Designing Potent Anti-Cancer Agents: Synthesis and Molecular Docking Studies of Thieno[2,3-d][1,2,4]triazolo[1,5-a]pyrimidine Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Cytotoxicity Evaluation
3. Materials and Methods
3.1. General Information
3.2. Chemistry
- Ethyl 2-amino-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carboxylate (1)
- Ethyl 2-(1H-tetrazol-1-yl)-5,6-dihydro-4H-cyclopenta[b]thiophene-3-carboxylate (2)
- 2,3-Diamino-6,7-dihydro-3H-cyclopenta[4,5]thieno[2,3-d]pyrimidin-4(5H)-one (3)
- 7,8-Dihydro-3H-cyclopenta[4,5]thieno[2,3-d][1,2,4]triazolo[1,5-a]pyrimidin-9(6H)-one (4)
- 2-Methyl-7,8-dihydro-3H-cyclopenta[4,5]thieno[2,3-d][1,2,4]triazolo[1,5-a]pyrimidin-9(6H)-one (5)
- Ethyl 2-(9-oxo-6,7,8,9-tetrahydro-3H-cyclopenta[4,5]thieno[2,3-d][1,2,4]triazolo[1,5-a]-pyrimidin-2-yl)acetate (6)
- 2-(9-Oxo-6,7,8,9-tetrahydro-3H-cyclopenta[4,5]thieno[2,3-d][1,2,4]triazolo[1,5-a]pyrimidin-2-yl)acetonitrile (7)
- (E)-2-Amino-3-((4-oxopentan-2-ylidene)amino)-3,5,6,7-tetrahydro-4H-cyclopenta[4,5]thieno[2,3-d]pyrimidin-4-one (8)
- 2-Thioxo-2,3,7,8-tetrahydro-1H-cyclopenta[4,5]thieno[2,3-d][1,2,4]triazolo[1,5-a]pyrimidin-9(6H)-one (9)
- 2-(4-Aryl)-7,8-dihydro-3H-cyclopenta[4,5]thieno[2,3-d][1,2,4]triazolo[1,5-a]pyrimidin-9(6H)-one (10a–e)
- 2-(4-Chlorophenyl)-7,8-dihydro-3H-cyclopenta[4,5]thieno[2,3-d][1,2,4]triazolo[1,5-a]pyrimidin-9(6H)-one (10a)
- 2-(4-Bromophenyl)-7,8-dihydro-3H-cyclopenta[4,5]thieno[2,3-d][1,2,4]triazolo[1,5-a]pyrimidin-9(6H)-one (10b)
- 2-(4-Nitrophenyl)-3,6,7,8-tetrahydro-9H-cyclopenta[4,5]thieno[2,3-d][1,2,4]triazolo[1,5-a]pyrimidin-9-one (10c)
- 2-(4-Methoxyphenyl)-7,8-dihydro-3H-cyclopenta[4,5]thieno[2,3-d][1,2,4]triazolo[1,5-a]pyrimidin-9(6H)-one (10d)
- 2-(Anthracen-9-yl)-3,6,7,8-tetrahydro-9H-cyclopenta[4,5]thieno[2,3-d][1,2,4]triazolo[1,5-a]pyrimidin-9-one (10e)
3.2.1. Preparation of Unprotected saccharide-thieno[3,2-d]pyrimidine (11a–d)
- 2-((1S,2R,3R,4R)-1,2,3,4,5-pentahydroxypentyl)-1,6,7,8-tetrahydro-9H-cyclopenta[4,5]thieno[2,3-d][1,2,4]triazolo[1,5-a]pyrimidin-9-one (11a)
- 2-((1S,2R,3S,4R)-1,2,3,4,5-pentahydroxypentyl)-1,6,7,8-tetrahydro-9H-cyclopenta[4,5]thieno[2,3-d][1,2,4]triazolo[1,5-a]pyrimidin-9-one (11b)
- 2-((1R,2R,3R,4R)-1,2,3,4,5-pentahydroxypentyl)-1,6,7,8-tetrahydro-9H-cyclopenta[4,5]thieno[2,3-d][1,2,4]triazolo[1,5-a]pyrimidin-9-one (11c)
- 2-((1R,2S,3R)-1,2,3,4-tetrahydroxybutyl)-1,6,7,8-tetrahydro-9H-cyclopenta[4,5]thieno[2,3-d][1,2,4]triazolo[1,5-a]pyrimidin-9-one (11d)
3.2.2. Acetylation of saccharide-thieno[3,2-d]pyrimidine (11a–d)
- (1S,2R,3R,4R)-1-(9-oxo-1,7,8,9-tetrahydro-6H-cyclopenta[4,5]thieno[2,3-d][1,2,4]triazolo[1,5-a]pyrimidin-2-yl)pentane-1,2,3,4,5-pentayl pentaacetate (12a)
- (1S,2R,3S,4R)-1-(9-oxo-1,7,8,9-tetrahydro-6H-cyclopenta[4,5]thieno[2,3-d][1,2,4]triazolo[1,5-a]pyrimidin-2-yl)pentane-1,2,3,4,5-pentayl pentaacetate (12b)
