Synthesis and Characterization of Durable Antifog Silane–Pyrrolidone Thin Coatings onto Polymeric Films
Abstract
:1. Introduction
2. Results and Discussion
2.1. Anti-Fogging Poly(MPTES-VP) Thin Coatings onto PE Films
2.2. Contact Angles (CAs)
2.3. Fourier-Transform Infrared Spectroscopy (FTIR)
2.4. High-Resolution Scanning Electron Microscopy (HRSEM)
2.5. Atomic Force Microscopy (AFM)
2.6. Focused Ion Beam (FIB)
2.7. X-ray Photoelectron Spectroscopy (XPS)
2.8. UV-Vis Spectroscopy
2.9. Hot-Fog Tests
2.10. Coating Durability
3. Experimental Section
3.1. Materials
3.2. Methods
3.2.1. Co-Polymerization of MPTES and VP
3.2.2. Preparation of Anti-Fogging Thin Coatings onto Corona-Treated PE Films
3.3. Characterization of PE Films
3.3.1. Contact Angles (CAs)
3.3.2. Fourier-Transform Infrared (FTIR) Spectroscopy
3.3.3. Atomic Force Microscopy (AFM)
3.3.4. High-Resolution Scanning Electron Microscopy (HRSEM)
3.3.5. Focused Ion Beam (FIB)
3.3.6. X-ray Photoelectron Spectroscopy (XPS)
3.3.7. Ultraviolet-Visible (UV-Vis) Spectroscopy
3.3.8. Hot-Fog Test
3.3.9. Durability Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iqbal, M.; Dinh, D.K.; Abbas, Q.; Imran, M.; Sattar, H.; Ul Ahmad, A. Controlled Surface Wettability by Plasma Polymer Surface Modification. Surfaces 2019, 2, 349–371. [Google Scholar] [CrossRef]
- Wei, L.-J.; Yang, F.-X.; Du, Y.-P.; Chen, J.-Y.; Wang, H.-L. Fabrication and Characterization of Polyglycerol Fatty Acid Esters/Polyethylene Antifogging Film. J. Food Process Eng. 2017, 40, e12420. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Sun, J.; Shen, J. Mechanically Stable Antireflection and Antifogging Coatings Fabricated by the Layer-by-Layer Deposition Process and Postcalcination. Langmuir 2008, 24, 10851–10857. [Google Scholar] [CrossRef]
- Mansoor, B.; Iqbal, O.; Habumugisha, J.C.; Xia, Z.; Jiang, R.; Chen, W. Polyvinyl Alcohol (PVA) Based Super-Hydrophilic Anti-Fogging Layer Assisted by Plasma Spraying for Low Density Polyethylene (LDPE) Greenhouse Films. Prog. Org. Coat. 2021, 159, 106412. [Google Scholar] [CrossRef]
- Ren, S.; Wang, L.; Yu, H.; Haroon, M.; Ullah, R.S.; Haq, F.; Khan, R.U.; Fahad, S. Recent Progress in Synthesis of Antifogging Agents and Their Application to Agricultural Films: A Review. J. Coat. Technol. Res. 2018, 15, 445–455. [Google Scholar] [CrossRef]
- Chouirfa, H.; Bouloussa, H.; Migonney, V.; Falentin-Daudré, C. Review of Titanium Surface Modification Techniques and Coatings for Antibacterial Applications. Acta Biomater. 2019, 83, 37–54. [Google Scholar] [CrossRef]
- Cech, V.; Knob, A.; Lasota, T.; Lukes, J.; Drzal, L.T. Surface Modification of Glass Fibers by Oxidized Plasma Coatings to Improve Interfacial Shear Strength in GF/Polyester Composites. Polym. Compos. 2019, 40, E186–E193. [Google Scholar] [CrossRef]
