528 0.568

LS_K_1.5_800_DRY 1457 2129 1.045 0.255 0.612

LS_K_2.5_800_WET 1674 2471 0.973 0.274 0.647

L_K_2.5_800_WET 1763 2622 1.358 0.618 0.449

LS_C_K_2.5_800_WET 920 1348 0.592 0.189 0.374

LS_K_2.5_800_DRY 1759 2586 1.202 0.292 0.693

LS_K_3.0_800_WET 2036 3036 1.138 0.418 0.663

LS_K_3.0_800_DRY 1840 2720 1.261 0.352 0.676

LS_K_4.0_800_WET 1874 2784 1.052 0.349 0.645

LS_K_4.0_800_DRY 1807 2681 1.267 0.431 0.630

Activation with K2CO3 (2.5 eq), carbonization at various temperatures

LS_K_2.5_600_WET 771 1116 0.419 0.041 0.365

LS_K_2.5_600_DRY 514 745 0.420 0.072 0.232

LS_K_2.5_700_WET 1179 1707 0.642 0.065 0.557

LS_K_2.5_700_DRY 1058 1533 0.769 0.119 0.485

LS_K_2.5_900_WET 1851 2732 1.162 0.460 0.677
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It is clearly visible that the proposed chemical activation allows for a huge increase in
the porosity of the corresponding carbon materials. Potassium compounds (K2CO3 and
KOH) have already been recognized as the most effective chemical activators for generating
porosity in lignin-derived activated carbons, regardless of the type of precursor [47,56].
The activity of K2CO3 is related to a cycle of high-temperature transformations as follows:

K2CO3 → K2O + CO2
CO2 + C → 2CO
K2CO3 + 2C → 2K + 3CO
C + K2O → 2K + CO

Both COx and very reactive K, intercalated into a carbon structure [57], are responsible for
the formation of hierarchical porosity in the final carbons.

In this study, unactivated lignin, carbonized at 800 ◦C, creates activated carbon with
SBET = 187 m2·g−1 (SLangmuir = 273 m2·g−1) and Vtotal = 0.181 cm3·g−1 (with contribution
of ca. 41% of micropores). Depending on the nature of the precursor used during activation
(L, LS or LS_C), different developments of porosity occur. Generally, the less processed the
lignin substrate, the greater the susceptibility to generating pores using K2CO3. Therefore,
for the least processed precursor, i.e., unstabilized lignin L, an over ninefold increase in the
SBET and SLangmuir and a sevenfold increase in the Vtotal are achieved. In turn, in the case of
the LS_C precursor, these changes are lower, being fivefold and threefold, respectively. It is
worth noting, however, that the chemical activation of LS_C and LS leads to a relatively
greater increase in the share of micropores (63–66% of total porosity) in the final carbon
when compared to L (only 33%).

After the carbonization of stabilized lignin at 800 ◦C, chemically activated with var-
ious amounts of K2CO3, some changes in specific surface areas and pore volumes are
observed. The higher content of the activating agent, regardless of the modification
method used (DRY or WET), results in a noticeable increase in the values of textural
parameters. For example, within a series of carbon materials obtained using the DRY
modification, the use of 1.5 eq K2CO3 gives SBET = 1457 m2·g−1 (SLangmuir = 2129 m2·g−1)
and Vtotal = 1.045 cm3·g−1 (Vmicro = 0.612 cm3·g−1), while increasing the amount of the
chemical activator to 4.0 eq leads to SBET = 1807 m2·g−1 (SLangmuir = 2681 m2·g−1) and
Vtotal = 1.267 cm3·g−1 (Vmicro = 0.630 cm3·g−1). Therefore, the use of a huge excess of
K2CO3 in relation to the modified carbon precursor allows the increase of the specific
surface area of the final product by 24–26% and its total pore volume by 21%. Interest-
ingly, excess K2CO3 favors a change in the porosity profile towards the formation of larger
pores, with a decreasing share of micropores. However, for the WET series, the described
correlations are less conspicuous.

