Superhydrophobic Non-Metallic Surfaces with Multiscale Nano/Micro-Structure: Fabrication and Application
Abstract
:1. Introduction
2. Preparation Methods of Nano/Micro-Structured Superhydrophobic Surfaces
2.1. Sol–Gel Method
2.2. Etching Methods
2.2.1. Laser Etching Method
2.2.2. Plasma Etching Method
2.3. Molding Method
2.4. Deposition Methods
2.4.1. Physical Vapor Deposition (PVD)
2.4.2. Chemical Vapor Deposition (CVD)
2.4.3. Electrochemical Deposition (ECD)
2.5. Other Methods
3. Application
3.1. Anti-Icing
3.2. Water–Oil Separation
3.3. Anti-Fog
3.4. Self-Cleaning
3.5. Other Applications
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Qiu, L.; Sun, Y.; Guo, Z. Designing novel superwetting surfaces for high-efficiency oil–water separation: Design principles, opportunities, trends and challenges. J. Mater. Chem. A 2020, 8, 16831–16853. [Google Scholar] [CrossRef]
- Si, Y.; Guo, Z. Bio-inspired writable multifunctional recycled paper with outer and inner uniform superhydrophobicity. RSC Adv. 2016, 6, 30776–30784. [Google Scholar] [CrossRef]
- Son, T.; Yang, E.; Yu, E.; Oh, K.H.; Moon, M.-W.; Kim, H.-Y. Effects of surface nanostructures on self-cleaning and anti-fogging characteristics of transparent glass. J. Mech. Sci. Technol. 2017, 31, 5407–5414. [Google Scholar] [CrossRef]
- Hwang, J.; Ahn, Y. Fabrication of Superhydrophobic Silica Nanoparticles and Nanocomposite Coating on Glass Surfaces. Bull. Korean Chem. Soc. 2015, 36, 391–394. [Google Scholar] [CrossRef]
- Ren, S.; Chen, Y.; Xu, K.; Liu, J.; Sun, J.; Zhao, D.; Ling, S.; Song, J.; Hua, S. Maintenance of superhydrophobic concrete for high compressive strength. J. Mater. Sci. 2021, 56, 4588–4598. [Google Scholar] [CrossRef]
- Zhu, J.; Liao, K. A facile and low-cost method for preparing robust superhydrophobic cement block. Mater. Chem. Phys. 2020, 250, 123064. [Google Scholar] [CrossRef]
- Dai, Z.; Guo, H.; Huang, Q.; Ding, S.; Liu, Y.; Gao, Y.; Zhou, Y.; Sun, G.; Zhou, B. Mechanically robust and superhydrophobic concrete based on sacrificial template approach. Cem. Concr. Compos. 2022, 134, 104796. [Google Scholar] [CrossRef]
- Singh, A.K. Surface engineering using PDMS and functionalized nanoparticles for superhydrophobic coatings: Selective liquid repellence and tackling COVID-19. Prog. Org. Coat. 2022, 171, 107061. [Google Scholar] [CrossRef]
- Gong, B.; Ma, L.; Guan, Q.; Tan, R.; Wang, C.; Wang, Z.; Wang, K.; Liu, C.; Deng, C.; Song, W.; et al. Preparation and particle size effects study of sustainable self-cleaning and durable silicon materials with superhydrophobic surface performance. J. Environ. Chem. Eng. 2022, 10, 107884. [Google Scholar] [CrossRef]
- Tian, N.; Xu, D.; Wei, J.; Li, B.; Zhang, J. Long-lasting anti-bacterial face masks enabled by combining anti-bacterial materials and superhydrophobic coating. Surf. Coat. Technol. 2024, 476, 130229. [Google Scholar] [CrossRef]
- Popova, A.A.; Dietrich, S.; Huber, W.; Reischl, M.; Peravali, R.; Levkin, P.A. Miniaturized Drug Sensitivity and Resistance Test on Patient-Derived Cells Using Droplet-Microarray. SLAS Technol. 2021, 26, 274–286. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.; Liu, Y.; Liu, F. Up to Date Review of Nature-Inspired Superhydrophobic Textiles: Fabrication and Applications. Materials 2023, 16, 7015. [Google Scholar] [CrossRef] [PubMed]
- Jialiangkang; Xiang, F.; He, X.; Li, Z. Preparation of robust silicone superhydrophobic and antibacterial textiles using the Pickering emulsion method. Carbohydr. Polym. 2024, 323, 121419. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Sun, Y.; Ma, R.; Zhou, X.; Ye, L.; Mailänder, V.; Steffen, W.; Kappl, M.; Butt, H.-J. Mechanically Robust and Flame-Retardant Superhydrophobic Textiles with Anti-Biofouling Performance. Langmuir 2022, 38, 12961–12967. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Li, A.; Zhao, W.; Xu, Z.; Ma, Y.; Zhang, F.; Zhang, Y.; Zhou, J.; He, Q. A Review on Fabrication Methods and Research Progress of Superhydrophobic Silicone Rubber Materials. Adv. Mater. Interfaces 2021, 8, 2001460. [Google Scholar] [CrossRef]
- Jeevahan, J.; Chandrasekaran, M.; Britto Joseph, G.; Durairaj, R.B.; Mageshwaran, G. Superhydrophobic surfaces: A review on fundamentals, applications, and challenges. J. Coat. Technol. Res. 2018, 15, 231–250. [Google Scholar] [CrossRef]
- Lv, J.; Yue, Q.-x.; Ding, R.; Wang, X.; Gui, T.-j.; Zhao, X.-d. The Application of Electrochemical Noise for the Study of Metal Corrosion and Organic Anticorrosion Coatings: A Review. ChemElectroChem 2021, 8, 337–351. [Google Scholar] [CrossRef]
- Ghunem, R.A.; Cherney, E.A.; Farzaneh, M.; Momen, G.; Illias, H.A.; Malagón, G.A.M.; Peesapati, V.; Yin, F. Development and Application of Superhydrophobic Outdoor Insulation: A Review. IEEE Trans. Dielectr. Electr. Insul. 2022, 29, 1392–1399. [Google Scholar] [CrossRef]
- Li, C.; Li, N.; Zhang, X.; Dong, Z.; Chen, H.; Jiang, L. Uni-Directional Transportation on Peristome-Mimetic Surfaces for Completely Wetting Liquids. Angew. Chem. Int. Ed. 2016, 55, 14988–14992. [Google Scholar] [CrossRef]
- Feng, X.-Q.; Gao, X.; Wu, Z.; Jiang, L.; Zheng, Q.-S. Superior Water Repellency of Water Strider Legs with Hierarchical Structures: Experiments and Analysis. Langmuir 2007, 23, 4892–4896. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, Y.; Xi, J.; Zhu, Y.; Wang, N.; Xia, F.; Jiang, L. Petal Effect: A Superhydrophobic State with High Adhesive Force. Langmuir 2008, 24, 4114–4119. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Liu, W. Biomimic from the superhydrophobic plant leaves in nature: Binary structure and unitary structure. Plant Sci. 2007, 172, 1103–1112. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, H.; Zheng, B.; Guan, X.; Sun, B.; Liao, Y.; Yue, Y.; Duan, W.; Ding, H. A Super-robust Armoured Superhydrophobic Surface with Excellent Anti-icing Ability. J. Bionic Eng. 2023, 20, 1891–1904. [Google Scholar] [CrossRef]
- Chen, J.; Fu, C.; Li, J.; Tang, W.; Gao, X.; Zhang, J. Fabrication and Experimental Study of Micro/Sub-Micro Porous Copper Coating for Anti-Icing Application. Materials 2023, 16, 3774. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Liao, T.; Liu, K.; Jiang, L.; Kim, J.H.; Dou, S.X. Fly-Eye Inspired Superhydrophobic Anti-Fogging Inorganic Nanostructures. Small 2014, 10, 3001–3006. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Zhang, Z.; Li, J.; Qu, Y.; Xing, D.; Gao, X.; Zhang, Z.; Wen, Y.; Ma, Y.; Ye, J.; et al. A Bioinspired, Highly Transparent Surface with Dry-Style Antifogging, Antifrosting, Antifouling, and Moisture Self-Cleaning Properties. Macromol. Rapid Commun. 2019, 40, 1800708. [Google Scholar] [CrossRef] [PubMed]
- Mohd, G.; Majid, K.; Lone, S. Synergetic Role of Nano-/Microscale Structures of the Trifolium Leaf Surface for Self-Cleaning Properties. Langmuir 2023, 39, 6178–6187. [Google Scholar] [CrossRef]