- Introzzi, L.; Fuentes-Alventosa, J.M.; Cozzolino, C.A.; Trabattoni, S.; Tavazzi, S.; Bianchi, C.L.; Schiraldi, A.; Piergiovanni, L.; Farris, S. “Wetting Enhancer” Pullulan Coating for Antifog Packaging Applications. ACS Appl. Mater. Interfaces 2012, 4, 3692–3700. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.; Ryu, M.; Kim, H.; Ahn, G.-N.; Yim, S.-J.; Kim, D.-P.; Lee, H. Wet-Style Superhydrophobic Antifogging Coatings for Optical Sensors. Adv. Mater. 2020, 32, 2002710. [Google Scholar] [CrossRef]
- Sun, Z.; Liao, T.; Liu, K.; Jiang, L.; Kim, J.H.; Dou, S.X. Fly-Eye Inspired Superhydrophobic Anti-Fogging Inorganic Nanostructures. Small 2014, 10, 3001–3006. [Google Scholar] [CrossRef]
- Wang, D.; Sun, Q.; Hokkanen, M.J.; Zhang, C.; Lin, F.-Y.; Liu, Q.; Zhu, S.-P.; Zhou, T.; Chang, Q.; He, B.; et al. Design of Robust Superhydrophobic Surfaces. Nature 2020, 582, 55–59. [Google Scholar] [CrossRef]
- Zhi, J.; Zhang, L.-Z. Durable Superhydrophobic Surfaces Made by Intensely Connecting a Bipolar Top Layer to the Substrate with a Middle Connecting Layer. Sci. Rep. 2017, 7, 9946. [Google Scholar] [CrossRef] [PubMed]
- Erbil, H.Y.; Demirel, A.L.; Avcı, Y.; Mert, O. Transformation of a Simple Plastic into a Superhydrophobic Surface. Science 2003, 299, 1377–1380. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.; Park, S.H.; Song, Y.M.; Lee, Y.T.; Hwangbo, C.K.; Yang, H.; Lee, H.S. Nano-Tailoring the Surface Structure for the Monolithic High-Performance Antireflection Polymer Film. Adv. Mater. 2010, 22, 3713–3718. [Google Scholar] [CrossRef] [PubMed]
- Dhar, M.; Das, A.; Shome, A.; Borbora, A.; Manna, U. Design of ‘Tolerant and Hard’ Superhydrophobic Coatings to Freeze Physical Deformation. Mater. Horiz. 2021, 8, 2717–2725. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Guan, H.; Wang, Z.; Niu, S.; Han, Z. Biomimetic Slippery PDMS Film with Papillae-Like Microstructures for Antifogging and Self-Cleaning. Coatings 2021, 11, 238. [Google Scholar] [CrossRef]
- Das, A.; Manna, U. Customizing Oil-Wettability in Air—Without Affecting Extreme Water Repellency. Nanoscale 2020, 12, 24349–24356. [Google Scholar] [CrossRef] [PubMed]
- Cebeci, F.Ç.; Wu, Z.; Zhai, L.; Cohen, R.E.; Rubner, M.F. Nanoporosity-Driven Superhydrophilicity: A Means to Create Multifunctional Antifogging Coatings. Langmuir 2006, 22, 2856–2862. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.; Xiangde, L.; Park, J.; Choi, D.; Heo, J.; Chang, M.; Lee, C.; Hong, J. Superhydrophilic Coatings with Intricate Nanostructure Based on Biotic Materials for Antifogging and Antibiofouling Applications. Chem. Eng. J. 2017, 309, 463–470. [Google Scholar] [CrossRef]