- 1R,2R,3R,4R)-1-(9-oxo-1,7,8,9-tetrahydro-6H-cyclopenta[4,5]thieno[2,3-d][1,2,4]triazolo[1,5-a]pyrimidin-2-yl)pentane-1,2,3,4,5-pentayl pentaacetate (12c)
- (1R,2S,3R)-1-(9-oxo-1,7,8,9-tetrahydro-6H-cyclopenta[4,5]thieno[2,3-d][1,2,4]triazolo[1,5-a]pyrimidin-2-yl)butane-1,2,3,4-tetrayl tetraacetate (12d)
3.2.3. Glycosylation Procedures of Compound (14–16)
- 3-(2,3,4,6-Tetra-O-acetyl-β-d-glocopyranosyl)-7,8-dihydro-3H-cyclopenta-[4,5]thieno-[2,3-d][1,2,4]triazolo[1,5-a]pyrimidin-9(6H)-one (14)
- (E)-3-((4-Oxopentan-2-ylidene)amino)-2-((2,3,4,6-tetra-O-acetyl-β-D-glocopyranosyl)amino)-6,7-dihydro-3H-cyclopenta[4,5]thieno[2,3-d]pyrimidin-4(5H)-one (15)
- 2-(4-Methoxyphenyl)-3-(2,3,4,6-tetra-O-acetyl-β-D-glocopyranosyl)-7,8-dihydro-3H-cyclopenta[4,5]thieno[2,3-d][1,2,4]triazolo[1,5-a]pyrimidin-9(6H)-one (16)
3.3. In Vitro Cytotoxic Screening
3.4. Molecular Docking Study
3.5. ADME Prediction
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hanjani, N.A.; Esmaelizad, N.; Zanganeh, S.; Gharavi, A.T.; Heidarizadeh, P.; Radfar, M.; Omidi, F.; MacLoughlin, R.; Doroudian, M. Emerging role of exosomes as biomarkers in cancer treatment and diagnosis. Crit Rev. Oncol. Hematol. 2022, 169, 103565. [Google Scholar] [CrossRef]
- Litvinov, V.P. Thienopyrimidines: Synthesis, properties, and biological activity. Russ. Chem. Bull. 2004, 53, 487–516. [Google Scholar] [CrossRef]
- Elrazaz, E.Z.; Serya, R.A.T.; Ismail, N.S.M.; Abou El Ella, D.A.; Abouzid, K.A.M. Thieno[2,3-d]pyrimidine based derivatives as kinase inhibitors and anticancer agents. Future J. Pharm. Sci. 2015, 1, 33–41. [Google Scholar] [CrossRef]
- Malasala, S.; Polomoni, A.; Ahmad, M.N.; Shukla, M.; Kaul, G.; Dasgupta, A.; Chopra, S.; Nanduri, S. Structure based design, synthesis and evaluation of new thienopyrimidine derivatives as anti-bacterial agents. J. Mol. Struct. 2021, 1234, 130168. [Google Scholar] [CrossRef]
- Abdel Hamid, A.M.; Shehta, W. Synthesis of some novel furantagged thienopyrimidine derivatives as antibacterial agents. J. Heterocycl. Chem. 2019, 56, 485–492. [Google Scholar] [CrossRef]
- Ahmed, M.; Sayed, M.; Saber, A.F.; Hassanien, R.; Kamal El-Dean, A.M.; Tolba, M.S. Synthesis, characterization, and antimicrobial activity of new thienopyrimidine derivatives. Polycycl. Aromat. Compd. 2022, 42, 3079–3088. [Google Scholar] [CrossRef]
- Bassetto, M.; Leyssen, P.; Neyts, J.; Yerukhimovich, M.M.; Frick, D.N.; Brancale, A. Computer-aided identification, synthesis and evaluation of substituted thienopyrimidines as novel inhibitors of HCV replication. Eur. J. Med. Chem. 2016, 123, 31–47. [Google Scholar] [CrossRef] [PubMed]
- Khattab, R.R.; Hassan, A.A.; Kutkat, O.M.; Abuzeid, K.M.; Hassan, N.A. Synthesis and antiviral activity of novel thieno[2,3-d]pyrimidine hydrazones and their C-nucleosides. Russ. J. Gen. Chem. 2019, 89, 1707–1717. [Google Scholar] [CrossRef]
