Synthesis and Evaluation of Antimicrobial Activity of the Rearranged Abietane Prattinin A and Its Synthetic Derivatives
Abstract
:1. Introduction
2. Results
2.1. Chemistry
2.2. Antibacterial Activity
Disc Diffusion Test
2.3. ADMET: In Silico Prediction of Physicochemical and ADME Properties
2.3.1. Physicochemical Parameters
2.3.2. Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADME) Properties
2.4. Molecular Docking
2.5. DFT Computational Studies
2.5.1. Global Reactivity Descriptors
2.5.2. Molecular Electrostatic Potential (MESP)
3. Materials and Methods
3.1. Chemistry
3.2. Biological Activity
3.2.1. Antibacterial Test
3.2.2. Agar Disc Diffusion Method
3.2.3. Microdilution Broth Assay
3.3. Molecular Docking
3.3.1. In Silico Studies
3.3.2. Ligand Preparation
3.3.3. Protein Preparation
3.3.4. Molecular Docking with Autodock Vina
3.4. DFT Computational Studies
Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- González, M.A. Aromatic Abietane Diterpenoids: Their Biological Activity and Synthesis. Nat. Prod. Rep. 2015, 32, 684–704. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Rahman, A.A.; Jain, S.; Jacob, M.R.; Khan, S.I.; Tekwani, B.L.; Ilias, M. Antimicrobial and Antiparasitic Abietane Diterpenoids from Cupressus sempervirens. Res. Rep. Med. Chem. 2012, 2, 1–6. [Google Scholar]
- Ho, S.T.; Tung, Y.T.; Kuo, Y.H.; Lin, C.C.; Wu, J.H. Ferruginol Inhibits Non–Small Cell Lung Cancer Growth by Inducing Caspase-Associated Apoptosis. Integr. Cancer. Ther. 2015, 14, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Machumi, F.; Samoylenko, V.; Yenesew, A.; Derese, S.; Midiwo, J.O.; Wiggers, F.T.; Ilias, M. Antimicrobial and Antiparasitic Abietane Diterpenoids from the Roots of Clerodendrum eriophyllum. Nat. Prod. Commun. 2010, 5, 853–858. [Google Scholar] [CrossRef] [PubMed]
- González, M.A. Synthetic Derivatives of Aromatic Abietane Diterpenoids and Their Biological Activities. Eur. J. Med. Chem. 2014, 87, 834–842. [Google Scholar] [CrossRef] [PubMed]
- Kawabe, H.; Suzuki, R.; Hirota, H.; Matsuzaki, K.; Gong, X.; Ohsaki, A. A New Diterpenoid with a Rearranged Skeleton from Salvia prattii. Nat. Prod. Commun. 2017, 12, 1177–1179. [Google Scholar] [CrossRef]
- Ait El Had, M.; Guardia, J.J.; Ramos, J.M.; Taourirte, M.; Chahboun, R.; Alvarez-Manzaneda, E. Bioinspired Synthesis of Pygmaeocins and Related Rearranged Abietane Diterpenes: Synthesis of Viridoquinone. Org. Lett. 2018, 20, 5666–5670. [Google Scholar] [CrossRef]
- Ait El Had, M.; Zentar, H.; Ruíz-Muñoz, B.; Sainz, J.; Guardia, J.J.; Fernández, A.; Justicia, J.; Alvarez-Manzaneda, E.; Reyes-Zurita, F.J.; Chahboun, R. Evaluation of Anticancer and Anti-Inflammatory Activities of Some Synthetic Rearranged Abietanes. Int. J. Mol. Sci. 2023, 24, 13583. [Google Scholar] [CrossRef] [PubMed]
- Chalkha, M.; El Moussaoui, A.; Hadda, T.B.; Berredjem, M.; Bouzina, A.; Almalki, F.A.; Saghrouchni, H.; Bakhouch, M.; Saadi, M.; El Ammari, L.; et al. Crystallographic Study, Biological Evaluation and DFT/POM/Docking Analyses of Pyrazole Linked Amide Conjugates: Identification of Antimicrobial and Antitumor Pharmacophore Sites. J. Mol. Struct. 2022, 1252, 131818. [Google Scholar] [CrossRef]