- Cai, H.; Duan, C.; Fu, M.; Zhang, J.; Huang, H.; Hu, Y.; Shi, J.; Ye, D. Scalable Fabrication of Superhydrophobic Coating with Rough Coral Reef-Like Structures for Efficient Self-Cleaning and Oil-Water Separation: An Experimental and Molecular Dynamics Simulation Study. Small 2023, 19, 2207118. [Google Scholar] [CrossRef] [PubMed]
- Su, B.; Tian, Y.; Jiang, L. Bioinspired Interfaces with Superwettability: From Materials to Chemistry. J. Am. Chem. Soc. 2016, 138, 1727–1748. [Google Scholar] [CrossRef]
- Wenzel, R.N. Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 1936, 28, 988–994. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, L.; Levänen, E. Superhydrophobic surfaces for the reduction of bacterial adhesion. RSC Adv. 2013, 3, 12003–12020. [Google Scholar] [CrossRef]
- Pi, P.; Hou, K.; Zhou, C.; Wen, X.; Xu, S.; Cheng, J.; Wang, S. A novel superhydrophilic-underwater superoleophobic Cu 2 S coated copper mesh for efficient oil-water separation. Mater. Lett. 2016, 182, 68–71. [Google Scholar] [CrossRef]
- Cao, L.; Jones, A.K.; Sikka, V.K.; Wu, J.; Gao, D. Anti-Icing Superhydrophobic Coatings. Langmuir 2009, 25, 12444–12448. [Google Scholar] [CrossRef] [PubMed]
- Groten, J.; Rühe, J. Surfaces with Combined Microscale and Nanoscale Structures: A Route to Mechanically Stable Superhydrophobic Surfaces? Langmuir 2013, 29, 3765–3772. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.J.; Kim, J.J.; Cho, S.O. Fabrication of Porous Hierarchical Polymer/Ceramic Composites by Electron Irradiation of Organic/Inorganic Polymers: Route to a Highly Durable, Large-Area Superhydrophobic Coating. Langmuir 2010, 26, 3024–3030. [Google Scholar] [CrossRef]
- Jung, Y.C.; Bhushan, B. Mechanically Durable Carbon Nanotube−Composite Hierarchical Structures with Superhydrophobicity, Self-Cleaning, and Low-Drag. ACS Nano 2009, 3, 4155–4163. [Google Scholar] [CrossRef]
- Chu, J.; Tian, G.; Feng, X. Recent advances in prevailing antifogging surfaces: Structures, materials, durability, and beyond. Nanoscale 2023, 15, 11366–11402. [Google Scholar] [CrossRef]
- Wong, S.M.; Ho, H.W.; Abdullah, M.Z. Design and Fabrication of a Dual Rotor-Embedded Wing Vertical Take-Off and Landing Unmanned Aerial Vehicle. Unmanned Syst. 2020, 09, 45–63. [Google Scholar] [CrossRef]
- Yan, F.; Xitao, Z.; Shuyi, W.; Zhendong, L. Layup optimization design and analysis of super lightweight composite wing. Acta Aeronaut. Astronaut. Sin. 2015, 36, 1858–1866. [Google Scholar]
- Xiang, B.; Liu, Q.; Sun, Q.; Gong, J.; Mu, P.; Li, J. Recent advances in eco-friendly fabrics with special wettability for oil/water separation. Chem. Commun. 2022, 58, 13413–13438. [Google Scholar] [CrossRef] [PubMed]
- Fürtauer, S.; Hassan, M.; Elsherbiny, A.; Gabal, S.A.; Mehanny, S.; Abushammala, H. Current Status of Cellulosic and Nanocellulosic Materials for Oil Spill Cleanup. Polymers 2021, 13, 2739. [Google Scholar] [CrossRef] [PubMed]
- Wikimedia Commons. Available online: http://wthielicke.gmxhome.de/bionik/indexuk.htm (accessed on 6 December 2007).
- Nguyen-Tri, P.; Tran, H.N.; Plamondon, C.O.; Tuduri, L.; Vo, D.-V.N.; Nanda, S.; Mishra, A.; Chao, H.-P.; Bajpai, A.K. Recent progress in the preparation, properties and applications of superhydrophobic nano-based coatings and surfaces: A review. Prog. Org. Coat. 2019, 132, 235–256. [Google Scholar] [CrossRef]
- Wan, T.; Wang, B.; Han, Q.; Chen, J.; Li, B.; Wei, S. A review of superhydrophobic shape-memory polymers: Preparation, activation, and applications. Appl. Mater. Today 2022, 29, 101665. [Google Scholar] [CrossRef]
- Ge-Zhang, S.; Yang, H.; Ni, H.; Mu, H.; Zhang, M. Biomimetic superhydrophobic metal/nonmetal surface manufactured by etching methods: A mini review. Front. Bioeng. Biotechnol. 2022, 10, 958095. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-N.; Zhang, Y.-L.; Liu, Y.; Zheng, W.; Lee, L.P.; Sun, H.-B. Recent developments in superhydrophobic graphene and graphene-related materials: From preparation to potential applications. Nanoscale 2015, 7, 7101–7114. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Zhang, X.; Tian, G. Recent advances in bioinspired superhydrophobic ice-proof surfaces: Challenges and prospects. Nanoscale 2022, 14, 5960–5993. [Google Scholar] [CrossRef]
- Zeng, Q.; Zhou, H.; Huang, J.; Guo, Z. Review on the recent development of durable superhydrophobic materials for practical applications. Nanoscale 2021, 13, 11734–11764. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Niu, X. Recent Advances in Superhydrophobic Surfaces and Applications on Wood. Polymers 2023, 15, 1682. [Google Scholar] [CrossRef]
- Yang, H.; Zhu, M.; Li, Y. Sol–gel research in China: A brief history and recent research trends in synthesis of sol–gel derived materials and their applications. J. Sol-Gel Sci. Technol. 2022, 106, 406–421. [Google Scholar] [CrossRef]
- Mohd Aref, Y.; Othaman, R.; Anuar, F.H.; Ku Ahmad, K.Z.; Baharum, A. Superhydrophobic Modification of Sansevieria trifasciata Natural Fibres: A Promising Reinforcement for Wood Plastic Composites. Polymers 2023, 15, 594. [Google Scholar] [CrossRef]
- Chujo, Y.; Saegusa, T. Organic polymer hybrids with silica gel formed by means of the sol-gel method. Adv. Polym. Sci. 1992, 100, 11–29. [Google Scholar] [CrossRef]
- Czyzyk, S.; Dotan, A.; Dodiuk, H.; Kenig, S. Processing effects on the kinetics morphology and properties of hybrid sol-gel superhydrophobic coatings. Prog. Org. Coat. 2020, 140, 105501. [Google Scholar] [CrossRef]
- Taurino, R.; Cannio, M.; Boccaccini, D.N.; Messori, M.; Bondioli, F. Preliminary study on the design of superhydrophobic surface by 3D inkjet printing of a sol-gel solution. J. Sol-Gel Sci. Technol. 2023, 108, 368–376. [Google Scholar] [CrossRef]
- Yao, X.; Kong, Z.; Yang, F.; Wu, X.; Wu, Y. Study on the Difference of Superhydrophobic Characteristics of Different Wood Furniture Substrates. Polymers 2023, 15, 1644. [Google Scholar] [CrossRef]
- Gosiamemang, T.; Heng, J.Y.Y. Sodium hydroxide catalysed silica sol-gel synthesis: Physicochemical properties of silica nanoparticles and their post-grafting using C8 and C18 alkyl-organosilanes. Powder Technol. 2023, 417, 118237. [Google Scholar] [CrossRef]
- Wang, Y.; Ge-Zhang, S.; Mu, P.; Wang, X.; Li, S.; Qiao, L.; Mu, H. Advances in Sol-Gel-Based Superhydrophobic Coatings for Wood: A Review. Int. J. Mol. Sci. 2023, 24, 9675. [Google Scholar] [CrossRef]
- Latthe, S.S.; Sutar, R.S.; Kodag, V.S.; Bhosale, A.K.; Kumar, A.M.; Kumar Sadasivuni, K.; Xing, R.; Liu, S. Self—cleaning superhydrophobic coatings: Potential industrial applications. Prog. Org. Coat. 2019, 128, 52–58. [Google Scholar] [CrossRef]
- Espanhol-Soares, M.; Costa, L.; Silva, M.R.A.; Soares Silva, F.; Ribeiro, L.M.S.; Gimenes, R. Super-hydrophobic coatings on cotton fabrics using sol–gel technique by spray. J. Sol-Gel Sci. Technol. 2020, 95, 22–33. [Google Scholar] [CrossRef]