- Li, Y.; Xia, B.; Jiang, B. Thermal-Induced Durable Superhydrophilicity of TiO2 Films with Ultra-Smooth Surfaces. J. Sol-Gel Sci. Technol. 2018, 87, 50–58. [Google Scholar] [CrossRef]
- Xiong, Y.; Lai, M.; Li, J.; Yong, H.; Qian, H.; Xu, C.; Zhong, K.; Xiao, S. Facile Synthesis of Ultra-Smooth and Transparent TiO2 Thin Films with Superhydrophilicity. Surf. Coat. Technol. 2015, 265, 78–82. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, R.; Wang, C.; Luo, J.; Liu, X. Synthesis of UV-Curable Acrylate Polymer Containing Sulfonic Groups for Anti-Fog Coatings. Prog. Org. Coat. 2014, 77, 785–789. [Google Scholar] [CrossRef]
- Bretler, S.; Kanovsky, N.; Iline-Vul, T.; Cohen, S.; Margel, S. In-Situ Thin Coating of Silica Micro/Nano-Particles on Polymeric Films and Their Anti-Fogging Application. Colloids Surf. Physicochem. Eng. Asp. 2020, 607, 125444. [Google Scholar] [CrossRef]
- Xiaodong, Y.; Junling, Z.; Bin, L.; Chenbo, S.; Shilin, H.; Xuelin, T. Highly Durable Antifogging Coatings Resistant to Long-Term Airborne Pollution and Intensive UV Irradiation. Mater. Des. 2020, 194, 108956. [Google Scholar] [CrossRef]
- Maji, K.; Das, A.; Dhar, M.; Manna, U. Synergistic Chemical Patterns on a Hydrophilic Slippery Liquid Infused Porous Surface (SLIPS) for Water Harvesting Applications. J. Mater. Chem. A 2020, 8, 25040–25046. [Google Scholar] [CrossRef]
- Wahab, I.F.; Bushroa, A.R.; Teck, S.W.; Azmi, T.T.; Ibrahim, M.Z.; Lee, J.W. Fundementals of Antifogging Strtegies, Coating Techniques and Properties of Inorganic Materials; a Comprehensive Review. J. Mater. Res. Technol. 2023, 23, 687–714. [Google Scholar] [CrossRef]
- Sason, E.; Kolitz-Domb, M.; Chill, J.H.; Margel, S. Engineering of Durable Antifog Thin Coatings on Plastic Films by UV-Curing of Proteinoid Prepolymers with PEG-Diacrylate Monomers. ACS Omega 2019, 4, 9352–9360. [Google Scholar] [CrossRef] [PubMed]
- Chevallier, P.; Turgeon, S.; Sarra-Bournet, C.; Turcotte, R.; Laroche, G. Characterization of Multilayer Anti-Fog Coatings. ACS Appl. Mater. Interfaces 2011, 3, 750–758. [Google Scholar] [CrossRef]
- Zheng, Z.; Liu, Y.; Wang, L.; Yu, L.; Cen, Y.; Zhu, T.; Yu, D.; Chen, C. A Novel Organic-Inorganic Zwitterionic Acrylate Polymer for High-Performance Anti-Fog Coating. Prog. Org. Coat. 2020, 142, 105578. [Google Scholar] [CrossRef]
- Chu, P.K.; Chen, J.Y.; Wang, L.P.; Huang, N. Plasma-Surface Modification of Biomaterials. Mater. Sci. Eng. R Rep. 2002, 36, 143–206. [Google Scholar] [CrossRef]
- Sharma, P.K.; Cortes, M.A.L.R.M.; Hamilton, J.W.J.; Han, Y.; Byrne, J.A.; Nolan, M. Surface Modification of TiO2 with Copper Clusters for Band Gap Narrowing. Catal. Today 2019, 321–322, 9–17. [Google Scholar] [CrossRef]
- Xu, L.; He, J. A Novel Precursor-Derived One-Step Growth Approach to Fabrication of Highly Antireflective, Mechanically Robust and Self-Healing Nanoporous Silica Thin Films. J. Mater. Chem. C 2013, 1, 4655–4662. [Google Scholar] [CrossRef]