- El-Shoukrofy, M.S.; Abd El Razik, H.A.; AboulWafa, O.M.; Bayad, A.E.; El-Ashmawy, I.M. Pyrazoles containing thiophene, thienopyrimidine and thienotriazolopyrimidine as COX-2 selective inhibitors: Design, synthesis, in vivo anti-inflammatory activity, docking and in silico chemo-informatic studies. Bioorg. Chem. 2019, 85, 541–557. [Google Scholar] [CrossRef]
- Tolba, M.S.; Ahmed, M.; Kamal El-Dean, A.M.; Hassanien, R.; Farouk, M. Synthesis of new fused thienopyrimidines derivatives as antiinflammatory agents. J. Heterocycl. Chem. 2018, 55, 408–418. [Google Scholar] [CrossRef]
- Leeza Zaidi, S.; Agarwal, S.M.; Chavalitshewinkoon-Petmitr, P.; Suksangpleng, T.; Ahmad, K.; Avecilla, F.; Azam, A. Thienopyrimidine sulphonamide hybrids: Design, synthesis, antiprotozoal activity and molecular docking studies. RSC. Adv. 2016, 6, 90371–90383. [Google Scholar] [CrossRef]
- Bozorov, K.; Zhao, J.Y.; Elmuradov, B.; Pataer, A.; Aisa, H.A. Recent developments regarding the use of thieno[2,3-d]pyrimidin-4-one derivatives in medicinal chemistry, with a focus on their synthesis and anticancer properties. Eur. J. Med. Chem. 2015, 102, 552–573. [Google Scholar] [CrossRef]
- Bugge, S.; Buene, A.F.; Jurisch-Yaksi, N.; Moen, I.U.; Skjønsfjell, E.M.; Sundby, E.; Hoff, B.H. Extended structure-activity study of thienopyrimidine-based EGFR inhibitors with evaluation of druglike properties. Eur. J. Med. Chem. 2016, 107, 255–274. [Google Scholar] [CrossRef]
- Shyyka, O.; Pokhodylo, N.; Finiuk, N.; Matiychuk, V.; Stoika, R.; Obushak, M. Anticancer activity evaluation of new thieno[2,3-d]pyrimidin-4(3H)-ones and thieno[3,2-d]pyrimidin-4(3H)-one derivatives. Sci. Pharm. 2018, 86, 28. [Google Scholar] [CrossRef]
- Yang, W.; Li, L.; Ji, X.; Wu, X.; Su, M.; Sheng, L.; Zang, Y.; Li, J.; Liu, H. Design, synthesis and biological evaluation of 4-anilinothieno[2,3-d] pyrimidine-based hydroxamic acid derivatives as novel histone deacetylase inhibitors. Bioorg. Med. Chem. 2014, 22, 6146–6155. [Google Scholar] [CrossRef]
- Lønning, P.; Pfister, C.; Martoni, A.; Zamagni, C. Pharmacokinetics of third-generation aromatase inhibitors. Semin. Oncol. 2003, 30, 23–32. [Google Scholar] [CrossRef]
- Lønning, P.E.; Geisler, J.; Dowsett, M. Pharmacological and clinical profile of anastrozole. Breast Cancer Res. Treat. 1998, 49, S53–S57. [Google Scholar] [CrossRef]
- Njar, V.C.O.; Brodie, A.M.H. Comprehensive pharmacology and clinical efficacy of aromatase inhibitors. Drugs 1999, 58, 233–255. [Google Scholar] [CrossRef]
- Goss, P.E. Pre-clinical and clinical review of vorozole, a new third generation aromatase inhibitor. Cancer Res. Treat. 1998, 49, S59–S65. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Chawla, A. 1,2,4-triazole: A review of pharmacological activities. Int. Res. J. Pharm. 2017, 8, 10–29. [Google Scholar] [CrossRef]
