Efficient Synthesis and HPLC-Based Characterization for Developing Vanadium-48-Labeled Vanadyl Acetylacetonate as a Novel Cancer Radiotracer for PET Imaging
Abstract
:1. Introduction
2. Results
2.1. [48V]VO(acac)2 Yield
2.2. Isolating HPLC VO(acac)2 Signal from Acetylacetone
2.3. Effect of Trifluoroacetic Acid
2.4. Effect of Oxidation of the Metallochelate
2.5. HPLC Comparison of Synthetic [48V]VO(acac)2 with Authentic VO(acac)2
2.6. Results of Imaging Studies
3. Discussion
3.1. [48V]VO(acac)2 Yield
3.2. Isolating HPLC VO(acac)2 Signal from Acetylacetone
3.3. Effect of Trifluoroacetic Acid
3.4. Effect of Oxidation of the Metallochelate
3.5. HPLC Comparison of Synthetic [48V]VO(acac)2 with Authentic VO(acac)2
3.6. Results of Imaging Studies
4. Materials and Methods
4.1. [48V]VO(acac)2 Synthesis
4.2. Characterization of [48V]VO(acac)2
4.3. Imaging Studies with [48V]VO(acac)2
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martell, A.E.; Smith, R.M. (Eds.) Critical Stability Constants; Plenum Press: New York, NY, USA, 1977; Volume 3. [Google Scholar]
- Chasteen, N.D. Vanadyl(IV) EPR Spin Probes: Inorganic and Biochemical Aspects. In Biological Magnetic Resonance; Berliner, L.J., Reuben, J., Eds.; Plenum: New York, NY, USA, 1981; Volume 3, pp. 53–119. [Google Scholar]
- Mustafi, D.; Peng, B.; Foxley, S.; Makinen, M.W.; Karczmar, G.S.; Zamora, M.; Ejnik, J.; Martin, H. New vanadium-based magnetic resonance imaging probes: Clinical potential for early detection of cancer. J. Biol. Inorg. Chem. 2009, 14, 1187–1197. [Google Scholar] [CrossRef] [PubMed]
- Setyawati, I.A.; Thompson, K.H.; Yuen, V.G.; Sun, Y.; Battell, M.; Lyster, D.M.; Vo, C.; Ruth, T.J.; Zeisler, S.; McNeill, J.H.; et al. Kinetic analysis and comparison of up-take, distribution, and excretion of V-48-labeled compounds in rats. J. Appl. Physiol. 1998, 84, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Crans, D.C.; Smee, J.J.; Gaidamauskas, E.; Yang, L. The Chemistry and Biochemistry of Vanadium and the Biological Activities Exerted by Vanadium Compounds. Chem. Rev. 2004, 104, 849–902. [Google Scholar] [CrossRef] [PubMed]
- Thompson, K.H.; McNeill, J.H.; Orvig, C. Vanadium Compounds as Insulin Mimics. Chem. Rev. 1999, 99, 2561–2571. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.K.; Anand-Srivastava, M.B.; Srivastava, A.K. Vanadyl Sulfate-Stimulated Glycogen Synthesis Is Associated with Activation of Phosphatidylinositol 3-Kinase and Is Independent of Insulin Receptor Tyrosine Phosphorylation. Biochemistry 1998, 37, 7006–7014. [Google Scholar] [CrossRef] [PubMed]
- Ou, H.S.; Yan, L.M.; Mustafi, D.; Makinen, M.W.; Brady, M.J. The vanadyl (VO2+) chelate bis(acetylacetonato)oxo-vanadium(IV) potentiates tyrosine phosphorylation of the insulin receptor. J. Inorg. Biol. Chem. 2005, 10, 874–886. [Google Scholar] [CrossRef] [PubMed]
- Elchebly, M.; Payette, P.; Michaliszyn, E.; Cromlish, W.; Collins, S.; Loy, A.L.; Nor-mandin, D.; Cheng, A.; Himms-Hagen, J.; Chan, C.C.; et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 1999, 283, 1544–1548. [Google Scholar] [CrossRef] [PubMed]
- Hon, J.; Hwang, M.S.; Charnetzki, M.A.; Rashed, I.J.; Brady, P.B.; Quillin, S.; Makinen, M.W. Kinetic characterization of the inhibition of protein tyrosine phosphatase-1B by Vanadyl (VO2+) chelates. J. Biol. Inorg. Chem. 2017, 22, 1267–1279. [Google Scholar] [CrossRef] [PubMed]
- Mertins, P.; Eberl, H.C.; Renkawitz, J.; Tremblay, M.L.; Mann, M.; Ullrich, A.; Daub, H. Investigation of Protein-Tyrosine Phosphatase 1B function by Quantitative Proteomics. Mol. Cell. Proteomics 2008, 7, 1763–1777. [Google Scholar] [CrossRef] [PubMed]
- Bonham, C.A.; Mondati, V.; Singh, R.K.; Pappin, D.J.; Tonks, N.K. Coupling substrate-trapping with proximity-Labeling to identify protein tyrosine phosphatase PTP1B signaling networks. J. Biol. Chem. 2023, 299, 104582. [Google Scholar] [CrossRef] [PubMed]
- Makinen, M.W.; Bamba, R.; Ikejimba, L.; Wietholt, C.; Chen, C.T.; Conzen, S.D. The vanadyl chelate bis(acetyl-acetonato)oxovanadium(IV) increases the fractional uptake of 2-(fluorine-18)-2-deoxy-D-glucose by cultured human breast carcinoma cells. Dalton Trans. 2013, 42, 11862–11867. [Google Scholar] [CrossRef] [PubMed]