The analysis of the results of N2 adsorption reveals that the carbonization temperature
has a much greater impact on the porosity of the formed carbons. A linear increase in
the values of the specific surface area and total pore volume is observed with the ther-
mal treatment temperature rising from 600 ◦C to 900 ◦C, irrespective of the modification
method employed. It is worth noting that the DRY activation of stabilized lignin results
in its complete decomposition during carbonization at 900 ◦C; therefore, Table 2 does
not include textural data for this sample. For example, within the WET series, there is
an increase in SBET = 771 m2·g−1 (SLangmuir = 1116 m2·g−1) and Vtotal = 0.419 cm3·g−1

(Vmicro = 0.365 cm3·g−1) for the material carbonized at 600 ◦C to SBET = 1851 m2·g−1

(SLangmuir = 2732 m2·g−1) and Vtotal = 1.162 cm3·g−1 (Vmicro = 0.677 cm3·g−1), following
thermal treatment at 900 ◦C. At the same time, the contribution of microporosity in the total
porosity changes from 87% to 58%. Similar relationships are also presented by a series of
materials obtained by the DRY modification, but have also been observed in the previous
studies for Kraft lignin or corn straw lignin, activated with potassium compounds [47,58].
It should therefore be stated that the increase in carbonization temperature favors the
formation of the hierarchical porosity of the lignin-derived activated carbons.
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The degree of the graphitization of the studied materials was analyzed based on the
XRD results. Figure 5 shows the recorded diffractograms for a series of carbons obtained by
the modification of LS, with various amounts of K2CO3 after carbonization at 800 ◦C (panel
a) and with a fixed amount of activating agent (2.5 eq), by varying the thermal treatment
temperature within the range of 600–900 ◦C (panel b).
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The presence of a broad diffraction peak (002) in the range of 15–30◦ 2θ is typical for
the amorphous structure of activated carbon. However, it is worth paying attention to the
low and wide maximum (100) at ca. 43◦, which indicates the pre-formation of the graphite
structure [59]. The intensity of this peak increases significantly with the carbonization
temperature and confirms the expected changes in the degree of graphitization. On the
other hand, in the case of a series of carbon materials obtained at the same temperature
after modification with various amounts of K2CO3, the half-widths of the diffraction peak
(100) remain unchanged (Figure 5b). Therefore, the activator does not have a significant
impact on the achieved degree of graphitization.

2.2.3. Surface Composition

Kraft lignin used to produce activated carbons is a natural raw material; therefore,
it contains a significant amount of various ingredients that remain in the material after
processing. The surface analysis of LS_C by XPS revealed the presence on its surface, in
addition to elemental carbon and significant amounts of oxygen, as well as, in much smaller
concentrations, sulfur, nitrogen, and selected inorganic components (mainly Na). The XPS
C 1s and O 1s spectra for unactivated carbon LS_C and two materials activated under the
selected conditions are shown as examples in Figure 6.

In the case of XPS O 1s spectra, the presence of three main components is identified at
binding energies (Eb) of 531.0 ± 0.2, 532.1 ± 0.2, and 533.8 ± 0.2 eV, assigned to oxygen
atoms in C=O, O=C–O, and C–O surface functionalities, respectively. Additionally, for LS_C
carbon, the appearance of one more component at 535.7 eV, as attributed to photoelectron
emission from H2O molecules, suggests the presence of moisture in this sample. In turn, in
the XPS C 1s spectra, five components are found at 284.4 eV (C sp2 and sp3), 285.9 ± 0.1 eV
(C–OH), 287.4 ± 0.2 eV (C=O), 288.6 ± 0.2 eV (COOH), and 290.4 ± 0.2 eV (π–π*) [60,61].
In the XPS C 1s spectra of lignin-derived carbons after activation, above the Eb values
characteristic of C, additional signals appear from the emission of photoelectrons from
K atoms, remaining in small amounts on the surface after treatment with K2CO3. The K
2p3/2 peak is observed at 293.1 ± 0.1 eV, and is accompanied by a spaced spin-orbit K 2p1/2
component with ∆ = ~2.8 eV [62].
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A complete analysis of the shares of the individual forms of surface species containing
C and O atoms is presented in Table 3. It is clearly seen that the activation of stabilized lignin
with K2CO3 favors the formation of oxygen-containing groups. Their total content on the
surface of the carbonized material reaches even 13.4 at.% (LS_K_2.5_700_WET). It should
be emphasized that both the content and distribution of surface oxygen concentrations in
the created carbon materials do not differ significantly from the analogues described in
the literature. For example, KOH-activated pine lignin and poplar lignin carbonized at
700 ◦C showed a total surface O content of 7.6 and 11.5 at.%, respectively [63]. Generally,
generating larger amounts of superficial oxygen functionalities is facilitated by higher
amounts of K2CO3 being introduced into the modified lignin, using both the WET method
and lower carbonization temperature. It is also worth noting that C=O groups are slightly
more likely to form on the surface of lignin-derived activated carbon after activation in the
WET path when compared to carboxyl groups.