- Khattab, R.R.; Hassan, A.A.; Osman, D.A.A.; Abdel-Megeid, F.M.; Awad, H.M.; Nossier, E.S.; El-Sayed, W.A. Synthesis, anticancer activity and molecular docking of new triazolo [4,5-d] pyrimidines based thienopyrimidine system and their derived N-glycosides and thioglycosides. Nucleosides Nucleotides Nucleic Acid 2021, 40, 1090–1113. [Google Scholar] [CrossRef]
- Tashkandi, N.Y.; Al-Amshany, Z.M.; Hassan, N.A. Design, synthesis, molecular docking and antimicrobial activities of novel triazole-ferulic acid ester hybrid carbohydrates. J. Mol. Struct. 2022, 1269, 133832. [Google Scholar] [CrossRef]
- Kassem, A.F.; Omar, M.A.; Nossier, E.S.; Awad, H.M.; El-Sayed, W.A. Novel pyridine-thiazolidinone-triazole hybrid glycosides targeting EGFR and CDK-2: Design, synthesis, anticancer evaluation, and molecular docking simulation. J. Mol. Struct. 2023, 1294, 136358. [Google Scholar] [CrossRef]
- Bysting, F.; Bugge, S.; Sundby, E.; Hoff, H. Investigation of Heck coupling on 6-bromo[2,3-d]thienopyrimidines for construction of new EGFR inhibitor lead structures. RSC Adv. 2017, 7, 18569–18577. [Google Scholar] [CrossRef]
- Pao, W.; Chmielecki, J. Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat. Rev. Cancer 2010, 10, 760–774. [Google Scholar] [CrossRef]
- Red, B.M.; Yun, C.H.; Lai, D.; Lemmon, M.A.; Eck, M.J.; Pao, W. Mechanism for activation of mutated epidermal growth factor receptors in lung cancer. Proc. Natl. Acad. Sci. USA 2013, 110, E3595–E3604. [Google Scholar]
- Lee, H.J.; Seo, A.N.; Kim, E.J.; Jang, M.H.; Kim, Y.J.; Kim, J.H.; Kim, S.W.; Ryu, H.S.; Park, I.A.; Im, S.A.; et al. Prognostic and predictive values of EGFR overexpression and EGFR copy number alteration in HER2-positive breast cancer. Br. J. Cancer 2015, 112, 103–111. [Google Scholar] [CrossRef]
- Cook, N.; Frese, K.K.; Moore, M. Assessing the role of the EGF receptor in the development and progression of pancreatic cancer. Gastrointest. Cancer Targets Ther. 2014, 4, 23–37. [Google Scholar]
- Porta, C.; Paglino, C.; Mosca, A. Targeting PI3K/Akt/mTOR signaling in cancer. Front. Oncol. 2014, 4, 64. [Google Scholar] [CrossRef]
- Engelman, J.A.; Luo, J.; Cantley, L.C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 2006, 7, 606–619. [Google Scholar] [CrossRef]
- Sayed, M.T.M.; Hassan, R.A.; Halim, P.A.; El-Ansary, A.K. Recent updates on thienopyrimidine derivatives as anticancer agents. Med. Chem. Res. 2023, 32, 659–681. [Google Scholar] [CrossRef]
