Siamese Networks for Clinically Relevant Bacteria Classification Based on Raman Spectroscopy
Abstract
:1. Introduction
2. Results and Discussion
2.1. Classification on a Six-Bacterial-Species Dataset
2.2. Pre-Training and Fine-Tuning on 15 Bacterial Strains
2.3. Classification on a 30-Bacterial-Strain Dataset
2.4. Rank-2 Accuracy
3. Materials and Methods
3.1. Data Description
3.2. One-Dimensional Convolutional Neural Network Model Description
3.3. One-Dimensional Siamese Network Model Description
3.4. One-Dimensional Siamese Network Model Training
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Váradi, L.; Luo, J.L.; Hibbs, D.E.; Perry, J.D.; Anderson, R.J.; Orenga, S.; Groundwater, P.W. Methods for the detection and identification of pathogenic bacteria: Past, present, and future. Chem. Soc. Rev. 2017, 46, 4818–4832. [Google Scholar] [CrossRef] [PubMed]
- Law, J.W.-F.; Ab Mutalib, N.-S.; Chan, K.-G.; Lee, L.-H. Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations. Front. Microbiol. 2015, 5, 770. [Google Scholar] [CrossRef]
- Gracias, K.S.; McKillip, J.L. A review of conventional detection and enumeration methods for pathogenic bacteria in food. Can. J. Microbiol. 2004, 50, 883–890. [Google Scholar] [CrossRef]
- Vinayaka, A.C.; Ngo, T.A.; Kant, K.; Engelsmann, P.; Dave, V.P.; Shahbazi, M.-A.; Wolff, A.; Bang, D.D. Rapid detection of Salmonella enterica in food samples by a novel approach with combination of sample concentration and direct PCR. Biosens. Bioelectron. 2019, 129, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Jian, C.; Luukkonen, P.; Yki-Järvinen, H.; Salonen, A.; Korpela, K. Quantitative PCR provides a simple and accessible method for quantitative microbiota profiling. PLoS ONE 2020, 15, e0227285. [Google Scholar] [CrossRef]
- Seo, S.-H.; Lee, Y.-R.; Jeon, J.H.; Hwang, Y.-R.; Park, P.-G.; Ahn, D.-R.; Han, K.-C.; Rhie, G.-E.; Hong, K.-J. Highly sensitive detection of a bio-threat pathogen by gold nanoparticle-based oligonucleotide-linked immunosorbent assay. Biosens. Bioelectron. 2015, 64, 69–73. [Google Scholar] [CrossRef]
- Wu, W.; Li, J.; Pan, D.; Li, J.; Song, S.; Rong, M.; Li, Z.; Gao, J.; Lu, J. Gold nanoparticle-based enzyme-linked antibody-aptamer sandwich assay for detection of Salmonella Typhimurium. ACS Appl. Mater. Interfaces 2014, 6, 16974–16981. [Google Scholar] [CrossRef]
- Raman, C.V.; Krishnan, K.S. A new type of secondary radiation. Nature 1928, 121, 501–502. [Google Scholar] [CrossRef]
- Popp, J.; Tuchin, V.V.; Chiou, A.; Heinemann, S.H. Handbook of Biophotonics, Volume 3: Photonics in Pharmaceutics, Bioanalysis and Environmental Research; Wiely-VCH Verlag & Co. KGaA: Weinheim, Germany, 2012; Volume 3. [Google Scholar]
- Amjad, A.; Ullah, R.; Khan, S.; Bilal, M.; Khan, A. Raman spectroscopy based analysis of milk using random forest classification. Vib. Spectrosc. 2018, 99, 124–129. [Google Scholar] [CrossRef]
- Sun, Y.; Tang, H.; Zou, X.; Meng, G.; Wu, N. Raman spectroscopy for food quality assurance and safety monitoring: A review. Curr. Opin. Food Sci. 2022, 47, 100910. [Google Scholar] [CrossRef]
- Lussier, F.; Thibault, V.; Charron, B.; Wallace, G.Q.; Masson, J.-F. Deep learning and artificial intelligence methods for Raman and surface-enhanced Raman scattering. TrAC Trends Anal. Chem. 2020, 124, 115796. [Google Scholar] [CrossRef]
- Huang, T.-Y.; Yu, J.C.C. Development of crime scene intelligence using a hand-held Raman spectrometer and transfer learning. Anal. Chem. 2021, 93, 8889–8896. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.-S.; Jean, N.; Hogan, C.A.; Blackmon, L.; Jeffrey, S.S.; Holodniy, M.; Banaei, N.; Saleh, A.A.; Ermon, S.; Dionne, J. Rapid identification of pathogenic bacteria using Raman spectroscopy and deep learning. Nat. Commun. 2019, 10, 4927. [Google Scholar] [CrossRef] [PubMed]