- Gao, X.; Wang, M.; He, Z. Superhydrophobic Wood Surfaces: Recent Developments and Future Perspectives. Coatings 2023, 13, 877. [Google Scholar] [CrossRef]
- Zheng, K.; Zhu, J.; Liu, H.; Zhang, X.; Wang, E. Facile fabrication of superhydrophobic polymethyltriethoxysilane- polymethylhydrosiloxane coatings. J. Dispers. Sci. Technol. 2022, 43, 273–281. [Google Scholar] [CrossRef]
- Periyasamy, A.P.; Venkataraman, M.; Kremenakova, D.; Militky, J.; Zhou, Y. Progress in Sol-Gel Technology for the Coatings of Fabrics. Materials 2020, 13, 1838. [Google Scholar] [CrossRef]
- Xie, A.; Cui, J.; Chen, Y.; Lang, J.; Li, C.; Yan, Y.; Dai, J. One-step facile fabrication of sustainable cellulose membrane with superhydrophobicity via a sol-gel strategy for efficient oil/water separation. Surf. Coat. Technol. 2019, 361, 19–26. [Google Scholar] [CrossRef]
- Mahadik, S.A.; Mahadik, S.S. Surface morphological and topographical analysis of multifunctional superhydrophobic sol-gel coatings. Ceram. Int. 2021, 47, 29475–29482. [Google Scholar] [CrossRef]
- Sutar, R.S.; Gaikwad, S.S.; Latthe, S.S.; Kodag, V.S.; Deshmukh, S.B.; Saptal, L.P.; Kulal, S.R.; Bhosale, A.K. Superhydrophobic Nanocomposite Coatings of Hydrophobic Silica NPs and Poly(methyl methacrylate) with Notable Self-Cleaning Ability. Macromol. Symp. 2020, 393, 2000116. [Google Scholar] [CrossRef]
- Li, Y.; Xiong, Z.; Zhang, M.; He, Y.; Yang, Y.; Liao, Y.; Hu, J.; Wang, M.; Wu, G. Development of highly durable superhydrophobic and UV-resistant wood by E-beam radiation curing. Cellulose 2021, 28, 11579–11593. [Google Scholar] [CrossRef]
- Duan, Z.; Qu, L.; Hu, Z.; Liu, D.; Liu, R.; Zhang, Y.; Zheng, X.; Zhang, J.; Wang, X.; Zhao, G. Fabrication of micro-patterned ZrO2/TiO2 composite surfaces with tunable super-wettability via a photosensitive sol-gel technique. Appl. Surf. Sci. 2020, 529, 147136. [Google Scholar] [CrossRef]
- Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69. [Google Scholar] [CrossRef]
- Chen, R.; Xu, J.; Li, S.; Li, Q.; Wu, H.; He, Q.; Wang, Z.; Weng, F.; Mu, J. Multiscale-structured superhydrophobic/superoleophilic SiO2 composite poly(ether sulfone) membranes with high efficiency and flux for water-in-oil emulsions separation under harsh conditions. New J. Chem. 2020, 44, 3824–3827. [Google Scholar] [CrossRef]
- Dong, W.; Zhou, S.; Qian, F.; Li, Q.; Tang, G.; Xiang, T.; Long, H.-m.; Chun, T.; Lu, J.; Han, Y. Low-temperature silane coupling agent modified biomimetic micro/nanoscale roughness hierarchical structure superhydrophobic polyethylene terephthalate filter media. Polym. Adv. Technol. 2022, 33, 1655–1664. [Google Scholar] [CrossRef]
- Wang, Z.; Yao, D.; He, Z.; Liu, Y.; Wang, H.; Zheng, Y. Fabrication of Durable, Chemically Stable, Self-Healing Superhydrophobic Fabrics Utilizing Gellable Fluorinated Block Copolymer for Multifunctional Applications. ACS Appl. Mater. Interfaces 2022, 14, 48106–48122. [Google Scholar] [CrossRef]
- AlZadjali, S.; Matouk, Z.; AlShehhi, A.; Rajput, N.; Mohammedture, M.; Guttierrez, M. Simple, Scalable Route to Produce Transparent Superhydrophobic/Hydrophilic Film Surfaces. Appl. Sci. 2023, 13, 1707. [Google Scholar] [CrossRef]
- Heiman-Burstein, D.; Dotan, A.; Dodiuk, H.; Kenig, S. Hybrid Sol–Gel Superhydrophobic Coatings Based on Alkyl Silane-Modified Nanosilica. Polymers 2021, 13, 539. [Google Scholar] [CrossRef]
- Wang, Q.; Xiong, J.; Chen, G.; Xinping, O.; Yu, Z.; Chen, Q.; Yu, M. Facile Approach to Develop Hierarchical Roughness fiber@SiO2 Blocks for Superhydrophobic Paper. Materials 2019, 12, 1393. [Google Scholar] [CrossRef]
- Hu, Y.; Ma, X.; Bi, H.; Sun, J. Robust superhydrophobic surfaces fabricated by self-growth of TiO2 particles on cured silicone rubber. Colloids Surf. A Physicochem. Eng. Asp. 2020, 603, 125227. [Google Scholar] [CrossRef]
- Nasiri Khalil Abad, S.; Najibi Ilkhechi, N.; Adel, M.; Mozammel, M. Hierarchical architecture of a superhydrophobic Cd-Si co-doped TiO2 thin film. Appl. Surf. Sci. 2020, 533, 147495. [Google Scholar] [CrossRef]
- Luo, H.; Yang, M.; Li, D.; Wang, Q.; Zou, W.; Xu, J.; Zhao, N. Transparent Super-Repellent Surfaces with Low Haze and High Jet Impact Resistance. ACS Appl. Mater. Interfaces 2021, 13, 13813–13821. [Google Scholar] [CrossRef]
- Wong, W.S.Y.; Stachurski, Z.H.; Nisbet, D.R.; Tricoli, A. Ultra-Durable and Transparent Self-Cleaning Surfaces by Large-Scale Self-Assembly of Hierarchical Interpenetrated Polymer Networks. ACS Appl. Mater. Interfaces 2016, 8, 13615–13623. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y.; Du, F. Rational fabrication of fluorine-free, superhydrophobic, durable surface by one-step spray method. Prog. Org. Coat. 2023, 174, 107227. [Google Scholar] [CrossRef]
- Patra, R.; Raju, K.R.C.S.; Murugan, K.; Subasri, R. Effect of heating rate on asperities pattern formed in sol-gel derived nanocomposite hydrophobic coatings. J. Sol-Gel Sci. Technol. 2022, 103, 50–61. [Google Scholar] [CrossRef]
- Soueiti, J.; Sarieddine, R.; Kadiri, H.; Alhussein, A.; Lerondel, G.; Habchi, R. A review of cost-effective black silicon fabrication techniques and applications. Nanoscale 2023, 15, 4738–4761. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, D.; Edgar, J.H. Wet etching of GaN, AlN, and SiC: A review. Mater. Sci. Eng. R Rep. 2005, 48, 1–46. [Google Scholar] [CrossRef]
- Pakpum, C.; Pussadee, N. Deep reactive ion etching of alumina titanium carbide using chlorine-based plasma. Surf. Coat. Technol. 2016, 306, 194–199. [Google Scholar] [CrossRef]
- Bing, W.; Wang, H.; Tian, L.; Zhao, J.; Jin, H.; Du, W.; Ren, L. Small Structure, Large Effect: Functional Surfaces Inspired by Salvinia Leaves. Small Struct. 2021, 2, 2100079. [Google Scholar] [CrossRef]
- Song, Y.; Yu, Z.; Liu, Y.; Dong, L.; Ma, H. A Hierarchical Conical Array with Controlled Adhesion and Drop Bounce Ability for Reducing Residual Non-Newtonian Liquids. J. Bionic Eng. 2021, 18, 637–648. [Google Scholar] [CrossRef]
- Yong, J.; Chen, F.; Yang, Q.; Zhang, D.; Du, G.; Si, J.; Yun, F.; Hou, X. Femtosecond Laser Weaving Superhydrophobic Patterned PDMS Surfaces with Tunable Adhesion. J. Phys. Chem. C 2013, 117, 24907–24912. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, J.; Song, Y.; Liu, Y.; Ren, L. Fabrication of biomimetic graphene films on fabric base by two-beam laser interference. Chin. Sci. Bull. 2018, 64, 1290–1295. [Google Scholar] [CrossRef]
- Yong, J.; Yang, Q.; Chen, F.; Zhang, D.; Du, G.; Bian, H.; Si, J.; Yun, F.; Hou, X. Superhydrophobic PDMS surfaces with three-dimensional (3D) pattern-dependent controllable adhesion. Appl. Surf. Sci. 2014, 288, 579–583. [Google Scholar] [CrossRef]