- Yang, X.L.; Wang, T.C.; Lin, S.; Fan, H.X. Irreversible inhibitors of the epidermal growth factor receptor: Thienopyrimidine core with α,β-unsaturated amide side chain. Arch. Pharm. 2014, 347, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Toolabi, M.; Moghimi, S.; Bakhshaiesh, T.O.; Salarinejad, S.; Aghcheli, A.; Hasanvand, Z.; Nazeri, E.; Khalaj, A.; Esmaeili, R.; Foroumadi, A. 6-Cinnamoyl-4-arylaminothienopyrimidines as highly potent cytotoxic agents: Design, synthesis and structure- activity relationship studies. Eur. J. Med. Chem. 2020, 185, 111786. [Google Scholar] [CrossRef] [PubMed]
- Elmenier, F.M.; Lasheen, D.S.; Abouzid, K.A.M. Design, synthesis, and biological evaluation of new thieno[2,3-d]pyrimidine derivatives as targeted therapy for PI3K with molecular modelling study. J. Enzym. Inhib. Med. Chem. 2022, 37, 315–332. [Google Scholar] [CrossRef] [PubMed]
- Khattab, R.R.; Alshamari, A.K.; Hassan, A.A.; Elganzory, H.H.; El-Sayed, W.A.; Awad, H.M.; Nossier, E.S.; Hassan, N.A. Click chemistry based synthesis, cytotoxic activity and molecular docking of novel triazole-thienopyrimidine hybrid glycosides targeting EGFR. J. Enzym. Inhib. Med. Chem. 2021, 36, 504–516. [Google Scholar] [CrossRef]
- Hashem, H.E.; Amr, A.E.G.E.; Nossier, E.S.; Anwar, M.M.; Azmy, E.M. New benzimidazole-, 1, 2, 4-triazole-, and 1, 3, 5-triazine-based derivatives as potential EGFRWT and EGFRT790M inhibitors: Microwave-assisted synthesis, anticancer evaluation, and molecular docking study. ACS Omega 2022, 7, 7155–7171. [Google Scholar] [CrossRef]
- El-Sayed, W.A.; Alminderej, F.M.; Mounier, M.M.; Nossier, E.S.; Saleh, S.M.; Kassem, F.A. New 1, 2, 3-Triazole-Coumarin-Glycoside Hybrids and Their 1, 2, 4-triazolyl thioglycoside analogs targeting mitochondria apoptotic pathway: Synthesis, anticancer activity and docking simulation. Molecules 2022, 27, 5688. [Google Scholar]
- Soliman, H.A.; Yousif, M.N.M.; Said, M.M.; Hassan, N.A.; Ali, M.M.; Awad, H.M.; Abdel-Megeid, F.M.E. Synthesis of novel 1,6-naphthyridines, pyrano[3,2-c]pyridines and pyrido[4,3-d]pyrimidines derived from 2,2,6,6-tetramethylpiperidin-4-one for in vitro anticancer and antioxidant evaluation. Der Pharma Chem. 2014, 6, 394–410. [Google Scholar]
- Hassan, N.A.; Hegab, M.I.; Rashad, A.E.; Fahmy, A.A.; Abdel-Megeid, F.M.E. Synthesis And Antimicrobial Activity of Some Cyclic And Acyclic Nucleosides Of Thieno[2,3-d]Pyrimidines. Nucleosides Nucleotides Nucleic Acids 2007, 26, 379–390. [Google Scholar] [CrossRef]
- El-Sayed, H.A.; Moustafa, A.H.; Hassan, A.A.; El-Seadawy, N.A.M.; Pasha, S.H.; Shmiess, N.A.M.; Awad, H.M.; Hassan, N.A. Microwave synthesis, anti-oxidant and anti-tumor activity of some nucleosides derived 2-oxonicotinonitrile. Synth. Commun. 2019, 49, 3465–3474. [Google Scholar] [CrossRef]
- Pokhodylo, N.T.; Matiychuk, V.S.; Obushak, M.D. New convenient synthesis of 2,3-diaminothieno[2,3-d]pyrimidin-4(3H)-one derivates from substituted alkyl 2-(1H-tetrazol-1-yl)thiophene-3-carboxylates. Tetrahedron 2008, 64, 1430–1434. [Google Scholar] [CrossRef]