Table 3. Concentrations of O and C on the surface of selected lignin-derived activated carbons
determined by XPS.

Sample Code
Content of O Species (at.%) Content of C Species (at.%)

C=O O=C–O C–O Total sp2, sp3 C–OH C=O COOH π–π* Total

No activation, carbonization at 800 ◦C

LS_C 1.49 4.37 0.69 6.60 76.16 1.71 1.54 2.06 4.11 85.60

Activation with K2CO3 (various contents), carbonization at 800 ◦C

LS_K_1.5_800_WET 2.65 3.78 1.43 7.90 72.04 1.32 2.24 1.96 7.37 84.90

LS_K_1.5_800_DRY 0.78 1.85 0.79 3.40 86.18 0.78 0.78 1.55 7.28 96.60

LS_K_2.5_800_WET 2.65 5.52 0.75 8.90 62.51 0.61 1.69 2.60 5.96 73.40

LS_K_2.5_800_DRY 1.94 1.20 1.35 4.50 79.83 1.87 2.28 2.25 6.88 93.10

LS_K_3.0_800_WET 5.93 4.48 1.93 12.30 60.20 1.36 4.14 2.13 5.93 73.80

LS_K_3.0_800_DRY 1.14 2.51 1.36 5.00 83.86 1.50 1.14 1.43 5.29 93.20

LS_K_4.0_800_WET 4.00 5.28 1.00 10.30 65.80 0.95 4.13 2.66 5.09 78.60

LS_K_4.0_800_DRY 1.47 7.76 1.58 10.80 73.40 1.44 1.34 3.91 4.16 84.30
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Table 3. Cont.

Sample Code
Content of O Species (at.%) Content of C Species (at.%)

C=O O=C–O C–O Total sp2, sp3 C–OH C=O COOH π–π* Total

Activation with K2CO3 (2.5 eq), carbonization at various temperatures

LS_K_2.5_600_WET 5.05 3.80 1.09 9.90 72.55 1.09 4.75 1.75 4.09 84.20

LS_K_2.5_600_DRY 6.09 4.10 2.09 12.30 69.04 2.17 2.46 2.52 4.37 80.60

LS_K_2.5_700_WET 8.80 2.95 1.61 13.40 61.46 1.25 2.96 1.54 6.04 73.30

LS_K_2.5_700_DRY 3.03 3.28 1.49 7.80 77.04 1.77 3.13 1.57 4.71 88.20

LS_K_2.5_900_WET 3.44 5.24 1.06 9.70 66.40 2.85 2.00 2.40 6.64 80.30

2.2.4. Adsorption Capacity

The developed carbon materials were tested as adsorbents of phenol from an aque-
ous solution. The adsorption tests were performed at room temperature. First, the ki-
netics of the process was studied in the presence of representative LS_K_2.5_800_WET
and LS_K_2.5_800_DRY adsorbents, as well as analogously modified and carbonized
LS_Zn_2.5_800_WET and LS_Zn_2.5_800_DRY materials, which were chemically activated
with ZnCl2. The obtained results are presented in Figure 7, along with the kinetic data
collected for non-activated carbon (LS_C) and commercial WG-12 activated carbon.
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or ZnCl2) lignin-derived carbons after carbonization at 800 ◦C, compared to commercial WG-12
activated carbon.