- Yong, J.; Chen, F.; Yang, Q.; Hou, X. Femtosecond laser controlled wettability of solid surfaces. Soft Matter 2015, 11, 8897–8906. [Google Scholar] [CrossRef]
- Zhan, Y.L.; Ruan, M.; Li, W.; Li, H.; Hu, L.Y.; Ma, F.M.; Yu, Z.L.; Feng, W. Fabrication of anisotropic PTFE superhydrophobic surfaces using laser microprocessing and their self-cleaning and anti-icing behavior. Colloids Surf. A Physicochem. Eng. Asp. 2017, 535, 8–15. [Google Scholar] [CrossRef]
- Fang, Y.; Yong, J.; Chen, F.; Huo, J.; Yang, Q.; Zhang, J.; Hou, X. Bioinspired Fabrication of Bi/Tridirectionally Anisotropic Sliding Superhydrophobic PDMS Surfaces by Femtosecond Laser. Adv. Mater. Interfaces 2018, 5, 1701245. [Google Scholar] [CrossRef]
- Wang, W.; Lu, L.; Lu, X.; Liang, Z.; Tang, B.; Xie, Y. Laser-induced jigsaw-like graphene structure inspired by Oxalis corniculata Linn. leaf. Bio-Des. Manuf. 2022, 5, 700–713. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, S.; Xing, X.; Wang, N. Progress in fabrication and applications of micro/nanostructured superhydrophobic surfaces. Surf. Innov. 2022, 10, 89–110. [Google Scholar] [CrossRef]
- Wohlfart, E.; Fernández-Blázquez, J.P.; Arzt, E.; del Campo, A. Nanofibrillar Patterns on PET: The Influence of Plasma Parameters in Surface Morphology. Plasma Process. Polym. 2011, 8, 876–884. [Google Scholar] [CrossRef]
- Ko, T.-J.; Park, S.J.; Kim, M.-S.; Yoon, S.M.; Kim, S.J.; Oh, K.H.; Nahm, S.; Moon, M.-W. Single-step plasma-induced hierarchical structures for tunable water adhesion. Sci. Rep. 2020, 10, 874. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Yao, J.; Liu, X.; Yan, R.; Xu, J. Adhesion behavior of different droplet on superhydrophobic surface of cotton fabric based on oxygen plasma etching. J. Text. Inst. 2022, 114, 790–800. [Google Scholar] [CrossRef]
- Szczepanski, C.R.; Guittard, F.; Darmanin, T. Recent advances in the study and design of parahydrophobic surfaces: From natural examples to synthetic approaches. Adv. Colloid Interface Sci. 2017, 241, 37–61. [Google Scholar] [CrossRef]
- Ghasemlou, M.; Daver, F.; Ivanova, E.P.; Adhikari, B. Bio-inspired sustainable and durable superhydrophobic materials: From nature to market. J. Mater. Chem. A 2019, 7, 16643–16670. [Google Scholar] [CrossRef]
- Li, X.; Zhang, G.; Xu, X.; Zhao, G.; Liu, Y.; Yin, S. Fabrication of superhydrophobic surfaces on a glass substrate via hot embossing. Ceram. Int. 2023, 49, 26338–26347. [Google Scholar] [CrossRef]
- Li, C.; Yang, J.; He, W.; Xiong, M.; Niu, X.; Li, X.; Yu, D.G. A Review on Fabrication and Application of Tunable Hybrid Micro–Nano Array Surfaces. Adv. Mater. Interfaces 2023, 10, 2202160. [Google Scholar] [CrossRef]
- Nyström, D.; Lindqvist, J.; Östmark, E.; Antoni, P.; Carlmark, A.; Hult, A.; Malmström, E. Superhydrophobic and Self-Cleaning Bio-Fiber Surfaces via ATRP and Subsequent Postfunctionalization. ACS Appl. Mater. Interfaces 2009, 1, 816–823. [Google Scholar] [CrossRef] [PubMed]
- Lv, T.; Cheng, Z.; Zhang, D.; Zhang, E.; Zhao, Q.; Liu, Y.; Jiang, L. Superhydrophobic Surface With Shape Memory Micro/Nanostructure and Its Application in Rewritable Chip for Droplet Storage. ACS Nano 2016, 10, 9379–9386. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Z.; Chen, A.; Wang, Q.; Zhang, J.; Zhao, C.; Xu, J.; Yang, W.; Peng, Y.; Zhang, Z. Fabrication of Micro-/Submicro-/Nanostructured Polypropylene/Graphene Superhydrophobic Surfaces with Extreme Dynamic Pressure Resistance Assisted by Single Hierarchically Porous Anodic Aluminum Oxide Template. J. Phys. Chem. C 2020, 124, 6197–6205. [Google Scholar] [CrossRef]
- Choi, J.; Cho, W.; Jung, Y.S.; Kang, H.S.; Kim, H.-T. Direct Fabrication of Micro/Nano-Patterned Surfaces by Vertical-Directional Photofluidization of Azobenzene Materials. ACS Nano 2017, 11, 1320–1327. [Google Scholar] [CrossRef] [PubMed]
- Yanagishita, T.; Sou, T.; Masuda, H. Micro-nano hierarchical pillar array structures prepared on curved surfaces by nanoimprinting using flexible molds from anodic porous alumina and their application to superhydrophobic surfaces. RSC Adv. 2022, 12, 20340–20347. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Zhan, F.; Wang, L. Hybrid Topography of Lotus Leaf under Hydrostatic/Hydrodynamic Pressure. Adv. Mater. Interfaces 2022, 10, 2202044. [Google Scholar] [CrossRef]
- Li, W.; Chan, C.-w.; Li, Z.; Siu, S.-Y.; Chen, S.; Sun, H.; Liu, Z.; Wang, Y.; Hu, C.; Pugno, N.M.; et al. All-perfluoropolymer, nonlinear stability-assisted monolithic surface combines topology-specific superwettability with ultradurability. Innovation 2023, 4, 100389. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Ma, Y.; Wang, X.; Jia, Y.; Li, K.; Li, A. Superhydrophobic Flexible Silicone Rubber with Stable Performance, Anti-Icing, and Multilevel Rough Structure. ACS Appl. Polym. Mater. 2023, 5, 4729–4737. [Google Scholar] [CrossRef]
- Gu, D.; Song, K.; Chen, S.; Liu, S.; Yang, B.; Ma, X.; Wang, Z.; Wang, S. Multistage textured superhydrophobic polytetrafluoroethylene surface prepared by fabric embossing and thermal annealing. Mater. Lett. 2020, 268, 127556. [Google Scholar] [CrossRef]
- Wang, Y.K.; Liu, Y.P.; Li, J.; Chen, L.W.; Huang, S.L.; Tian, X.L. Fast self-healing superhydrophobic surfaces enabled by biomimetic wax regeneration. Chem. Eng. J. 2020, 390, 124311. [Google Scholar] [CrossRef]
- Li, Y.; Wen, Q.; Zou, S.; Dan, X.; Ning, F.; Li, W.; Xu, P.; He, C.; Shen, M.; He, L.; et al. Multiscale Architectured Nafion Membrane Derived from Lotus Leaf for Fuel Cell Applications. ACS Appl. Mater. Interfaces 2023, 15, 29084–29093. [Google Scholar] [CrossRef]
- Ghasemlou, M.; Le, P.H.; Daver, F.; Murdoch, B.J.; Ivanova, E.P.; Adhikari, B. Robust and Eco-Friendly Superhydrophobic Starch Nanohybrid Materials with Engineered Lotus Leaf Mimetic Multiscale Hierarchical Structures. ACS Appl. Mater. Interfaces 2021, 13, 36558–36573. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; He, H.; Li, Y.; Qiu, J. Using Nanoimprint Lithography to Create Robust, Buoyant, Superhydrophobic PVB/SiO2 Coatings on wood Surfaces Inspired by Red roses petal. Sci. Rep. 2019, 9, 9961. [Google Scholar] [CrossRef] [PubMed]
- Maghsoudi, K.; Vazirinasab, E.; Momen, G.; Jafari, R. Advances in the Fabrication of Superhydrophobic Polymeric Surfaces by Polymer Molding Processes. Ind. Eng. Chem. Res. 2020, 59, 9343–9363. [Google Scholar] [CrossRef]
- Kang, B.; Sung, J.; So, H. Realization of Superhydrophobic Surfaces Based on Three-Dimensional Printing Technology. Int. J. Precis. Eng. Manuf.-Green Technol. 2019, 8, 47–55. [Google Scholar] [CrossRef]
- Kim, S.; Hwang, H.J.; Cho, H.; Choi, D.; Hwang, W. Repeatable replication method with liquid infiltration to fabricate robust, flexible, and transparent, anti-reflective superhydrophobic polymer films on a large scale. Chem. Eng. J. 2018, 350, 225–232. [Google Scholar] [CrossRef]