- Shyyka, O.Y.; Pokhodylo, N.T.; Slyvka, Y.I.; Goreshnik, E.A.; Obushak, M.D. Understanding the tetrazole ring cleavage reaction with hydrazines: Structural determination and mechanistic insight. Tetrahedron Lett. 2018, 59, 1112–1115. [Google Scholar] [CrossRef]
- Karabatsos, G.J.; Taller, R.A. Structural studies by nuclear magnetic resonance. V. Phenylhydrazones. J. Am. Chem. Soc. 1963, 85, 3624–3629. [Google Scholar] [CrossRef]
- Quin, J.; Friestad, G.K. Stereocontrol in Hydride Addition to Ketone-Derived Chiral N-Acylhydrazones. Tetrahedron 2003, 59, 6393–6402. [Google Scholar] [CrossRef]
- Elzahabi, H.S.; Nossier, E.S.; Alasfoury, R.A.; El-Manawaty, M.; Sayed, S.M.; Elkaeed, E.B.; Metwaly, A.M.; Hagras, M.; Eissa, I.H. Design, synthesis, and anti-cancer evaluation of new pyrido [2,3-d] pyrimidin-4 (3H)-one derivatives as potential EGFRWT and EGFRT790M inhibitors and apoptosis inducers. J. Enzym. Inhib. Med. Chem. 2022, 37, 1053–1076. [Google Scholar] [CrossRef]
- Nossier, E.S.; Alasfoury, R.A.; Hagras, M.; El-Manawaty, M.; Sayed, S.M.; Ibrahim, I.M.; Elkady, H.; Eissa, I.H.; Elzahabi, H.S. Modified pyrido [2,3-d] pyrimidin-4 (3H)-one derivatives as EGFRWT and EGFRT790M inhibitors: Design, synthesis, and anti-cancer evaluation. J. Mol. Struct. 2022, 1270, 133971. [Google Scholar] [CrossRef]
- Nossier, E.S.; El-hallouty, S.M.; Zaki, E.R. Synthesis, anticancer evaluation and molecular modeling of some substituted thiazolidinonyl and thiazolyl pyrazole derivatives. Int. J. Pharm. Pharm. Sci. 2015, 7, 353–359. [Google Scholar]
- Alamshany, Z.M.; Algamdi, E.M.; Othman, I.M.; Anwar, M.M.; Nossier, E.S. New pyrazolopyridine and pyrazolothiazole-based compounds as anti-proliferative agents targeting c-Met kinase inhibition: Design, synthesis, biological evaluation, and computational studies. RSC Adv. 2023, 13, 12889–12905. [Google Scholar] [CrossRef]
- Othman, I.M.; Alamshany, Z.M.; Tashkandi, N.Y.; Gad-Elkareem, M.A.; Abd El-Karim, S.S.; Nossier, E.S. Synthesis and biological evaluation of new derivatives of thieno-thiazole and dihydrothiazolo-thiazole scaffolds integrated with a pyrazoline nucleus as anticancer and multi-targeting kinase inhibitors. RSC Adv. 2022, 12, 561–577. [Google Scholar] [CrossRef]
- Mohi El-Deen, E.M.; Nossier, E.S.; Karam, E.A. New quinazolin-4 (3 H)-one derivatives incorporating hydrazone and pyrazole scaffolds as antimicrobial agents targeting DNA gyraze enzyme. Sci. Pharm. 2022, 90, 52. [Google Scholar] [CrossRef]
- Mohi El-Deen, E.M.; Abd El-Meguid, E.A.; Karam, E.A.; Nossier, E.S.; Ahmed, M.F. Synthesis and biological evaluation of new pyridothienopyrimidine derivatives as antibacterial agents and escherichia coli topoisomerase II inhibitors. Antibiotics 2020, 9, 695. [Google Scholar] [CrossRef]