The very large application potential of carbonized, activated lignins is clearly visible,
given their substantially higher adsorption capacities when compared to the reference
adsorbents. However, a much better performance is observed for the samples activated
with K2CO3 than ZnCl2. Therefore, the former materials were further analyzed to deter-
mine an influence of the amount of the activator used, the modification method, and the
carbonization temperature on the observed adsorption capacities.

Table 4 demonstrates the parameters collected for the fitting of two kinetic
models—pseudo-first order and pseudo-second order—to the experimental points mea-
sured for the samples of the LS_K_x_y_DRY and LS_K_x_y_WET (where x—eq. of used
salt, y—carbonization temperature) series, modified with a K2CO3 amount varying from
1.5 to 4.0 eq, carbonized at 800 ◦C, and with a fixed K2CO3 content (2.5 eq) subjected to
thermal treated at different temperatures.
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Table 4. Kinetic parameters of pseudo-first-order and pseudo-second-order models for the adsorption
of phenol by selected lignin-derived carbons, activated with K2CO3.

Sample Code

Pseudo-First Order Pseudo-Second Order

Qe
(mg·g−1)

k
′

ad
(min−1)

R2 Qe
(mg·g−1)

k
′′

ad
(g·mg−1·min−1)

R2

Activation with K2CO3 (various contents), carbonization at 800 ◦C

LS_K_1.5_800_WET 237.71 2.089 0.9984 239.52 0.0342 0.9963

LS_K_1.5_800_DRY 147.97 1.069 0.9997 148.94 0.0275 0.9999

LS_K_2.5_800_WET 218.88 1.163 0.9999 219.01 0.0359 0.9999

LS_K_2.5_800_DRY 231.05 2.317 0.9997 233.16 0.0348 0.9966

LS_K_3.0_800_WET 231.23 1.821 0.9996 234.00 0.0231 0.9962

LS_K_3.0_800_DRY 223.06 1.540 0.9996 225.72 0.0792 0.9999

LS_K_4.0_800_WET 235.53 1.770 0.9993 238.23 0.0234 0.9956

LS_K_4.0_800_DRY 197.05 2.644 0.9995 197.67 0.1099 0.9989

Activation with K2CO3 (2.5 eq), carbonization at various temperatures

LS_K_2.5_600_WET 143.97 0.980 0.9883 138.01 0.0096 0.9767

LS_K_2.5_600_DRY 75.99 1.255 0.9988 76.77 0.0587 0.9993

LS_K_2.5_700_WET 207.33 1.091 0.9998 207.94 0.0573 0.9997

LS_K_2.5_700_DRY 144.11 0.777 0.9954 145.71 0.0185 0.9966

LS_K_2.5_900_WET 239.56 2.387 0.9991 242.14 0.0330 0.9946

The coefficients of determination (R2) in the case of both models are relatively high;
however, slightly better fits are obtained using the pseudo-first order model. As can be
seen in Figure 7, the complete saturation of the carbon material with the adsorbate is very
fast and usually does not exceed 0.5 h. Therefore, the values of the adsorption rate constant
(k′) have values within the narrow range of 0.8–2.6 min−1. No clear correlations are found
between the k′ values and the activation and carbonization conditions.

From an application point of view, in addition to the process rate, the adsorption
capacities obtained for the investigated activated carbons are even more important. When
using different amounts of the K2CO3 modifier, after carbonization at 800 ◦C, activated
carbons show similar Qe values in the range of 219–238 mg·g−1. The exception are the
samples synthesized by the DRY method, using the lowest and highest concentrations of
K2CO3 (i.e., 1.5 eq and 4.0 eq), for which Qe drops to 148 and 197 mg·g−1, respectively. The
Qe values for the carbons carbonized at different temperatures exhibit much clearer trends.
Within the LS_K_2.5_y_WET series, Qe increases from 144 mg·g−1 for the sample heated
at 600 ◦C, to 240 mg·g−1 for the material carbonized at 900 ◦C. An even greater change is
observed in the LS_K_2.5_y_DRY series, where Qe increases from 76 to 231 mg·g−1 when
the carbonization temperature raises from 600 ◦C to 800 ◦C.

