Aspects of Fe-Incorporation into CaTiO3-SrTiO3 Perovskites and Their Catalytic Application for Ammonia SCO/SCR
Abstract
1. Introduction
- (i)
- Redox Versatility and Catalytic Properties: Iron, like cobalt, can adopt multiple oxidation states (Fe2⁺/Fe3⁺/Fe4+) that facilitate redox reactions crucial for catalytic activity. Similar findings have been reported in the literature, where Fe-doped perovskites exhibited enhanced catalytic performance due to efficient electron transfer and redox cycling [27].
- (ii)
- (iii)
- Economic and Environmental Advantages: Iron compounds are significantly more cost-effective than cobalt or copper compounds. Additionally, iron compounds are less harmful to the environment and living organisms, aligning with the global push for sustainable and environmentally friendly catalysts. Examples in the literature highlight iron-based perovskites as promising candidates for industrial applications due to their low toxicity and abundance [29].
- (iv)
- Defect Engineering and Adsorption Sites: The incorporation of iron ions into the ABO₃ perovskite lattice is known to create oxygen vacancies and other point defects, similar to the effect observed with cobalt doping. These defects can serve as adsorption and activation sites for reactants, enhancing catalytic efficiency [27,30,31].
2. Results and Discussion
3. Materials and Methods
3.1. Materials Synthesis
3.2. Methods
4. Conclusions
- Iron is fully incorporated into both Ca-rich and Sr-rich materials (up to 5 mol.%) without forming any Fe-rich phases.
- The average oxidation state of iron incorporated into the perovskite structure is higher than +3, suggesting iron’s presence on various oxidation states, including +4.
- The reduction process of Fe-modified Ca-rich and Sr-rich materials is partially reversible, especially for the small amount (1 and 2 mol.%) of dopant.
- The iron-doped mixed CaTiO3-SrTiO3 system is an effective catalyst in NH3-SCR process, while it is inactive in NH3-SCO.
- The Ca-rich materials are more promising catalysts than Sr-rich materials in NH3-SCR since the conversion of NH3/NOx and selectivity to N2 for Ca-rich materials is around 20% higher than for Sr-rich materials.
- Calcium’s weaker basic chemical nature than strontium results in higher catalytic activity of Ca-rich materials in the NH3-SCR process.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Labhasetwar, N.; Saravanan, G.; Kumar Megarajan, S.; Manwar, N.; Khobragade, R.; Doggali, P.; Grasset, F. Perovskite-Type Catalytic Materials for Environmental Applications. Sci. Technol. Adv. Mater. 2015, 16, 036002. [Google Scholar] [CrossRef] [PubMed]
- Yoshiyama, Y.; Hosokawa, S.; Tamai, K.; Kajino, T.; Yoto, H.; Asakura, H.; Teramura, K.; Tanaka, T. NOx Storage Performance at Low Temperature over Platinum Group Metal-Free SrTiO3-Based Material. ACS Appl. Mater. Interfaces 2021, 13, 29482–29490. [Google Scholar] [CrossRef] [PubMed]
- López-Suárez, F.E.; Illán-Gómez, M.J.; Bueno-López, A.; Anderson, J.A. NOx Storage and Reduction on a SrTiCuO3 Perovskite Catalyst Studied by Operando DRIFTS. Appl. Catal. B 2011, 104, 261–267. [Google Scholar] [CrossRef]