- Kim, S.; Cho, H.; Hwang, W. Simple fabrication method of flexible and translucent high-aspect ratio superhydrophobic polymer tube using a repeatable replication and nondestructive detachment process. Chem. Eng. J. 2019, 361, 975–981. [Google Scholar] [CrossRef]
- Li, X.; Gao, L.; Wang, M.; Lv, D.; He, P.; Xie, Y.; Zhan, X.; Li, J.; Lin, Z. Recent development and emerging applications of robust biomimetic superhydrophobic wood. J. Mater. Chem. A 2023, 11, 6772–6795. [Google Scholar] [CrossRef]
- Hooda, A.; Goyat, M.S.; Pandey, J.K.; Kumar, A.; Gupta, R. A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings. Prog. Org. Coat. 2020, 142, 105557. [Google Scholar] [CrossRef]
- Escorcia-Díaz, D.; García-Mora, S.; Rendón-Castrillón, L.; Ramírez-Carmona, M.; Ocampo-López, C. Advancements in Nanoparticle Deposition Techniques for Diverse Substrates: A Review. Nanomaterials 2023, 13, 2586. [Google Scholar] [CrossRef]
- Gudmundsson, J.T.; Anders, A.; von Keudell, A. Foundations of physical vapor deposition with plasma assistance. Plasma Sources Sci. Technol. 2022, 31, 083001. [Google Scholar] [CrossRef]
- Li, J.; Li, C.-X.; Chen, Q.-Y.; Gao, J.-T.; Wang, J.; Yang, G.-J.; Li, C.-J. Super-Hydrophobic Surface Prepared by Lanthanide Oxide Ceramic Deposition Through PS-PVD Process. J. Therm. Spray Technol. 2017, 26, 398–408. [Google Scholar] [CrossRef]
- Gao, W.; Ma, F.; Yin, Y.; Li, J. Robust and durable transparent superhydrophobic F-TNTs/TiN coating fabricated by structure tuning on surface of TiN hard coating. Appl. Surf. Sci. 2023, 613, 155967. [Google Scholar] [CrossRef]
- Wang, W.; Feng, L.; Song, B.; Wang, L.; Shao, R.; Xia, Y.; Liu, D.; Li, T.; Liu, S.; Wang, L.; et al. Fabrication and application of superhydrophobic nonwovens: A review. Mater. Today Chem. 2022, 26, 101227. [Google Scholar] [CrossRef]
- Marchalot, J.; Ramos, S.M.M.; Pirat, C.; Journet, C. Enhanced water repellency of surfaces coated with multiscale carbon structures. Appl. Surf. Sci. 2018, 428, 364–369. [Google Scholar] [CrossRef]
- Busa, C. Novel Bottom-Up Sub-Micron Architectures for Advanced Functional Devices. Ph.D. Thesis, University of Birmingham (United Kingdom), Birmingham, UK, 2018. [Google Scholar]
- Liang, Z.; Zhou, Z.; Dong, B.; Wang, S. Fabrication of Superhydrophobic and UV-Resistant Silk Fabrics with Laundering Durability and Chemical Stabilities. Coatings 2020, 10, 349. [Google Scholar] [CrossRef]
- Kalmoni, J.J.; Heale, F.L.; Blackman, C.S.; Parkin, I.P.; Carmalt, C.J. A Single-Step Route to Robust and Fluorine-Free Superhydrophobic Coatings via Aerosol-Assisted Chemical Vapor Deposition. Langmuir 2023, 39, 7731–7740. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Cui, W.; Song, L.; Liao, Q.; Ma, K.; Zhong, S.; Yue, H.; Liang, B. Design of Organic-Free Superhydrophobic TiO2 with Ultraviolet Stability or Ultraviolet-Induced Switchable Wettability. ACS Appl. Mater. Interfaces 2022, 14, 9864–9872. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Zhao, B.; Li, L.; Zhang, J. Durable superhydrophobic glass wool@polydopamine@PDMS for highly efficient oil/water separation. J. Colloid Interface Sci. 2019, 544, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Mosayebi, E.; Azizian, S.; Noei, N. Preparation of Robust Superhydrophobic Sand by Chemical Vapor Deposition of Polydimethylsiloxane for Oil/Water Separation. Macromol. Mater. Eng. 2020, 305, 2000425. [Google Scholar] [CrossRef]
- Tombesi, A.; Li, S.; Sathasivam, S.; Page, K.; Heale, F.L.; Pettinari, C.; Carmalt, C.J.; Parkin, I.P. Aerosol-assisted chemical vapour deposition of transparent superhydrophobic film by using mixed functional alkoxysilanes. Sci. Rep. 2019, 9, 7549. [Google Scholar] [CrossRef] [PubMed]
- Darmanin, T.; de Givenchy, E.T.; Amigoni, S.; Guittard, F. Superhydrophobic Surfaces by Electrochemical Processes. Adv. Mater. 2013, 25, 1378–1394. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Wang, H.; Geng, Y.; Li, M.; Deng, Q.; Tian, Y.; Chen, R.; Zhu, X.; Liao, Q. Carbon-Based Photothermal Superhydrophobic Materials with Hierarchical Structure Enhances the Anti-Icing and Photothermal Deicing Properties. ACS Appl. Mater. Interfaces 2021, 13, 48308–48321. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Zhou, S.; Ma, L.; Wan, S.; Zhu, X. Approach to excellent superhydrophobicity and corrosion resistance of carbon-based films by graphene and cobalt synergism. Surf. Interface Anal. 2019, 51, 152–163. [Google Scholar] [CrossRef]
- Zhu, X.; Zhou, S.; Yan, Q. Ternary graphene/amorphous carbon/nickel nanocomposite film for outstanding superhydrophobicity. Chem. Phys. 2018, 505, 19–25. [Google Scholar] [CrossRef]
- Chen, F.; Hao, S.; Huang, S.; Lu, Y. Nanoscale SiO2-coated superhydrophobic meshes via electro-spray deposition for oil-water separation. Powder Technol. 2020, 373, 82–92. [Google Scholar] [CrossRef]
- Saji, V.S. Superhydrophobic surfaces and coatings by electrochemical methods—A review. J. Adhes. Sci. Technol. 2022, 37, 137–161. [Google Scholar] [CrossRef]
- Gan, Z.; Kong, D.; Yu, Q.; Jia, Y.; Dong, X.-H.; Wang, L. Fabrication superhydrophobic composite membranes with hierarchical geometries and low-surface-energy modifications. Polymer 2020, 211, 123097. [Google Scholar] [CrossRef]
- Cheng, X.Q.; Jiao, Y.; Sun, Z.; Yang, X.; Cheng, Z.; Bai, Q.; Zhang, Y.; Wang, K.; Shao, L. Constructing Scalable Superhydrophobic Membranes for Ultrafast Water–Oil Separation. ACS Nano 2021, 15, 3500–3508. [Google Scholar] [CrossRef]
- Raman, A.; Jayan, J.S.; Deeraj, B.D.S.; Saritha, A.; Joseph, K. Electrospun Nanofibers as Effective Superhydrophobic Surfaces: A Brief review. Surf. Interfaces 2021, 24, 101140. [Google Scholar] [CrossRef]
- Kim, T.; Song, M.G.; Kim, K.; Jeon, H.; Kim, G.H. Recyclable Superhydrophobic Surface Prepared via Electrospinning and Electrospraying Using Waste Polyethylene Terephthalate for Self-Cleaning Applications. Polymers 2023, 15, 3810. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Gong, X.; Jiao, W.; Yin, X.; Yu, J.; Zhang, S.; Ding, B. Superhydrophobic polyvinylidene fluoride nanofibrous membranes with stable hierarchical structures for protective textiles. Compos. Commun. 2023, 38, 101500. [Google Scholar] [CrossRef]
- Wei, Z.; Teng, S.; Fu, Y.; Zhou, Q.; Yang, W. Micro/nano-structured electrospun membranes with superhydrophobic and photodynamic antibacterial performances. Prog. Org. Coat. 2022, 164, 106703. [Google Scholar] [CrossRef]
- Ding, L.; Chen, M.; Lu, H.; He, H.; Liu, X.; Wang, Y. 3D multiscale sponges with plant-inspired controllable superhydrophobic coating for oil spill cleanup. Prog. Org. Coat. 2021, 151, 106075. [Google Scholar] [CrossRef]
- Celik, N.; Torun, I.; Ruzi, M.; Esidir, A.; Onses, M.S. Fabrication of robust superhydrophobic surfaces by one-step spray coating: Evaporation driven self-assembly of wax and nanoparticles into hierarchical structures. Chem. Eng. J. 2020, 396, 125230. [Google Scholar] [CrossRef]