When analyzing the above trends, one can notice a strong correlation between the
adsorption capacity of the obtained carbon materials and their porosity, which, as shown
in Table 2, is clearly determined by the carbonization temperature. To make it easier to
recognize these correlations, the values of the textural parameters and Qe are comparatively
presented in Figure 8.
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Generally, with an increase in the value of the textual parameters of the studied
carbon materials, higher adsorption capacities of phenol are observed. However, upon
analyzing these trends in more detail, it can be seen that the increase in adsorption capacity
is mainly determined by the microporosity generated in the activated carbons (Figure 9). Its
formation is favored by a higher carbonization temperature, as well as by the appropriate
amount and method of introducing the activating agent (K2CO3), however to a lesser extent.
Furthermore, it must not be forgotten that an increase in the carbonization temperature also
promotes progressive graphitization. The participation of graphitic domains in the phenol
adsorption process, characterized by the interaction of the π electrons of the phenolic ring
with the π electrons of the graphene layers, may be of significance. However, there is no
relevant impact of the presence of surface oxygen-containing functional groups on the
adsorption capacities.
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For one of the most effective lignin-derived adsorbents, LS_K_2.5_800_DRY, a phenol
adsorption isotherm was collected at room temperature. The experimental points shown in
Figure 10 are very well described by the Langmuir model (R2 = 0.9998) as follows:

Qe =
QmaxKLCe

1 + KLCe

where Qmax (mg/g) is the maximum adsorption capacity, and KL (L/mg) is the Langmuir
constant as it related to the energy of adsorption. It is worth noting that the Qmax achieved
in the presence of this carbon adsorbent is 260 mg·g−1. This value is higher than most of
the reported efficiencies of activated carbons in phenol removal, e.g., commercial materials
(including WG-12 studied in this work) and chemically activated carbons, obtained from
Kraft lignin (74–137 mg·g−1) [18].
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Taking into account such high adsorption capacities, as well as the availability of raw
material, simplicity, and low production costs, developed spherical lignin-derived activated
carbons are excellent candidates for commercial applications. The feature of sphericity
seems to be particularly important in this context, as it ensures the greater repeatability
of the properties of individual grains, along with the increased availability of gaseous
and liquid phase components into pores, as well as their flexibility in forming various
bed geometries.

3. Materials and Methods
3.1. Chemicals and Materials

Kraft lignin (Sigma-Aldrich, Poznań, Poland); sodium lignosulfonate (TCI, Tokyo,
Japan); tetrahydrofuran (THF, Sigma-Aldrich, ≥99.0%); hydrochloric acid (HCl, solu-
tion 37%, Honeywell, Warsaw, Poland); acetic acid (Chempur, Piekary Śląskie, Poland,
≥99.5%); N,N-dimethylformamide (DMF, Chempur, ≥99.8%); ethyl acetate (Chempur,
≥99.5%); ethanol (Chempur, ≥96.0%); acetone (Chempur, ≥99.0%); zinc chloride (ZnCl2,
Sigma-Aldrich, ≥97.0%); potassium carbonate (K2CO3, Sigma-Aldrich, ≥99.0%); phenol
(Chempur, ≥98.0%); nitrogen (5.2, Air Products, Warszawa, Poland); commercial activated
carbon WG-12 (Gryfskand, Gryfino, Poland).

3.2. Synthesis

The pre-preparation of lignin precursors to obtain spherical nanoparticles was based
on methods adopted from the literature [35,64]. Three materials were used as lignin
precursors—Kraft lignin, sodium lignosulfonate, and acylated sodium lignosulfonate.
While the first two materials were used as commercially available, the latter was synthesized
by the acylation of sodium lignosulfonate. For this purpose, 10 g of sodium lignosulfonate
was dissolved in 100 mL of DMF and 100 mL of THF, and the resulting mixture was then
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combined with 50 mL of acetic acid mixed with 50 mL of THF. The temperature was
increased to 70 ◦C, and the mixture was left stirring for 24 h. After that, the solvents were
removed in a rotary evaporator. The obtained material was rinsed sequentially with ethyl
acetate, ethanol, and acetone, to then be finally dried at 60 ◦C.