- Tanaka, N.; Yamada, K.; Shimomoto, Y.; Tsuji, D.; Itoh, K.; Kawazoe, K.; Kashiwada, Y. Lophachinins A–E, Abietane Diterpenes from a Mongolian Traditional Herbal Medicine Lophanthus chinensis. Fitoterapia 2020, 146, 104702. [Google Scholar] [CrossRef]
- Wu, W.M.; Liu, Y.; Chen, X.; Jin, A.; Zhou, M.; Tian, T.; Ruan, H.L. Diterpenoids from the Branch and Leaf of Abies fargesii. Fitoterapia 2016, 110, 123–128. [Google Scholar] [CrossRef] [PubMed]
- González-Cardenete, M.A.; Hamulic, D.; Miquel-Leal, F.J.; González-Zapata, N.; Jimenez-Jarava, O.J.; Brand, Y.M.; Marín, M.L. Antiviral Profiling of C-18-or C-19-Functionalized Semisynthetic Abietane Diterpenoids. J. Nat. Prod. 2022, 85, 2044–2051. [Google Scholar] [CrossRef] [PubMed]
- Domingo, V.; Prieto, C.; Silva, L.; Rodilla, J.M.; Quilez del Moral, J.F.; Barrero, A.F. Iodine, a Mild Reagent for the Aromatization of Terpenoids. J. Nat. Prod. 2016, 79, 831–837. [Google Scholar] [CrossRef]
- Ait El Had, M.; Oukhrib, A.; Zaki, M.; Urrutigoïty, M.; Benharref, A.; Chauvin, R. Versatile Synthesis of Cadalene and Iso-Cadalene from Himachalene Mixtures: Evidence and Application of Unprecedented Rearrangements. Chin. Chem. Lett. 2020, 31, 1851–1854. [Google Scholar] [CrossRef]
- Ait El Had, M.; Zaki, M.; Taourirte, M.; Benharref, A.; Urrutigoïty, M.; Oukhrib, A. BF3·Et2O-Catalyzed Rearrangement of Epoxy-Himachalenes: Access to New Biosourced N-Acetamides Based Himachalenes. Synlett 2021, 32, 309–315. [Google Scholar] [CrossRef]
- Miyajima, Y.; Saito, Y.; Takeya, M.; Goto, M.; Nakagawa-Goto, K. Synthesis of 4-epi-Parviflorons A, C and E: Structure-Activity Relationship Study of Antiproliferative Abietane Derivatives. J. Org. Chem. 2019, 84, 3239–3248. [Google Scholar] [CrossRef]
- Kuzma, Ł.; Gomulski, J. Biologically Active Diterpenoids in the Clerodendrum Genus—A Review. Int. J. Mol. Sci. 2022, 23, 11001. [Google Scholar] [CrossRef]
- Tada, M.; Ishimaru, K. Efficient Ortho-Oxidation of Phenol and Synthesis of Anti-MRSA and Anti-VRE Compound Abietaquinone Methide from Dehydroabietic Acid. Chem. Pharm. Bull. 2006, 54, 1412–1417. [Google Scholar] [CrossRef]
- Peixoto, P.A.; El Assal, M.; Chataigner, I.; Castet, F.; Cornu, A.; Coffinier, R.; Quideau, S. Bispericyclic Diels–Alder Dimerization of ortho-Quinols in Natural Product (Bio) Synthesis: Bioinspired Chemical 6-Step Synthesis of (+)-Maytenone. Angew. Chem. 2021, 133, 15094–15101. [Google Scholar] [CrossRef]
- Helfenstein, A.; Vahermo, M.; Nawrot, D.A.; Demirci, F.; İşcan, G.; Krogerus, S.; Yli-Kauhaluoma, J.; Moreira, V.M.; Tammela, P. Antibacterial Profiling of Abietane-Type Diterpenoids. Bioorg. Med. Chem. 2016, 25, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Ferney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug. Deliv. Rev. 1997, 23, 3–25. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular Properties that Influence the Oral Bioavailability of Drug Candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef] [PubMed]