- Lyu, J.; Wu, B.; Wu, N.; Peng, C.; Yang, J.; Meng, Y.; Xing, S. Green preparation of transparent superhydrophobic coatings with persistent dynamic impact resistance for outdoor applications. Chem. Eng. J. 2021, 404, 126456. [Google Scholar] [CrossRef]
- Hou, D.; Christie, K.S.S.; Wang, K.; Tang, M.; Wang, D.; Wang, J. Biomimetic superhydrophobic membrane for membrane distillation with robust wetting and fouling resistance. J. Membr. Sci. 2020, 599, 117708. [Google Scholar] [CrossRef]
- Tang, S.; Wu, Z.; Feng, G.; Wei, L.; Weng, J.; Ruiz-Hitzky, E.; Wang, X. Multifunctional sandwich-like composite film based on superhydrophobic MXene for self-cleaning, photodynamic and antimicrobial applications. Chem. Eng. J. 2023, 454, 140457. [Google Scholar] [CrossRef]
- Wang, P.; Yang, Y.; Wang, H.; Wang, H. Fabrication of super-robust and nonfluorinated superhydrophobic coating based on diatomaceous earth. Surf. Coat. Technol. 2019, 362, 90–96. [Google Scholar] [CrossRef]
- Chen, Q.; de Leon, A.; Advincula, R.C. Inorganic–Organic Thiol–ene Coated Mesh for Oil/Water Separation. ACS Appl. Mater. Interfaces 2015, 7, 18566–18573. [Google Scholar] [CrossRef]
- Qi, C.; Chen, H.; Sun, Y.; Shen, L.; Li, X.; Fu, Q.; Liu, Y. Facile preparation of robust superhydrophobic surface based on multi-scales nanoparticle. Polym. Eng. Sci. 2020, 60, 1785–1794. [Google Scholar] [CrossRef]
- Zhu, Y.; Pei, L.; Ambreen, J.; He, C.; Ngai, T. Facile Preparation of a Fluorine-Free, Robust, Superhydrophobic Coating through Dip Coating Combined with Non-Solvent Induced Phase Separation (Dip-Coating-NIPS) Method. Macromol. Chem. Phys. 2020, 221, 2000023. [Google Scholar] [CrossRef]
- Wang, P.; Yao, T.; Li, Z.; Wei, W.; Xie, Q.; Duan, W.; Han, H. A superhydrophobic/electrothermal synergistically anti-icing strategy based on graphene composite. Compos. Sci. Technol. 2020, 198, 108307. [Google Scholar] [CrossRef]
- Chen, W.; Huang, X.; Zhou, M.; Liu, H.; Xu, M.; Zhu, J. Rose-petal-inspired fabrication of conductive superhydrophobic/superoleophilic carbon with high adhesion to water from orange peels for efficient oil adsorption from oil-water emulsion. Colloids Surf. A Physicochem. Eng. Asp. 2023, 661, 130920. [Google Scholar] [CrossRef]
- Gu, W.; Li, W.; Zhang, Y.; Xia, Y.; Wang, Q.; Wang, W.; Liu, P.; Yu, X.; He, H.; Liang, C.; et al. Ultra-durable superhydrophobic cellular coatings. Nat. Commun. 2023, 14, 5953. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.-D.; Wu, Z.-H.; Xia, Q.-Q.; Qu, Y.-X.; Pan, H.-T.; Hu, W.-J.; Zhao, L.; Cao, K.; Chen, E.-Y.; Yuan, Z.; et al. Ultrafast Flame-Induced Pyrolysis of Poly(dimethylsiloxane) Foam Materials toward Exceptional Superhydrophobic Surfaces and Reliable Mechanical Robustness. ACS Appl. Mater. Interfaces 2021, 13, 23161–23172. [Google Scholar] [CrossRef] [PubMed]
- Ruzi, M.; Celik, N.; Onses, M.S. Superhydrophobic coatings for food packaging applications: A review. Food Packag. Shelf Life 2022, 32, 100823. [Google Scholar] [CrossRef]
- Dalawai, S.P.; Saad Aly, M.A.; Latthe, S.S.; Xing, R.; Sutar, R.S.; Nagappan, S.; Ha, C.-S.; Kumar Sadasivuni, K.; Liu, S. Recent Advances in durability of superhydrophobic self-cleaning technology: A critical review. Prog. Org. Coat. 2020, 138, 105381. [Google Scholar] [CrossRef]
- Zhao, H.; Gao, W.-C.; Li, Q.; Khan, M.R.; Hu, G.-H.; Liu, Y.; Wu, W.; Huang, C.-X.; Li, R.K.Y. Recent advances in superhydrophobic polyurethane: Preparations and applications. Adv. Colloid Interface Sci. 2022, 303, 102644. [Google Scholar] [CrossRef]
- Li, B.; Bai, J.; He, J.; Ding, C.; Dai, X.; Ci, W.; Zhu, T.; Liao, R.; Yuan, Y. A Review on Superhydrophobic Surface with Anti-Icing Properties in Overhead Transmission Lines. Coatings 2023, 13, 301. [Google Scholar] [CrossRef]
- Li, W.; Zhan, Y.; Yu, S. Applications of superhydrophobic coatings in anti-icing: Theory, mechanisms, impact factors, challenges and perspectives. Prog. Org. Coat. 2021, 152, 106117. [Google Scholar] [CrossRef]
- Golovin, K.; Dhyani, A.; Thouless, M.D.; Tuteja, A. Low–interfacial toughness materials for effective large-scale deicing. Science 2019, 364, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Yu, M.; Shang, Y.; Zhou, P.; Song, R.; Xu, X.; Chen, X.; Wang, Z.; Yao, S. Suppressing Ice Nucleation of Supercooled Condensate with Biphilic Topography. Phys. Rev. Lett. 2018, 120, 075902. [Google Scholar] [CrossRef] [PubMed]
- Tao, B.; Cheng, L.; Wang, J.; Zhang, X.; Liao, R. A review on mechanism and application of functional coatings for overhead transmission lines. Front. Mater. 2022, 9, 995290. [Google Scholar] [CrossRef]
- Cao, Y.; Tan, W.; Wu, Z. Aircraft icing: An ongoing threat to aviation safety. Aerosp. Sci. Technol. 2018, 75, 353–385. [Google Scholar] [CrossRef]
- Meuler, A.J.; McKinley, G.H.; Cohen, R.E. Exploiting Topographical Texture To Impart Icephobicity. ACS Nano 2010, 4, 7048–7052. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Jian, Y.; Yan, Y. The effects of bio-inspired micro/nano scale structures on anti-icing properties. Soft Matter 2021, 17, 447–466. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Chen, H.; Wang, G.; Liu, A. Recent Progress in Preparation and Anti-Icing Applications of Superhydrophobic Coatings. Coatings 2018, 8, 208. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, H.; Zhu, D.; Yuan, L.; Zhang, H.; Fan, P.; Zhong, M. A Review on Ultrafast Laser Enabled Excellent Superhydrophobic Anti-Icing Performances. Appl. Sci. 2023, 13, 5478. [Google Scholar] [CrossRef]
- Kreder, M.J.; Alvarenga, J.; Kim, P.; Aizenberg, J. Design of anti-icing surfaces: Smooth, textured or slippery? Nat. Rev. Mater. 2016, 1, 15003. [Google Scholar] [CrossRef]
- Pan, L.; Xue, P.; Wang, M.; Wang, F.; Guo, H.; Yuan, X.; Zhong, L.; Yu, J. Novel superhydrophobic carbon fiber/epoxy composites with anti-icing properties. J. Mater. Res. 2021, 36, 1695–1704. [Google Scholar] [CrossRef]
- Tong, W.; Xiong, D.; Wang, N.; Wu, Z.; Zhou, H. Mechanically robust superhydrophobic coating for aeronautical composite against ice accretion and ice adhesion. Compos. Part B Eng. 2019, 176, 107267. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; He, F.; Lv, C.; Hao, P. How micropatterns affect the anti-icing performance of superhydrophobic surfaces. Int. J. Heat Mass Transf. 2022, 195, 123196. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, J.; Ren, Y.; Li, W.; Li, S.; Chai, N.; Zeng, Z.; Chen, X.; Yue, Y.; Zhou, L.; et al. Passive Deicing CFRP Surfaces Enabled by Super-Hydrophobic Multi-Scale Micro-Nano Structures Fabricated via Femtosecond Laser Direct Writing. Nanomaterials 2022, 12, 2782. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, W.; Zhu, R.; Huang, Y. Fabrication and characterization of multiscale spherical artificial compound eye with self-cleaning and anti-icing properties. Results Phys. 2021, 24, 104153. [Google Scholar] [CrossRef]