- Chan, C.-M.; Ko, T.-M.; Hiraoka, H. Polymer Surface Modification by Plasmas and Photons. Surf. Sci. Rep. 1996, 24, 1–54. [Google Scholar] [CrossRef]
- Schrenk, W.J.; Alfrey, T. Chapter 15—Coextruded Multilayer Polymer Films and Sheets. In Polymer Blends; Paul, D.R., Newman, S., Eds.; Academic Press: Cambridge, MA, USA, 1978; pp. 129–165. [Google Scholar] [CrossRef]
- Grace, J.M.; Gerenser, L.J. Plasma Treatment of Polymers. J. Dispers. Sci. Technol. 2003, 24, 305–341. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, D.; Wadsworth, L.C. Corona Treatment of Polyolefin Films—A Review. Adv. Polym. Technol. 1999, 18, 171–180. [Google Scholar] [CrossRef]
- Husain, M.S.B.; Gupta, A.; Alashwal, B.Y.; Sharma, S. Synthesis of PVA/PVP Based Hydrogel for Biomedical Applications: A Review. Energy Sources Part Recovery Util. Environ. Eff. 2018, 40, 2388–2393. [Google Scholar] [CrossRef]
- Gregorova, A.; Saha, N.; Kitano, T.; Saha, P. Hydrothermal Effect and Mechanical Stress Properties of Carboxymethylcellulose Based Hydrogel Food Packaging. Carbohydr. Polym. 2015, 117, 559–568. [Google Scholar] [CrossRef]
- Awasthi, R.; Manchanda, S.; Das, P.; Velu, V.; Malipeddi, H.; Pabreja, K.; Pinto, T.D.J.A.; Gupta, G.; Dua, K. 9—Poly(Vinylpyrrolidone). In Engineering of Biomaterials for Drug Delivery Systems; Parambath, A., Ed.; Woodhead Publishing Series in Biomaterials; Woodhead Publishing: Cambridge, UK, 2018; pp. 255–272. [Google Scholar] [CrossRef]
- Franco, P.; De Marco, I. The Use of Poly(N-Vinyl Pyrrolidone) in the Delivery of Drugs: A Review. Polymers 2020, 12, 1114. [Google Scholar] [CrossRef]
- Li, Y.; Dong, Q.; Chen, J.; Li, L. Effects of Coaxial Electrospun Eugenol Loaded Core-Sheath PVP/Shellac Fibrous Films on Postharvest Quality and Shelf Life of Strawberries. Postharvest Biol. Technol. 2020, 159, 111028. [Google Scholar] [CrossRef]
- Wang, H.; Yu, T.; Zhao, C.; Du, Q. Improvement of Hydrophilicity and Blood Compatibility on Polyethersulfone Membrane by Adding Polyvinylpyrrolidone. Fibers Polym. 2009, 10, 1–5. [Google Scholar] [CrossRef]
- Guo, H.; Xu, T.; Zhang, J.; Zhao, W.; Zhang, J.; Lin, C.; Zhang, L. A Multifunctional Anti-Fog, Antibacterial, and Self-Cleaning Surface Coating Based on Poly(NVP-Co-MA). Chem. Eng. J. 2018, 351, 409–417. [Google Scholar] [CrossRef]
- Rafizah, W.A.W.; Ismail, A.F. Effect of Carbon Molecular Sieve Sizing with Poly(Vinyl Pyrrolidone) K-15 on Carbon Molecular Sieve–Polysulfone Mixed Matrix Membrane. J. Membr. Sci. 2008, 307, 53–61. [Google Scholar] [CrossRef]