- Höfer, D.; Varbanova, H.P.; Hej, M.; Jakupec, M.A.; Rollera, A.; Galanskia, M.; Kepplera, B.K. Impact of the Equatorial Coordination Sphere on the Rate of Reduction, Lipophilicity and Cytotoxic Activity of Platinum (IV) Complexes. J. Inorg. Biochem. 2017, 174, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [PubMed]
- Douglas, T.L.B.; Pires, E.V.; Ascher, D.B. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar]
- Pham The, H.; González-Álvarez, I.; Bermejo, M.; Mangas Sanjuan, V.; Centelles, I.; Garrigues, T.M.; Cabrera-Pérez, M.Á. In Silico Prediction of Caco-2 Cell Permeability by A Classification QSAR Approach. Mol. Inf. 2011, 30, 376–385. [Google Scholar] [CrossRef]
- Yap, C.W.; Li, Z.R.; Chen, Y.Z. Quantitative Structure−Pharmacokinetic Relationships for Drug Clearance by Using Statisticallearning Methods. J. Mol. Graphics. Modell. 2006, 24, 383–395. [Google Scholar] [CrossRef]
- Domingo, L.R.; Ríos-Gutiérrez, M.; Acharjee, N. A Molecular Electron Density Theory Study of the Lewis Acid Catalyzed [3+2] Cycloaddition Reactions of Nitrones with Nucleophilic Ethylenes. Eur. J. Org. Chem. 2022, 2022, e202101417. [Google Scholar] [CrossRef]
- Domingo, L.R. A New C–C Bond Formation Model Based on the Quantum Chemical Topology of Electron Density. RSC Adv. 2014, 4, 32415–32428. [Google Scholar] [CrossRef]
- Parr, R.G.; Szentpály, L.V.; Liu, S. Electrophilicity Index. J. Am. Chem. Soc. 1999, 121, 1922–1924. [Google Scholar] [CrossRef]
- Yang, W.; Parr, R.G. Hardness, Softness, and the Fukui Function in the Electronic Theory of Metals and Catalysis. Proc. Nati. Acad. Sci. USA 1985, 82, 6723–6726. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D.; Edgecombe, K.E. A Simple Measure of Electron Localization in Atomic and Molecular Systems. J. Chem. Phys. 1990, 92, 5397–5403. [Google Scholar] [CrossRef]
- Verma, R.P.; Hansch, C. A Comparison between Two Polarizability Parameters in Chemical–Biological Interactions. Bioorg. Med. Chem. 2005, 13, 2355–2372. [Google Scholar] [CrossRef] [PubMed]
- Gadre, S.R.; Suresh, C.H.; Mohan, N. Electrostatic Potential Topology for Probing Molecular Structure, Bonding and Reactivity. Molecules 2021, 26, 3289. [Google Scholar] [CrossRef] [PubMed]
- Smaili, A.; Mazoir, N.; Rifai, L.A.; Koussa, T.; Makroum, K.; Benharref, A.; Faize, M. Antimicrobial Activity of Two Semisynthetic Triterpene Derivatives from Euphorbia officinarum Latex against Fungal and Bacterial Phytopathogens. Nat. Prod. Commun. 2017, 12, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Anthony, K.B.; Fishman, N.O.; Linkin, D.R.; Gasink, L.B.; Edelstein, P.H.; Lautenbach, E. Clinical and Microbiological Outcomes of Serious Infections with Multidrug-Resistant Gram-Negative Organisms Treated with Tigecycline. Clin. Infect. Dis. 2008, 46, 567–570. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Fonze, E.; Charlier, P.; To’th, Y.; Vermeire, M.; Raquet, X.; Dubus, A.; Frere, J.M. TEM-1 β-Lactamase Structure Solved by Molecular Replacement and Refined Structure of the S235A Mutant. Acta. Crystallogr. D. Biol. Crystallogr. 2004, 51, 682–694. [Google Scholar] [CrossRef]
- ACD/ChemSketch, Version 14.01; Advanced Chemistry Development, Inc.: Toronto, ON, Canada, 2022; Available online: www.acdlabs.com (accessed on 25 January 2024).