- Bonardi, M.L.; Rizzio, E.; Gallorini, M.; Groppi, F.; Mainardi, H.S. Improved radiochemical separation of no-carrier-added vanadium-48 from proton irradiated titanium target. J. Radioanal. Nucl. Chem. 2005, 263, 23–28. [Google Scholar] [CrossRef]
- Zeisler, S.K.; Ruth, T.J. Preparation of [48V]-VO2+ For Biomedical Studies. J. Radioanal. Nucl. Chem. Lett. 1995, 4, 283–290. [Google Scholar] [CrossRef]
- Broder, B.A.; Bhyuian, M.P.; Freifelder, R.; Zhang, H.J.; Kucharski, A.; Makinen, M.W.; Rotsch, D.A.; Chen, C.-T. Preliminary Investigation of 48V-labeled VO(acac)2 for Cancer Imaging: An Initial Proof-of-Concept Study. Appl. Radiat. Isot. 2022, 186, 110270. [Google Scholar] [CrossRef] [PubMed]
- Grybos, R.; Samotus, A.; Popova, N.; Bogolitsyn, K. Kinetics of oxidation of vanadyl acetylacetonate by oxygen in methanolic solution. Transit. Met. Chem. 1997, 22, 61–64. [Google Scholar] [CrossRef]
- Dean, J.A. (Ed.) Lange’s Handbook of Chemistry; McGraw-Hill: New York, NY, USA, 1973. [Google Scholar]
- Correia, I.; Chorna, I.; Cavaco, I.; Roy, S.; Kuznetsov, M.L.; Ribeiro, N.; Justino, G.; Marques, F.; Santos-Silva, T.; Santos, M.F.; et al. Interaction of [VIVO(acac)2] with human serum transferrin and albumin. Chem.–Asian J. 2017, 12, 2062–2084. [Google Scholar] [CrossRef] [PubMed]
- Mustafi, D.; Makinen, M.W. Structure and Conformation of Bis(acetylacetonato)oxovanadium(IV) and Bis(mal-tolato)oxovandium(IV) in Solution Determined by Electron Nuclear Double Resonance Spectroscopy. Inorg. Chem. 2005, 44, 5580–5590. [Google Scholar] [CrossRef] [PubMed]
- Oldacrea, A.N.; Young, E.R. Investigation of Electrochemical Proton-Coupled Electron Transfer of Anthracene-based Azo dye. In Electronic Supplementary Material (ESI) for RSC Advances; Royal Society of Chemistry: London, UK, 2020. [Google Scholar]
- Rowe, R.A.; Jones, M.M. Preparation from vanadium(v) oxide through prior reduction to oxovanadium(iv) ion. Inorg. Synth. 1957, 5, 114. [Google Scholar]
- Broder, B.A. Development and Kinetic Analysis of Emerging Positron Emission Tomography Radiotracer Vandium-48-Labeled Vanadyl Acetylacetonate. Ph.D. Dissertation, The University of Chicago, Chicago, IL, USA, 2022. [Google Scholar]
- Winkler, G.; Wolschann, P.; Briza, P.; Heinz, F.X.; Kunz, C. Spectral Properties of Trifluoroacetic Acid-Acetonitrile Gradient Systems for Separation of Picomole Quantities of Peptides by Reversed-Phase High Performance Liquid Chromatography. J. Chromatog. 1985, 347, 83–88. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Broder, B.A.; Bhuiyan, M.; Freifelder, R.; Rotsch, D.A.; Chitneni, S.K.; Makinen, M.W.; Chen, C.-T. Efficient Synthesis and HPLC-Based Characterization for Developing Vanadium-48-Labeled Vanadyl Acetylacetonate as a Novel Cancer Radiotracer for PET Imaging. Molecules 2024, 29, 799. https://doi.org/10.3390/molecules29040799
Broder BA, Bhuiyan M, Freifelder R, Rotsch DA, Chitneni SK, Makinen MW, Chen C-T. Efficient Synthesis and HPLC-Based Characterization for Developing Vanadium-48-Labeled Vanadyl Acetylacetonate as a Novel Cancer Radiotracer for PET Imaging. Molecules. 2024; 29(4):799. https://doi.org/10.3390/molecules29040799
Chicago/Turabian StyleBroder, Brittany A., Mohammed Bhuiyan, Richard Freifelder, David A. Rotsch, Satish K. Chitneni, Marvin W. Makinen, and Chin-Tu Chen. 2024. "Efficient Synthesis and HPLC-Based Characterization for Developing Vanadium-48-Labeled Vanadyl Acetylacetonate as a Novel Cancer Radiotracer for PET Imaging" Molecules 29, no. 4: 799. https://doi.org/10.3390/molecules29040799
APA StyleBroder, B. A., Bhuiyan, M., Freifelder, R., Rotsch, D. A., Chitneni, S. K., Makinen, M. W., & Chen, C. -T. (2024). Efficient Synthesis and HPLC-Based Characterization for Developing Vanadium-48-Labeled Vanadyl Acetylacetonate as a Novel Cancer Radiotracer for PET Imaging. Molecules, 29(4), 799. https://doi.org/10.3390/molecules29040799