- Tatoulian, M.; Bouloussa, O.; Morière, F.; Arefi-Khonsari, F.; Amouroux, J.; Rondelez, F. Plasma Surface Modification of Organic Materials: Comparison between Polyethylene Films and Octadecyltrichlorosilane Self-Assembled Monolayers. ACS 2024, 20, 10481–10489. [Google Scholar] [CrossRef]
- Wang, F.; Chen, T.; Shi, Y.; Yu, L. AIBN-Initiated Oxidative Deoximation Reaction: A Metal-Free and Environmentally-Friendly Protocol. Asian J. Org. Chem. 2021, 10, 614–618. [Google Scholar] [CrossRef]
- Rickerby, D.S. A Review of the Methods for the Measurement of Coating-Substrate Adhesion. Surf. Coat. Technol. 1988, 36, 541–557. [Google Scholar] [CrossRef]
- Rui, Y.; Yu, B.; Liu, Y.; Fu, L.; Liu, J.; Lu, G. Hydrophilic Coating with Anti-fogging and Anti-icing Properties. J. Macromol. Sci. B 2023, 63, 47–59. [Google Scholar] [CrossRef]
Sample Name | [MPTES] (v/v%) | [VP] (v/v%) | [VP]/[MPTES] (v/v) |
---|---|---|---|
MPTES,VP.1 | 3 | 15 | 5.0 |
MPTES,VP.2 | 15 | 3 | 0.2 |
MPTES,VP.3 | 9 | 9 | 1.0 |
MPTES | 18 | - | |
VP | - | 18 |
Film | PE | PE/P(MPTES-VP).1 | PE/P(MPTES-VP).2 | PE/P(MPTES-VP).3 | PE/PVP | PE/P(MPTES) |
---|---|---|---|---|---|---|
CA (°) | 67 ± 3 | 16 ± 0.5 | 60 ± 2 | 51 ± 1 | 18 ± 1 | 63 ± 2 |
Film | PE | PE/P(MPTES-VP).1 | PE/P(MPTES-VP).2 | PE/P(MPTES-VP).3 | PE/P(MPTES) | PE/PVP |
---|---|---|---|---|---|---|
Rq (nm) | 25 ± 4 | 6 ± 3 | 23 ± 2 | 39 ± 8 | 17.6 ± 0.4 | 16 ± 4 |
Film | PE/P(MPTES-VP).1 | PE/P(MPTES-VP).2 | PE/P(MPTES-VP).3 | PE/P(MPTES) | PE/PVP |
---|---|---|---|---|---|
Thickness (nm) | 41 ± 2 | 44 ± 2 | 42 ± 1 | 42 ± 1 | 43 ± 1 |
Film | Atomic Concentration (wt%) | |||
---|---|---|---|---|
Si 2p | C 1s | O 1s | N 1s | |
PE | - | 87.56 | 12.21 | 0.23 |
PE/P(MPTES-VP).1 | 3.44 | 71.98 | 20.17 | 4.25 |
PE/P(MPTES-VP).2 | 5.3 | 69.24 | 24.25 | 1.21 |
PE/P(MPTES-VP).3 | 4.41 | 70.33 | 22.94 | 2.32 |
PE/P(MPTES) | 3.10 | 71.80 | 21.74 | 0.33 |
PE/PVP | 0.17 | 75.09 | 12.57 | 11.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mounayer, N.; Iline-Vul, T.; Margel, S. Synthesis and Characterization of Durable Antifog Silane–Pyrrolidone Thin Coatings onto Polymeric Films. Molecules 2024, 29, 958. https://doi.org/10.3390/molecules29050958
Mounayer N, Iline-Vul T, Margel S. Synthesis and Characterization of Durable Antifog Silane–Pyrrolidone Thin Coatings onto Polymeric Films. Molecules. 2024; 29(5):958. https://doi.org/10.3390/molecules29050958
Chicago/Turabian StyleMounayer, Natalie, Taly Iline-Vul, and Shlomo Margel. 2024. "Synthesis and Characterization of Durable Antifog Silane–Pyrrolidone Thin Coatings onto Polymeric Films" Molecules 29, no. 5: 958. https://doi.org/10.3390/molecules29050958
APA StyleMounayer, N., Iline-Vul, T., & Margel, S. (2024). Synthesis and Characterization of Durable Antifog Silane–Pyrrolidone Thin Coatings onto Polymeric Films. Molecules, 29(5), 958. https://doi.org/10.3390/molecules29050958