- Kukula, K.; Farmer, D.; Duran, J.; Majid, N.; Chatterley, C.; Jessing, J.; Li, Y. Rapid detection of bacteria using raman spectroscopy and deep learning. In Proceedings of the 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 27–30 January 2021; pp. 796–799. [Google Scholar]
- Liu, B.; Liu, K.; Wang, N.; Ta, K.; Liang, P.; Yin, H.; Li, B. Laser tweezers Raman spectroscopy combined with deep learning to classify marine bacteria. Talanta 2022, 244, 123383. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, L.; Zhang, Z.; Wang, D. Recent advances of Raman spectroscopy for the analysis of bacteria. Anal. Sci. Adv. 2023, 4, 81–95. [Google Scholar] [CrossRef]
- Mukherjee, A.; Su, A.; Rajan, K. Deep learning model for identifying critical structural motifs in potential endocrine disruptors. J. Chem. Inf. Model. 2021, 61, 2187–2197. [Google Scholar] [CrossRef]
- Guo, S.; Rösch, P.; Popp, J.; Bocklitz, T. Modified PCA and PLS: Towards a better classification in Raman spectroscopy–based biological applications. J. Chemom. 2020, 34, e3202. [Google Scholar] [CrossRef]
- Gracia, A.; González, S.; Robles, V.; Menasalvas, E. A methodology to compare dimensionality reduction algorithms in terms of loss of quality. Inf. Sci. 2014, 270, 1–27. [Google Scholar] [CrossRef]
- Salem, N.; Hussein, S. Data dimensional reduction and principal components analysis. Procedia Comput. Sci. 2019, 163, 292–299. [Google Scholar] [CrossRef]
- Tharwat, A.; Gaber, T.; Ibrahim, A.; Hassanien, A.E. Linear discriminant analysis: A detailed tutorial. AI Commun. 2017, 30, 169–190. [Google Scholar] [CrossRef]
- Lasalvia, M.; Capozzi, V.; Perna, G. A comparison of PCA-LDA and PLS-DA techniques for classification of vibrational spectra. Appl. Sci. 2022, 12, 5345. [Google Scholar] [CrossRef]
- Tewes, T.J.; Kerst, M.; Platte, F.; Bockmühl, D.P. Raman microscopic identification of microorganisms on metal surfaces via support vector machines. Microorganisms 2022, 10, 556. [Google Scholar] [CrossRef] [PubMed]
- Seifert, S. Application of random forest based approaches to surface-enhanced Raman scattering data. Sci. Rep. 2020, 10, 5436. [Google Scholar] [CrossRef]
- Jiang, Y.; Luo, J.; Huang, D.; Liu, Y.; Li, D.-D. Machine learning advances in microbiology: A review of methods and applications. Front. Microbiol. 2022, 13, 925454. [Google Scholar] [CrossRef]
- Bocklitz, T.; Putsche, M.; Stüber, C.; Käs, J.; Niendorf, A.; Rösch, P.; Popp, J. A comprehensive study of classification methods for medical diagnosis. J. Raman Spectrosc. 2009, 40, 1759–1765. [Google Scholar] [CrossRef]
- Bocklitz, T.; Walter, A.; Hartmann, K.; Rösch, P.; Popp, J. How to pre-process Raman spectra for reliable and stable models? Anal. Chim. Acta 2011, 704, 47–56. [Google Scholar] [CrossRef]
- Ryabchykov, O.; Guo, S.; Bocklitz, T. Analyzing Raman spectroscopic data. Phys. Sci. Rev. 2018, 4, 20170043. [Google Scholar]
- Guo, S.; Popp, J.; Bocklitz, T. Chemometric analysis in Raman spectroscopy from experimental design to machine learning–based modeling. Nat. Protoc. 2021, 16, 5426–5459. [Google Scholar] [CrossRef]
- Ma, D.; Shang, L.; Tang, J.; Bao, Y.; Fu, J.; Yin, J. Classifying breast cancer tissue by Raman spectroscopy with one-dimensional convolutional neural network. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 256, 119732. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Osadchy, M.; Ashton, L.; Foster, M.; Solomon, C.J.; Gibson, S.J. Deep convolutional neural networks for Raman spectrum recognition: A unified solution. Analyst 2017, 142, 4067–4074. [Google Scholar] [CrossRef]