- Li, J.; Wang, W.; Mei, X.; Pan, A.; Sun, X.; Liu, B.; Cui, J. Artificial Compound Eyes Prepared by a Combination of Air-Assisted Deformation, Modified Laser Swelling, and Controlled Crystal Growth. ACS Nano 2019, 13, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, J.; Dodiuk, H.; Kenig, S.; Ratto, J.A.; Barry, C.; Mead, J. The reduction in ice adhesion using controlled topography superhydrophobic coatings. J. Coat. Technol. Res. 2023, 20, 469–483. [Google Scholar] [CrossRef]
- Deng, L.; Wang, Z.; Niu, Y.; Luo, F.; Chen, Q. CNTs-induced superhydrophobic and photothermal coating with long-term durability and self-replenishing property for anti-icing/de-icing. Compos. Sci. Technol. 2024, 245, 110347. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, Y.; Zhu, Z.; Liu, Y.; Xie, J.; Zhang, B.; Zhang, H.; Zhang, Q. Hierarchical micro/nano/porous structure PVDF/hydrophobic GO photothermal membrane with highly efficient anti-icing/de-icing performance. Colloids Surf. A Physicochem. Eng. Asp. 2022, 651, 129586. [Google Scholar] [CrossRef]
- Jiang, G.; Liu, Z.; Hu, J. Superhydrophobic and Photothermal PVDF/CNTs Durable Composite Coatings for Passive Anti-Icing/Active De-Icing. Adv. Mater. Interfaces 2022, 9, 2101704. [Google Scholar] [CrossRef]
- Lee, J.-S.; Hoang, V.-T.; Kweon, J.-H.; Nam, Y.-W. Multifunctional Ni-plated carbon fiber reinforced thermoplastic composite with excellent electrothermal and superhydrophobic properties using MWCNTs and SiO2/Ag microspheres. Compos. Part A Appl. Sci. Manuf. 2023, 171, 107585. [Google Scholar] [CrossRef]
- Beyer, J.; Goksøyr, A.; Hjermann, D.Ø.; Klungsøyr, J. Environmental effects of offshore produced water discharges: A review focused on the Norwegian continental shelf. Mar. Environ. Res. 2020, 162, 105155. [Google Scholar] [CrossRef] [PubMed]
- Broch, O.J.; Nepstad, R.; Ellingsen, I.; Bast, R.; Skeie, G.M.; Carroll, J. Simulating crude oil exposure, uptake and effects in North Atlantic Calanus finmarchicus populations. Mar. Environ. Res. 2020, 162, 105184. [Google Scholar] [CrossRef] [PubMed]
- Teal, J.M.; Howarth, R.W. Oil spill studies: A review of ecological effects. Environ. Manag. 1984, 8, 27–43. [Google Scholar] [CrossRef]
- Xiong, Q.; Tian, Q.; Yue, X.; Xu, J.; He, X.; Qiu, F.; Zhang, T. Superhydrophobic PET@ZnO Nanofibrous Membrane Extract from Waste Plastic for Efficient Water-In-Oil Emulsion Separation. Ind. Eng. Chem. Res. 2022, 61, 11804–11814. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Wang, C.; Zhai, H.; Liu, B.; Zhao, X.; Fang, D.; Wei, Y. Facile preparation of flexible and stable superhydrophobic non-woven fabric for efficient oily wastewater treatment. Surf. Coat. Technol. 2019, 357, 526–534. [Google Scholar] [CrossRef]
- Huang, G.; Lai, B.; Xu, H.; Jin, Y.; Huo, L.; Li, Z.; Deng, Y. Fabrication of a superhydrophobic fabric with a uniform hierarchical structure via a bottom-blown stirring method for highly efficient oil–water separation. Sep. Purif. Technol. 2021, 258, 118063. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, X.; Xin, Z.; Zhou, C. A self-cleaning polybenzoxazine/TiO2 surface with superhydrophobicity and superoleophilicity for oil/water separation. Nanoscale 2015, 7, 19476–19483. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Wang, X.; Zhang, Z.; Jin, X.; Jiang, M.; Zhang, J. Design and Fabrication of the Evolved Zeolitic Imidazolate Framework-Modified Polylactic Acid Nonwoven Fabric for Efficient Oil/Water Separation. ACS Appl. Mater. Interfaces 2021, 13, 14653–14661. [Google Scholar] [CrossRef]
- Cui, C.; Wang, W.; Lv, X.; Jiao, S.; Pang, G. Fabrication of superwetting non-woven fabric by grafting one-dimensional inorganic nanostructure for efficient separation of surfactant-stabilized organic solvent/water emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2023, 663, 131068. [Google Scholar] [CrossRef]
- Yuan, H.; Zhang, M.; Pan, Y.; Liu, C.; Shen, C.; Chen, Q.; Liu, X. Microspheres Modified with Superhydrophobic Non-Woven Fabric with High-Efficiency Oil–Water Separation: Controlled Water Content in PLA Solution. Macromol. Mater. Eng. 2022, 307, 2100919. [Google Scholar] [CrossRef]
- Abu-Thabit, N.Y.; Azad, A.K.; Mezghani, K.; Hakeem, A.S.; Drmosh, Q.A.; Akhtar, S.; Adesina, A.Y. Facile and Green Fabrication of Superhydrophobic Polyacrylonitrile Nonwoven Fabric with Iron Hydroxide Nanoparticles for Efficient Oil/Water Separation. ACS Appl. Polym. Mater. 2022, 4, 8450–8460. [Google Scholar] [CrossRef]
- Kim, D.-S.; Kang, J.; Jung, J.-Y.; Hwang, M.; Seo, S.; Kim, J.-H. Facile Fabrication of Superhydrophobic Polymer Membranes with Hierarchical Structure for Efficient Oil/Water Separation. Fibers Polym. 2022, 23, 2365–2372. [Google Scholar] [CrossRef]
- Wei, J.; Nian, P.; Wang, Y.; Wang, X.; Wang, Y.; Xu, N.; Wei, Y. Preparation of superhydrophobic-superoleophilic ZnO nanoflower@SiC composite ceramic membranes for water-in-oil emulsion separation. Sep. Purif. Technol. 2022, 292, 121002. [Google Scholar] [CrossRef]
- Wei, Y.; Xie, Z.; Qi, H. Superhydrophobic-superoleophilic SiC membranes with micro-nano hierarchical structures for high-efficient water-in-oil emulsion separation. J. Membr. Sci. 2020, 601, 117842. [Google Scholar] [CrossRef]
- Ifelebuegu, A.; Lale, E.; Mbanaso, F.; Theophilus, S. Facile Fabrication of Recyclable, Superhydrophobic, and Oleophilic Sorbent from Waste Cigarette Filters for the Sequestration of Oil Pollutants from an Aqueous Environment. Processes 2018, 6, 140. [Google Scholar] [CrossRef]
- Gao, X.; Yan, X.; Yao, X.; Xu, L.; Zhang, K.; Zhang, J.; Yang, B.; Jiang, L. The Dry-Style Antifogging Properties of Mosquito Compound Eyes and Artificial Analogues Prepared by Soft Lithography. Adv. Mater. 2007, 19, 2213–2217. [Google Scholar] [CrossRef]
- Niu, H.; Luo, S.; Yao, X.; Li, T.; Ai, M.; Zhou, R.; Wang, H.; Wan, L.; Du, Y.; Hu, L.; et al. A review of transparent superhydrophobic materials and their research in the field of photovoltaic dust removal. Mater. Sci. Semicond. Process. 2023, 166, 107741. [Google Scholar] [CrossRef]
- Li, J.; Zheng, J.Y.; Zhang, J.; Feng, J. Fabrication of TiO2/PU Superhydrophobic Film by Nanoparticle Assisted Cast Micromolding Process. J. Nanosci. Nanotechnol. 2016, 16, 5875–5879. [Google Scholar] [CrossRef]
- Liu, S.; Han, Y.; Qie, J.; Chen, S.; Liu, D.; Duo, L.; Chen, H.; Lin, Q. Environment friendly superhydrophobic and transparent surface coating via layer-by-layer self-assembly for antifogging of optical lenses. J. Biomater. Sci. Polym. Ed. 2021, 33, 847–857. [Google Scholar] [CrossRef]