- Dassault Systemes. BIOVIA: Discovery Studio Visualizer 4.5. 2016; Dassault Systèmes Biovia: San Diego, CA, USA, 2019. [Google Scholar]
- Benhiba, F.; Hsissou, R.; Benzekri, Z.; Echihi, S.; El-Blilak, J.; Boukhris, S.; Bellaouchou, A.; Guenbour, A.; Oudda, H.; Warad, I.; et al. DFT/Electronic Scale, MD Simulation and Evaluation of 6-Methyl-2-(p-Tolyl)-1,4-Dihydroquinoxaline as a Potential Corrosion Inhibition. J. Mol. Liq. 2021, 335, 116539. [Google Scholar] [CrossRef]
- Geerlings, P.; De Proft, F.; Langenaeker, W. Conceptual Density Functional Theory. Chem. Rev. 2003, 103, 1793–1874. [Google Scholar] [CrossRef]
- Mechbal, N.; Belghiti, M.E.; Benzbiria, N.; Lai, C.H.; Kaddouri, Y.; Karzazi, Y.; Touzani, R.; Zertoubi, M. Correlation between Corrosion Inhibition Efficiency in Sulfuric Acid Medium and the Molecular Structures of Two Newly Eco-Friendly Pyrazole Derivatives on Iron Oxide Surface. J. Mol. Liq. 2021, 331, 115656. [Google Scholar] [CrossRef]
- Hachim, M.E.; Sadik, K.; Byadi, S.; Van Alsenoy, C.; Aboulmouhajir, A. Ab Initio Study on the Six Lowest Energy Conformers of Iso-Octane: Conformational Stability, Barriers to Internal Rotation, Natural Bond Orbital and First-Order Hyperpolarizability Analyses, UV and NMR Predictions, Spectral Temperature Sensitivity, and Scaled Vibrational Assignment. J. Mol. Model. 2019, 25, 254. [Google Scholar] [PubMed]
- Sadik, K.; Hamdani, N.E.; Hachim, M.E.; Byadi, S.; Bahadur, I.; Aboulmouhajir, A. Towards a Theoretical Understanding of Alkaloid-Extract Cytisine Derivatives of Retama monosperma (L.) Boiss. Seeds, as Eco-Friendly Inhibitor for Carbon Steel Corrosion in Acidic 1M HCl Solution. J. Theor. Comput. Chem. 2020, 19, 2050013. [Google Scholar] [CrossRef]
Entry | Conditions | Products (Yield%) |
---|---|---|
1 | 1 equiv. I2, toluene, reflux, 6 h [13] | 21 (84) |
2 | 5% I2, DMSO, rt, 7 days | 21 (92) |
3 | 5% I2, DMSO, 70 °C, 9 h | 21 (80), 17 (20) |
4 | 5% I2, DMSO, 160 °C, 9 h | 21 (75), 22 (10), 23 (15) |
Compound | Inhibition Zones (mm) | ||
---|---|---|---|
E. coli (ATCC 25922) | S. aureus (ATCC 25923) | P. aeruginosa (CIP A22) | |
9 | 9 ± 0.1 | 10 ± 0.1 | 10 ± 0.1 |
17 | NE | NE | NE |
19 | 11 ± 0.2 | 12 ± 0.1 | 13 ± 0.5 |
20 | NE | NE | NE |
24 | 11 ± 0.1 | 11 ± 0.1 | 12 ± 0.4 |
25 | 15 ± 0.2 | 14 ± 0.4 | 15 ± 0.3 |
26 | NE | 14 ± 0.5 | 11 ± 0.1 |
27 | 17 ± 0.5 | 18 ± 0.1 | 16 ± 0.8 |
28 | 9 ± 0.2 | 10 ± 0.1 | 12 |
29 | NE | 10 ± 0.1 | 11 ± 0.1 |
30 | 11 ± 0.1 | 13 ± 0.6 | 14 ± 0.7 |
31 | NE | 11 ± 0.1 | 11 ± 0.1 |
32 | 9 ± 0.2 | 9 ± 0.2 | 11 ± 0.2 |
33 | 11 ± 0.1 | 13 ± 0.2 | 12 |
34 | NE | NE | NE |
35 | 10 ± 0.1 | 10 ± 0.2 | 12 ± 0.1 |
37 | 9 ± 0.12 | 11 ± 0.05 | 11 ± 0.5 |
Ciprofloxacin | 20 ± 0.1 | 24 ± 0.1 | 25 ± 0.1 |
DMSO | / | / | / |
Compound | MIC (µg/mL) | ||
---|---|---|---|
E. coli (ATCC 25922) | S. aureus (ATCC 25923) | P. aeruginosa (CIP A22) | |
9 | 750 ± 0.1 | 450 ± 0.05 | 450 ± 0.01 |
17 | NE | NE | NE |
19 | 375 ± 0.2 | 187.5 ± 0.2 | 375 |