- Pradhan, P.; Guo, S.; Ryabchykov, O.; Popp, J.; Bocklitz, T.W. Deep learning a boon for biophotonics? J. Biophotonics 2020, 13, e201960186. [Google Scholar] [CrossRef]
- Luo, R.; Popp, J.; Bocklitz, T. Deep learning for Raman spectroscopy: A review. Analytica 2022, 3, 287–301. [Google Scholar] [CrossRef]
- Sun, J.; Xu, X.; Feng, S.; Zhang, H.; Xu, L.; Jiang, H.; Sun, B.; Meng, Y.; Chen, W. Rapid identification of salmonella serovars by using Raman spectroscopy and machine learning algorithm. Talanta 2023, 253, 123807. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, J.; Ding, J.; Lin, Q.; Young, G.M.; Jiang, C. Rapid identification of live and dead Salmonella by surface-enhanced Raman spectroscopy combined with convolutional neural network. Vib. Spectrosc. 2022, 118, 103332. [Google Scholar] [CrossRef]
- Tang, J.-W.; Li, J.-Q.; Yin, X.-C.; Xu, W.-W.; Pan, Y.-C.; Liu, Q.-H.; Gu, B.; Zhang, X.; Wang, L. Rapid discrimination of clinically important pathogens through machine learning analysis of surface enhanced Raman spectra. Front. Microbiol. 2022, 13, 843417. [Google Scholar] [CrossRef]
- Liu, W.; Tang, J.-W.; Lyu, J.-W.; Wang, J.-J.; Pan, Y.-C.; Shi, X.-Y.; Liu, Q.-H.; Zhang, X.; Gu, B.; Wang, L. Discrimination between carbapenem-resistant and carbapenem-sensitive Klebsiella pneumoniae strains through computational analysis of surface-enhanced Raman spectra: A pilot study. Microbiol. Spectr. 2022, 10, e02409-21. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Chen, J.; Liu, C.; Zeng, Y.; Sun, Q.; Li, J.; Shen, Z.; Chen, S.; Zhang, R. Identification of antibiotic resistance and virulence-encoding factors in Klebsiella pneumoniae by Raman spectroscopy and deep learning. Microb. Biotechnol. 2022, 15, 1270–1280. [Google Scholar] [CrossRef]
- Kazemzadeh, M.; Martinez-Calderon, M.; Xu, W.; Chamley, L.W.; Hisey, C.L.; Broderick, N.G. Cascaded deep convolutional neural networks as improved methods of preprocessing raman spectroscopy data. Anal. Chem. 2022, 94, 12907–12918. [Google Scholar] [CrossRef]
- Wu, M.; Wang, S.; Pan, S.; Terentis, A.C.; Strasswimmer, J.; Zhu, X. Deep learning data augmentation for Raman spectroscopy cancer tissue classification. Sci. Rep. 2021, 11, 23842. [Google Scholar] [CrossRef]
- Dong, X.; Shen, J. Triplet loss in siamese network for object tracking. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 459–474. [Google Scholar]
- Melekhov, I.; Kannala, J.; Rahtu, E. Siamese network features for image matching. In Proceedings of the 2016 23rd International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016; pp. 378–383. [Google Scholar]
- Park, J.-H.; Yu, H.-G.; Park, D.-J.; Nam, H.; Chang, D.E. Dynamic one-shot target detection and classification using a pseudo-Siamese network and its application to Raman spectroscopy. Analyst 2021, 146, 6997–7004. [Google Scholar] [CrossRef]
- Li, B.; Schmidt, M.N.; Alstrøm, T.S. Raman spectrum matching with contrastive representation learning. Analyst 2022, 147, 2238–2246. [Google Scholar] [CrossRef]
- Bertinetto, L.; Valmadre, J.; Henriques, J.F.; Vedaldi, A.; Torr, P.H. Fully-convolutional siamese networks for object tracking. In Proceedings of the Computer Vision—ECCV 2016 Workshops, Amsterdam, The Netherlands, 8–10 and 15–16 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 850–865. [Google Scholar]