Furthermore, 5 g of the lignin precursor was dissolved in 75 mL of THF and 25 mL of
water at room temperature under vigorous stirring. The resulting mixture was introduced
dropwise into 340 mL of deionized water in a 1 L flask at room temperature. Following this,
10 mL of 2M HCl was then added slowly in the selected cases (paths b and d, presented in
Table 1). In the case of sodium lignosulfonate (path c, shown in Table 1), the addition of
different amounts of water and acid was required to the precipitate of the lignin material
(i.e., 5 g of the lignin precursor was dissolved in 75 mL of THF and 25 mL of water, and
added to 200 mL of deionized water, together with 200 mL of 2M HCl). The change of the
solution color from dark brown to light milky brown was observed. After the completion of
this synthesis step, THF was removed under a reduced pressure. The prepared sample was
centrifuged (5000 rpm) using an MPW-352 centrifuge (MPW, Warsaw, Poland) for 300 min,
and dried at 60 ◦C overnight. The material was then finely ground using an agate mortar
and subjected to further drying at 60 ◦C for 24 h. Subsequently, lignin nanoparticles were
pre-carbonized in a tube furnace at an air atmosphere at 250 ◦C for 2 h (with a temperature
ramp of 0.05 ◦C·min−1, preventing the collapse of the spherical structure).

Finally, the synthesized lignin nanoparticles were carbonized in a tube furnace under
a nitrogen flow (60 mL·min−1), optionally in the presence of ZnCl2 or K2CO3, to produce
the corresponding carbon materials. Furthermore, 2.5 eq of the salt was introduced using
two different methods. In the DRY method, both the salt and carbon precursor were
mixed to be homogenized and then carbonized. Alternatively, in the WET approach, the
appropriate amount of salt was dissolved in a small amount of water, and the carbon
precursor was placed in the stirred solution overnight. After this, the material was dried at
60 ◦C and carbonized for 4 h at a temperature selected from the range of 600–900 ◦C (with
a temperature ramp of 1 ◦C·min−1). Carbonization at 800 ◦C was additionally carried out
with various salt equivalents (e.g., 1.5 eq, 3.0 eq and 4.0 eq). The amount of salt and the
carbonization temperature used during the synthesis of a given carbon material were coded
in a sample name, which is constructed as follows: [lignin precursor, where L-unstabilized
lignin, LS-stabilized lignin, LS_C-stabilized lignin after carbonization]_[activator used, K
for K2CO3 and Zn for ZnCl2]_[salt equivalent-1.5 eq, 2.5 eq, 3.0 eq or 4.0 eq]_[carbonization
temperature, value used in ◦C]_[method used for salt introduction, DRY or WET]. After
cooling, the resulting activated carbon was placed in an excess of water (250 mL of H2O per
1 g of a carbon material) and stirred at room temperature for 24 h. Afterwards, the carbon
material was filtered, washed with 1M HCl, deionized water, and acetone, and finally dried
at 60 ◦C to a constant mass.

3.3. Characterization

The structural ordering of the carbon samples was monitored using X-ray powder
diffraction (XRD). The XRD patterns were collected on a Bruker D2 Phaser instrument
(Bruker, Billerica, MA, USA), using Cu Kα radiation (λ = 1.54184 Å) and a LYNXEYE
detector within a 2θ range of 10–90◦ at a step of 0.02◦.

The textural properties of the materials were studied using N2 adsorption at −196 ◦C.
The adsorption–desorption isotherms were measured using a Micromeritics ASAP 2020
sorptometer (Micrometrics, Norcross, GA, USA). A sample was initially outgassed at 250 ◦C
for 6 h under vacuum conditions. Specific surface areas were calculated using the BET
and Langmuir models. Single point adsorption at p/p0 → 1 was used to determine the
total pore volumes. The micropore and mesopore volumes were obtained using the t-plot
model (multipoint fitting in p/p0 = 0.1–0.3) and the Barrett–Joyner–Halenda (BJH) model
(assuming a pore diameter range of 2–50 nm), respectively.