- Xi, R.; Wang, Y.; Wang, X.; Lv, J.; Li, X.; Li, T.; Zhang, X.; Du, X. Ultrafine nano-TiO2 loaded on dendritic porous silica nanoparticles for robust transparent antifogging self-cleaning nanocoatings. Ceram. Int. 2020, 46, 23651–23661. [Google Scholar] [CrossRef]
- Wooh, S.; Koh, J.H.; Lee, S.; Yoon, H.; Char, K. Trilevel-Structured Superhydrophobic Pillar Arrays with Tunable Optical Functions. Adv. Funct. Mater. 2014, 24, 5550–5556. [Google Scholar] [CrossRef]
- Passoni, L.; Bonvini, G.; Luzio, A.; Facibeni, A.; Bottani, C.E.; Di Fonzo, F. Multiscale Effect of Hierarchical Self-Assembled Nanostructures on Superhydrophobic Surface. Langmuir 2014, 30, 13581–13587. [Google Scholar] [CrossRef]
- SHU, Z.; BAO, J.; CHEN, B.; HE, J.; JIE, J.; PU, M. Research on Anti-ice Performance of a Novel ZnO/SiO2 Composite Superhydrophobic Coating Modified by Magnetron Sputtering and Fluoridation. Surf. Technol. 2022, 51, 452–459. [Google Scholar] [CrossRef]
- Lai, C.-J.; Chen, Y.-J.; Wu, M.-X.; Wu, C.-C.; Tang, N.-T.; Hsu, T.-F.; Lin, S.-H.; Li, H.-F.; Yang, H. Self-cleaning and anti-fogging hierarchical structure arrays inspired by termite wing. Appl. Surf. Sci. 2023, 616, 156484. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, C.; Wang, H.; Liu, Y.; Wang, J.; Shi, Z. Ultra-high performance flexible and controllable superhydrophobic films based on microsphere/micro-pyramid hierarchical arrays. Colloids Surf. A Physicochem. Eng. Asp. 2023, 677, 132449. [Google Scholar] [CrossRef]
- Li, W.; Chen, Y.; Jiao, Z. Efficient Anti-Fog and Anti-Reflection Functions of the Bio-Inspired, Hierarchically-Architectured Surfaces of Multiscale Columnar Structures. Nanomaterials 2023, 13, 1570. [Google Scholar] [CrossRef] [PubMed]
- Jang, N.-S.; Ha, S.-H.; Kim, K.-H.; Kim, J.-M. Facile one-step photopatterning of hierarchical polymer structures for highly transparent, flexible superhydrophobic films. Prog. Org. Coat. 2019, 130, 24–30. [Google Scholar] [CrossRef]
- Liu, P.; Niu, L.; Tao, X.; Li, X.; Zhang, Z. Hydrophobic Silica with Potential for Water-Injection Augmentation of a Low-Permeability Reservoir: Drag Reduction and Self-Cleaning Ability in Relation to Interfacial Interactions. ACS Omega 2019, 4, 13681–13686. [Google Scholar] [CrossRef]
- Tian, N.; Chen, K.; Yu, H.; Wei, J.; Zhang, J. Super pressure-resistant superhydrophobic fabrics with real self-cleaning performance. iScience 2022, 25, 104494. [Google Scholar] [CrossRef]
- Maharjan, S.; Liao, K.-S.; Wang, A.J.; Barton, K.; Haldar, A.; Alley, N.J.; Byrne, H.J.; Curran, S.A. Self-cleaning hydrophobic nanocoating on glass: A scalable manufacturing process. Mater. Chem. Phys. 2020, 239, 122000. [Google Scholar] [CrossRef]
- Shi, S.; Wang, X.; Li, Z.; Meng, J.; Chu, X.; Zhang, P.; Sun, B.; Zhang, J.; Gao, Y.; Xu, W.; et al. Multifunctional Integrated Superhydrophobic Coatings with Unique Fluorescence and Micro/Micro/Nano-Hierarchical Structures Enabled by In Situ Self-Assembly. ACS Appl. Mater. Interfaces 2023, 15, 7442–7453. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Zhao, T.; Fei, H.; Li, F.; Guo, W.; Yao, Z.; Feng, Z. A review of various self-cleaning surfaces, durability and functional applications on building exteriors. Constr. Build. Mater. 2023, 409, 134084. [Google Scholar] [CrossRef]
- Oh, S.; Cho, J.W.; Lee, J.; Han, J.; Kim, S.K.; Nam, Y. A Scalable Haze-Free Antireflective Hierarchical Surface with Self-Cleaning Capability. Adv. Sci. 2022, 9, 2202781. [Google Scholar] [CrossRef] [PubMed]
- Sutar, R.S.; Shi, B.; Kanchankoti, S.S.; Ingole, S.S.; Jamadar, W.S.; Sayyad, A.J.; Khot, P.B.; Sadasivuni, K.K.; Latthe, S.S.; Liu, S.; et al. Development of self-cleaning superhydrophobic cotton fabric through silica/PDMS composite coating. Surf. Topogr. Metrol. Prop. 2023, 11, 045004. [Google Scholar] [CrossRef]
- Oh, J.H.; Park, C.H. The Effect of Fiber Type and Yarn Diameter on Superhydrophobicity, Self-Cleaning Property, and Water Spray Resistance. Polymers 2021, 13, 817. [Google Scholar] [CrossRef] [PubMed]
- Pakdel, E.; Zhao, H.; Wang, J.; Tang, B.; Varley, R.J.; Wang, X. Superhydrophobic and photocatalytic self-cleaning cotton fabric using flower-like N-doped TiO2/PDMS coating. Cellulose 2021, 28, 8807–8820. [Google Scholar] [CrossRef]
- Altangerel, Z.; Purev-Ochir, B.; Ganzorig, A.; Tsagaantsooj, T.; Lkhamsuren, G.; Choisuren, A.; Chimed, G. Superhydrophobic modification and characterization of cashmere fiber surfaces by wet coating techniques of silica nanoparticles. Surf. Interfaces 2020, 19, 100533. [Google Scholar] [CrossRef]
- Luo, W.; Sun, D.; Chen, S.; Shanmugam, L.; Xiang, Y.; Yang, J. Robust Microcapsules with Durable Superhydrophobicity and Superoleophilicity for Efficient Oil–Water Separation. ACS Appl. Mater. Interfaces 2020, 12, 57547–57559. [Google Scholar] [CrossRef]
- Teh, S.-Y.; Lin, R.; Hung, L.-H.; Lee, A.P. Droplet microfluidics. Lab A Chip 2008, 8, 198–220. [Google Scholar] [CrossRef]
- Jiao, L.; Wu, Y.; Hu, Y.; Wu, H.; Xu, Z.; Han, L.; Guo, Q.; Li, D.; Chen, R. Oil/Water Microreactor with a Core–Shell Wetting State on a SOB/OL-SHB/HL Multilevel Patterned Surface. J. Phys. Chem. C 2021, 125, 27771–27783. [Google Scholar] [CrossRef]
- Wang, W.; Lai, H.; Cheng, Z.; Fan, Z.; Zhang, D.; Wang, J.; Yu, S.; Xie, Z.; Liu, Y. Superhydrophobic Shape Memory Polymer Microarrays with Switchable Directional/Antidirectional Droplet Sliding and Optical Performance. ACS Appl. Mater. Interfaces 2020, 12, 49219–49226. [Google Scholar] [CrossRef] [PubMed]
- Nokes, J.; Sharma, H.; Tu, R.; Kim, M.; Chu, M.; Siddiqui, A.; Khine, M. Nanotextured Shrink Wrap Superhydrophobic Surfaces by Argon Plasma Etching. Materials 2016, 9, 196. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Bi, J.; Wang, S.; Zhang, T.; Xu, X.; Wang, H.; Cheng, S.; Zhu, B.-W.; Tan, M. Bio-inspired Edible Superhydrophobic Interface for Reducing Residual Liquid Food. J. Agric. Food Chem. 2018, 66, 2143–2150. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Q.; Ma, J.; Yin, T.; Jin, H.; Zheng, J.; Gao, H. Superhydrophobic Non-Metallic Surfaces with Multiscale Nano/Micro-Structure: Fabrication and Application. Molecules 2024, 29, 2098. https://doi.org/10.3390/molecules29092098
Guo Q, Ma J, Yin T, Jin H, Zheng J, Gao H. Superhydrophobic Non-Metallic Surfaces with Multiscale Nano/Micro-Structure: Fabrication and Application. Molecules. 2024; 29(9):2098. https://doi.org/10.3390/molecules29092098
Chicago/Turabian StyleGuo, Qi, Jieyin Ma, Tianjun Yin, Haichuan Jin, Jiaxiang Zheng, and Hui Gao. 2024. "Superhydrophobic Non-Metallic Surfaces with Multiscale Nano/Micro-Structure: Fabrication and Application" Molecules 29, no. 9: 2098. https://doi.org/10.3390/molecules29092098
APA StyleGuo, Q., Ma, J., Yin, T., Jin, H., Zheng, J., & Gao, H. (2024). Superhydrophobic Non-Metallic Surfaces with Multiscale Nano/Micro-Structure: Fabrication and Application. Molecules, 29(9), 2098. https://doi.org/10.3390/molecules29092098