20 | 750 ± 0.2 | 375 ± 0.3 | 500 ± 0.1 |
24 | 187.5 ± 0.1 | 187.5 ± 0.1 | 375 ± 0.1 |
25 | 46.9 ± 0.1 | 93.7 ± 0.1 | 46.9 ± 0.2 |
26 | 750 ± 0.1 | 500 ± 0.1 | 750 ± 0.23 |
27 | 11.7 ± 0.1 | 23.4 ± 0.1 | 11.7 ± 0.1 |
28 | 375 ± 0.1 | 500 | 375 ± 0.1 |
29 | 750 | 500 ± 0.2 | 500 ± 0.1 |
30 | 46.9 ± 0.1 | 46.9 ± 0.3 | 23.4 ± 0.2 |
31 | 750 | 500 ± 0.2 | 500 ± 0.1 |
32 | 750 ± 0.1 | 500 ± 0.1 | 187.5 ± 0.1 |
33 | 187.5 ± 0.2 | 187.5 ± 0.1 | 375 ± 0.1 |
34 | NE | NE | NE |
35 | 375 ± 0.1 | 500 | 375 ± 0.1 |
37 | 750 ± 0.11 | 500 ± 0.06 | 500 ± 0.01 |
Ciprofloxacin | 10 ± 0.2 | 10 ± 0.1 | 10 ± 0.1 |
DMSO | / | / | / |
Product | MW | LogP | HBD | HBA | nVs | nRB | MolPSA |
---|---|---|---|---|---|---|---|
Lipinski * | ≤500 | ≤5 | ≤5 | ≤10 | ≤1 | _ | _ |
Veber ** | _ | _ | _ | _ | _ | ≤10 | ≤140 Å2 |
25 | 344.20 | 4.19 | 0 | 4 | 0 | 3 | 47.74 Å2 |
27 | 344.20 | 4.23 | 1 | 4 | 0 | 3 | 49.46 Å2 |
30 | 344.24 | 5.36 | 1 | 3 | 1 | 4 | 32.63 Å2 |
Compound | Absorption | Distribution | Metabolism | Excretion | Toxicity | |||
---|---|---|---|---|---|---|---|---|
HIA (%) | Caco-2 (Log Papp) | BBB (Log BB) | CYP2C9 Inhibitor | CYP2D6 Inhibitor | Total Clearance (Log CLtot) | AMES | Hepatotoxicity | |
25 | 100.0 | 1.35 | Yes | No | No | 1.01 | No | No |
27 | 95.91 | 0.82 | Yes | No | No | 0.93 | No | No |
30 | 94.79 | 1.30 | Yes | No | No | 0.76 | No | No |
24 | 25 | ||
26 | 27 | ||
28 | 29 | ||
30 | 31 | ||
33 | 34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ait El Had, M.; Zefzoufi, M.; Zentar, H.; Bahsis, L.; Hachim, M.E.; Ghaleb, A.; Khelifa-Mahdjoubi, C.; Bouamama, H.; Alvarez-Manzaneda, R.; Justicia, J.; et al. Synthesis and Evaluation of Antimicrobial Activity of the Rearranged Abietane Prattinin A and Its Synthetic Derivatives. Molecules 2024, 29, 650. https://doi.org/10.3390/molecules29030650
Ait El Had M, Zefzoufi M, Zentar H, Bahsis L, Hachim ME, Ghaleb A, Khelifa-Mahdjoubi C, Bouamama H, Alvarez-Manzaneda R, Justicia J, et al. Synthesis and Evaluation of Antimicrobial Activity of the Rearranged Abietane Prattinin A and Its Synthetic Derivatives. Molecules. 2024; 29(3):650. https://doi.org/10.3390/molecules29030650
Chicago/Turabian StyleAit El Had, Mustapha, Manal Zefzoufi, Houda Zentar, Lahoucine Bahsis, Mouhi Eddine Hachim, Adib Ghaleb, Choukri Khelifa-Mahdjoubi, Hafida Bouamama, Ramón Alvarez-Manzaneda, José Justicia, and et al. 2024. "Synthesis and Evaluation of Antimicrobial Activity of the Rearranged Abietane Prattinin A and Its Synthetic Derivatives" Molecules 29, no. 3: 650. https://doi.org/10.3390/molecules29030650
APA StyleAit El Had, M., Zefzoufi, M., Zentar, H., Bahsis, L., Hachim, M. E., Ghaleb, A., Khelifa-Mahdjoubi, C., Bouamama, H., Alvarez-Manzaneda, R., Justicia, J., & Chahboun, R. (2024). Synthesis and Evaluation of Antimicrobial Activity of the Rearranged Abietane Prattinin A and Its Synthetic Derivatives. Molecules, 29(3), 650. https://doi.org/10.3390/molecules29030650