- Othman, I.M.; Alamshany, Z.M.; Tashkandi, N.Y.; Gad-Elkareem, M.A.; Anwar, M.M.; Nossier, E.S. New pyrimidine and pyrazole-based compounds as potential EGFR inhibitors: Synthesis, anticancer, antimicrobial evaluation and computational studies. Bioorg. Chem. 2021, 114, 105078. [Google Scholar] [CrossRef]
- Knight, S.D.; Adams, N.D.; Burgess, J.L.; Chaudhari, A.M.; Darcy, M.G.; Donatelli, C.A.; Luengo, J.I.; Newlander, K.A.; Parrish, C.A.; Ridgers, L.H.; et al. Discovery of GSK2126458, a highly potent inhibitor of PI3K and the mammalian target of rapamycin. ACS Med. Chem. Lett. 2010, 1, 39–43. [Google Scholar] [CrossRef]
Compound No. | IC50 (Mean ± SD) (µM) | |||
---|---|---|---|---|
MCF-7 | HCT-116 | PC-3 | BJ-1 | |
9 | 71.8 ± 1.05 | – | – | – |
10a | 60.6 ± 0.45 | – | – | – |
10b | 19.4 ± 0.22 | – | – | 221.7 ± 30 |
10e | 14.5 ± 0.30 | 57.01 ± 0.61 | 25.23 ± 0.40 | 34.81 ± 4.5 |
Doxorubicin | 40.0 ± 3.9 | 20.5 ± 2.1 | 6.8 ± 1.2 | 49.25 ± 1.08 |
Compd. No. | MW a | nHBD b | nHBA c | nRB d | MLogP e | TPSA (Å2) f | Violations g |
---|---|---|---|---|---|---|---|
10b | 387.25 | 1 | 3 | 1 | 3.73 | 91.29 | 0 (Lipinski & Veber) |
10e | 408.48 | 1 | 3 | 1 | 4.96 | 91.29 | 1 (Lipinski), 0 (Veber) |
Pharmacokinetic Properties | Compd. No. | |
---|---|---|
10b | 10e | |
GIT absorption | High | High |
BBB permeability | NO | NO |
P-gp substrate | NO | YES |
Bioavailability score | 0.55 | 0.55 |
PAINS alert | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elsenbawy, E.S.M.; Alshehri, Z.S.; Babteen, N.A.; Abdel-Rahman, A.A.-H.; El-Manawaty, M.A.; Nossier, E.S.; Arafa, R.K.; Hassan, N.A. Designing Potent Anti-Cancer Agents: Synthesis and Molecular Docking Studies of Thieno[2,3-d][1,2,4]triazolo[1,5-a]pyrimidine Derivatives. Molecules 2024, 29, 1067. https://doi.org/10.3390/molecules29051067
Elsenbawy ESM, Alshehri ZS, Babteen NA, Abdel-Rahman AA-H, El-Manawaty MA, Nossier ES, Arafa RK, Hassan NA. Designing Potent Anti-Cancer Agents: Synthesis and Molecular Docking Studies of Thieno[2,3-d][1,2,4]triazolo[1,5-a]pyrimidine Derivatives. Molecules. 2024; 29(5):1067. https://doi.org/10.3390/molecules29051067
Chicago/Turabian StyleElsenbawy, Eman S. M., Zafer S. Alshehri, Nouf A. Babteen, Adel A.-H. Abdel-Rahman, Mai A. El-Manawaty, Eman S. Nossier, Reem K. Arafa, and Nasser A. Hassan. 2024. "Designing Potent Anti-Cancer Agents: Synthesis and Molecular Docking Studies of Thieno[2,3-d][1,2,4]triazolo[1,5-a]pyrimidine Derivatives" Molecules 29, no. 5: 1067. https://doi.org/10.3390/molecules29051067
APA StyleElsenbawy, E. S. M., Alshehri, Z. S., Babteen, N. A., Abdel-Rahman, A. A. -H., El-Manawaty, M. A., Nossier, E. S., Arafa, R. K., & Hassan, N. A. (2024). Designing Potent Anti-Cancer Agents: Synthesis and Molecular Docking Studies of Thieno[2,3-d][1,2,4]triazolo[1,5-a]pyrimidine Derivatives. Molecules, 29(5), 1067. https://doi.org/10.3390/molecules29051067