- Tian, X.; Wang, P.; Tian, Y.; Zhang, R.; Jiang, Z.; Gao, J. Classification method based on Siamese-like neural network for inter-species blood Raman spectra similarity measure. J. Biophotonics 2023, 16, e202200377. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Girnus, S.; Rösch, P.; Popp, J.; Bocklitz, T. Sample-size planning for multivariate data: A Raman-spectroscopy-based example. Anal. Chem. 2018, 90, 12485–12492. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-T.; Li, J.; Gong, Y. An analysis of convolutional neural networks for speech recognition. In Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, Australia, 19–24 April 2015; pp. 4989–4993. [Google Scholar]
- Costa, Y.M.; Oliveira, L.S.; Silla, C.N., Jr. An evaluation of convolutional neural networks for music classification using spectrograms. Appl. Soft Comput. 2017, 52, 28–38. [Google Scholar] [CrossRef]
- Cao, J.; Wang, J. Stock price forecasting model based on modified convolution neural network and financial time series analysis. Int. J. Commun. Syst. 2019, 32, e3987. [Google Scholar] [CrossRef]
- Althnian, A.; AlSaeed, D.; Al-Baity, H.; Samha, A.; Dris, A.B.; Alzakari, N.; Abou Elwafa, A.; Kurdi, H. Impact of dataset size on classification performance: An empirical evaluation in the medical domain. Appl. Sci. 2021, 11, 796. [Google Scholar] [CrossRef]
Sensitivity (%) | Specificity (%) | Training Time (s) | Prediction Time (s) One Sample | Number Parameters | ||
---|---|---|---|---|---|---|
PCA-LDA | 79.85 ± 4.01 | 95.97 ± 0.80 | 1.79 | 0.0002 | 21 | |
PCA-SVM | 80.51 ± 4.75 | 96.10 ± 0.95 | 8.65 | 0.0002 | 21 | |
PLS-DA | 78.58 ± 3.81 | 95.72 ± 0.76 | 5.27 | 0.0002 | 21 | |
PCA-RF | 79.15 ± 4.80 | 95.82 ± 0.95 | 98.57 | 0.0003 | 21 | |
Shallow CNN | 82.80 ± 13.54 | 96.52 ± 0.89 | 800 | 0.040 | 14.7 K | |
Deeper CNN | 84.13 ± 12.30 | 96.90 ± 0.83 | 800 | 0.047 | 19.6 M | |
= 10 | = 50 | |||||
Siamese model1 | 82.65 ± 4.39 | 96.62 ± 0.82 | 2000 | 0.070 | 0.105 | 19.6 M |
Siamese model2 | 83.61 ± 4.73 | 96.75 ± 0.92 | 2000 | 0.072 | 0.185 | 19.6 M |
Overall Accuracy | Count | |
---|---|---|
Rank-1 | 80.26 | 2408 |
Rank-2 | 90.26 | 300 |
Rank-3 | 93.46 | 96 |
Convolutional Layers | Fully Connected Layers | |
---|---|---|
Shallow CNN | Conv (10,5) BatchNorm + LeakyReLU + pooling | Dense (16) BatchNorm + LeakyReLU + Dropout |
Deeper CNN | Conv (64,5) BatchNorm + LeakyReLU + pooling | Dense (512) + Dense (256) BatchNorm + LeakyReLU + Dropout |
Feature vector embedding | Learnable distance metric | |
Siamese model1 | Deeper CNN | Dense (1) Sigmoid |
Siamese model2 | Deeper CNN | Dense (64) + Dense (16) + Dense (1) Sigmoid |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contreras, J.; Mostafapour, S.; Popp, J.; Bocklitz, T. Siamese Networks for Clinically Relevant Bacteria Classification Based on Raman Spectroscopy. Molecules 2024, 29, 1061. https://doi.org/10.3390/molecules29051061
Contreras J, Mostafapour S, Popp J, Bocklitz T. Siamese Networks for Clinically Relevant Bacteria Classification Based on Raman Spectroscopy. Molecules. 2024; 29(5):1061. https://doi.org/10.3390/molecules29051061
Chicago/Turabian StyleContreras, Jhonatan, Sara Mostafapour, Jürgen Popp, and Thomas Bocklitz. 2024. "Siamese Networks for Clinically Relevant Bacteria Classification Based on Raman Spectroscopy" Molecules 29, no. 5: 1061. https://doi.org/10.3390/molecules29051061
APA StyleContreras, J., Mostafapour, S., Popp, J., & Bocklitz, T. (2024). Siamese Networks for Clinically Relevant Bacteria Classification Based on Raman Spectroscopy. Molecules, 29(5), 1061. https://doi.org/10.3390/molecules29051061