The morphology was investigated by scanning electron microscopy (SEM) imaging,
using an Apreo 2 S LoVac field emission scanning electron microscope (Thermo Fisher
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Scientific, Waltham, MA, USA). A sample was mounted on a sticky carbon disc and coated
with a gold layer. A secondary electrons (SE) signal was used for observation.

Surface analyses were carried out using X-ray photoelectron spectroscopy (XPS) in
a system constructed by Prevac. XPS spectra were collected using a monochromatized
aluminum source Al Kα (E = 1486.6 eV) and a hemispherical analyzer (VG SCIENTA R3000,
Newburyport, MA, USA). The binding energy scale for the conductive carbon samples was
calibrated by referring to a position of Au 4f (Eb = 84.0 eV). Both the Shirley background
and fitting with the mixed function of Gauss and Lorentz (GL = 30) (with one exception
of the main C 1s peak fitted with an asymmetric Lorentzian (LA) line shape) were used
during the interpretation of the spectra in the CasaXPS software (Version 2.3.25PR1.0).

3.4. Adsorption Tests

The carbonized lignin nanoparticles were tested as adsorbents in the removal of phenol
from an aqueous solution. In a typical test, 200 mg of a carbon material was added to
500 mL of the phenol solution with a concentration of 200 mg·L−1, kept in a thermostated
flask (22.5 ± 0.2 ◦C), and mixed with a magnetic stirrer (stirring rate = 200 rpm). For the
determination of adsorption isotherms, the concentration of phenol in the solution varied
from 40 mg·L−1 to 615 mg·L−1. The phenol concentrations in the samples withdrawn from
the studied aqueous solution were determined using the spectrophotometric method. The
spectra were collected in an Evolution 220 (Thermo Scientific, Waltham, MA, USA) dual-
beam UV–Vis spectrometer, equipped with a xenon lamp within a λ range of 200–400 nm, a
resolution of 0.1 nm, and a scanning time of 60 min−1.

The efficiency of phenol adsorption was analyzed for the carbonized lignin materials
calculating adsorption capacity (Qt), according to the following formula:

Qt =
V × (C0 − Ct)

m

where V is the solution volume, m—the adsorbent amount (g), C0—the initial phenol
concentration in the solution (mg·L−1), and Ct—the phenol concentration in the solution
after time t (mg·L−1).

The pseudo-first order (PFO) and pseudo-second order (PSO) models were used to
describe the kinetics of phenol adsorption on the studied activated carbons. The applied
equations in non-linear and dimensionless forms are presented in Table 5.

Table 5. Model equations describing the kinetics of the phenol adsorption [65,66].

Kinetic Model Non-Linear

Pseudo-first order (PFO) Qt = Qe ×
(
1 − exp

(
−k′ads × t

))
Pseudo-second order (PSO) Qt =

k′′
ads×Q2

e×t
1+k′′

ads+Qe×t

Within this table, Qe is the amount of phenol adsorbed at equilibrium (mg·g−1), k′
ad is

the pseudo-first order adsorption rate constant (min−1), k′′
ad is the pseudo-second order

adsorption rate constant (g·mg−1·min−1), and t is the time of the adsorption process (min).

4. Conclusions

An effective and facile synthesis of spherical nanometric lignin particles, based on
precipitation from an aqueous solution, was developed. It was shown that a selection of
lignin starting materials with an appropriate solubility in water was extremely important.
The Kraft lignin grains retained their sphericity after carbonization, even up to 800 ◦C.
Furthermore, chemical activation, especially with K2CO3, resulted in the development
of high specific surface area (SBET up to 2036 m2 g−1) and hierarchical pore systems,
characterized by a dominant share of micropores (Vmicro up to 0.693 cm3·g−1), effectively
interconnected by the presence of wider mesopores (Vmeso up to 0.618 cm3·g−1). As a
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result, the resulting activated carbons exhibited a high adsorption capacity (even higher
than 250 mg·g−1) in removing phenol from aqueous solutions. The adsorption capacity
was particularly favored by the presence of micropores and graphitic domains, created in
the carbonized lignin.
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Electrochemical Denitrification and Oxidative Dehydrogenation of Ethylbenzene over N-doped Mesoporous Carbon: Atomic
Level Understanding of Catalytic Activity by 15N NMR Spectroscopy. Chem. Mater. 2020, 32, 7263–7273. [CrossRef]

61. Biesinger, M.C. Accessing the robustness of adventitious carbon for charge referencing (correction) purposes in XPS analysis:
Insights from a multi-user facility data review. Appl. Surf. Sci. 2022, 597, 153681. [CrossRef]

62. X-ray Photoelectron Spectroscopy (XPS) Reference Pages: Potassium. Available online: www.xpsfitting.com/2020/02/potassium.
html (accessed on 7 January 2024).

63. Li, W.; Zhang, Y.; Das, L.; Wang, Y.; Li, M.; Wanninayake, N.; Pu, Y.; Kim, D.Y.; Cheng, Y.-T.; Ragauskas, A.J.; et al. Linking
lignin source with structural and electrochemical properties of lignin-derived carbon materials. RSC Adv. 2018, 8, 38721–38732.
[CrossRef] [PubMed]

64. Leskinen, T.; Smyth, M.; Xiao, Y.; Lintinen, K.; Mattinen, M.-L.; Kostiainen, M.; Oinas, P.; Österberg, M. Scaling Up Production of
Colloidal Lignin Particles. Nord. Pulp Pap. Res. J. 2017, 32, 586–596. [CrossRef]

65. Largitte, L.; Pasquier, R. A review of the kinetics adsorption models and their application to the adsorption of lead by an activated
carbon. Chem. Eng. Res. Des. 2016, 109, 495–504. [CrossRef]

66. Wu, F.-C.; Tseng, R.-L.; Juang, R.-S. Characteristics of pseudo-second-order kinetic model for liquid-phase adsorption: A
mini-review. Chem. Eng. J. 2009, 151, 1–9. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s13399-013-0084-4
https://doi.org/10.1021/acssuschemeng.7b00850
https://doi.org/10.1021/acssuschemeng.8b05755
https://doi.org/10.1016/j.ijbiomac.2020.06.168
https://www.ncbi.nlm.nih.gov/pubmed/32592780
https://doi.org/10.1016/j.biortech.2018.09.139
https://doi.org/10.1016/S0008-6223(00)00027-0
https://doi.org/10.3390/c5040082
https://doi.org/10.3390/polym12122829
https://doi.org/10.1021/acs.iecr.9b05143
https://doi.org/10.1021/acssuschemeng.7b03756
https://doi.org/10.3390/ijms18061244
https://www.ncbi.nlm.nih.gov/pubmed/28604584
https://doi.org/10.1007/s00107-020-01637-3
https://doi.org/10.1016/j.carbon.2004.09.027
https://doi.org/10.1021/acsnano.0c10307
https://doi.org/10.1016/j.diamond.2021.108791
https://doi.org/10.1016/j.molliq.2018.02.042
https://doi.org/10.1007/s11164-023-04958-z
https://doi.org/10.3390/molecules15107188
https://doi.org/10.1021/acs.chemmater.0c01666
https://doi.org/10.1016/j.apsusc.2022.153681
www.xpsfitting.com/2020/02/potassium.html
www.xpsfitting.com/2020/02/potassium.html
https://doi.org/10.1039/C8RA08539K
https://www.ncbi.nlm.nih.gov/pubmed/35558289
https://doi.org/10.3183/npprj-2017-32-04_p586-596_leskinen
https://doi.org/10.1016/j.cherd.2016.02.006
https://doi.org/10.1016/j.cej.2009.02.024

	Introduction 
	Results and Discussion 
	Synthesis of Spherical Lignin and Corresponding Carbon Particles 
	The Effect of the Chemical Activation of Lignin-Derived Carbons 
	Morphology 
	Porosity and Graphitization 
	Surface Composition 
	Adsorption Capacity 


	Materials and Methods 
	Chemicals and Materials 
	Synthesis 
	Characterization 
	Adsorption Tests 

	Conclusions 
	References