- Łącz, A.; Gwóźdź, P.; Mizera, A.; Górecka, S.; Pacultová, K.; Obalová, L.; Górecki, K.; Piech, R.; Kramek, A.; Drożdż, E. Cu and Co-Modified SrTiO3 as Materials for Environmental Applications. Surf. Interfaces 2024, 44, 103672. [Google Scholar] [CrossRef]
- Zhou, X.; Shi, J.; Li, C. Effect of Metal Doping on Electronic Structure and Visible Light Absorption of SrTiO3 and NaTaO3 (Metal = Mn, Fe, and Co). J. Phys. Chem. C 2011, 115, 8305–8311. [Google Scholar] [CrossRef]
- Yin, Q.; Qiu, K.; Chen, Y.; Liu, J.; Xiao, X. Enhancements of Luminescent Properties of CaTiO3: Dy3+, Pr3+ via Doping M+ = (Li+, Na+, K+). Mater. Lett. 2020, 266, 127488. [Google Scholar] [CrossRef]
- Blennow, P.; Hagen, A.; Hansen, K.; Wallenberg, L.; Mogensen, M. Defect and Electrical Transport Properties of Nb-Doped SrTiO3. Solid. State Ion. 2008, 179, 2047–2058. [Google Scholar] [CrossRef]
- Gwóźdź, P.; Łącz, A.; Mizera, A.; Drożdż, E. Some Aspects of Cu Incorporation into SrTiO3 Structure. J. Therm. Anal. Calorim. 2022, 147, 9949–9958. [Google Scholar] [CrossRef]
- Yoshiyama, Y.; Hosokawa, S.; Haneda, M.; Morishita, M.; Asakura, H.; Teramura, K.; Tanaka, T. Reactivity of Lattice Oxygen in Ti-Site-Substituted SrTiO3 Perovskite Catalysts. ACS Appl. Mater. Interfaces 2023, 15, 5293–5300. [Google Scholar] [CrossRef]
- Gilardi, E.; Fabbri, E.; Bi, L.; Rupp, J.L.M.; Lippert, T.; Pergolesi, D.; Traversa, E. Effect of Dopant–Host Ionic Radii Mismatch on Acceptor-Doped Barium Zirconate Microstructure and Proton Conductivity. J. Phys. Chem. C 2017, 121, 9739–9747. [Google Scholar] [CrossRef]
- Paul, P.C.; Shah, A.; Singh, L.R.; Mahato, D.M.; Mahato, D.K. Mn-Doped SrTiO3 and SrTiO3-Fe2O3 Composite Perovskites: Photocatalytic Dye Degradation and Supercapacitor Application 2023. J. Mater. Sci. Mater. Electron. 2023, 34, 1305. [Google Scholar] [CrossRef]
- Fongkaew, I.; T-Thienprasert, J.; Limpijumnong, S. Identification of Mn Site in Mn-Doped SrTiO3: First Principles Study. Ceram. Int. 2017, 43, S381–S385. [Google Scholar] [CrossRef]
- Kim, D.H.; Bi, L.; Jiang, P.; Dionne, G.F.; Ross, C.A. Magnetoelastic Effects in SrTi1–xMxO3 (M = Fe, Co, or Cr) Epitaxial Thin Films. Phys. Rev. B 2011, 84, 014416. [Google Scholar] [CrossRef]
- Shah, M.A.K.Y.; Rauf, S.; Mushtaq, N.; Tayyab, Z.; Ali, N.; Yousaf, M.; Xing, Y.; Akbar, M.; Lund, P.D.; Yang, C.P.; et al. Semiconductor Fe-Doped SrTiO3-δ Perovskite Electrolyte for Low-Temperature Solid Oxide Fuel Cell (LT-SOFC) Operating below 520 °C. Int. J. Hydrogen Energy 2020, 45, 14470–14479. [Google Scholar] [CrossRef]
- Li, R.; Liu, F.; Zhang, C.; Liu, J.; Zhou, J.; Xu, L. Electrical Properties of Fe-Doped SrTiO3 with B-Site-Deficient for SOFC Anodes. Ceram. Int. 2019, 45, 21684–21687. [Google Scholar] [CrossRef]
- Zheng, X.; Li, B.; Shen, L.; Cao, Y.; Zhan, Y.; Zheng, S.; Wang, S.; Jiang, L. Oxygen Vacancies Engineering of Fe Doped LaCoO3 Perovskite Catalysts for Efficient H2S Selective Oxidation. Appl. Catal. B 2023, 329, 122526. [Google Scholar] [CrossRef]
- Yao, D.; Zhou, X.; Ge, S. Raman Scattering and Room Temperature Ferromagnetism in Co-Doped SrTiO3 Particles. Appl. Surf. Sci. 2011, 257, 9233–9236. [Google Scholar] [CrossRef]
- Murashkina, A.; Maragou, V.; Medvedev, D.; Sergeeva, V.; Demin, A.; Tsiakaras, P. Single Phase Materials Based on Co-Doped SrTiO3 for Mixed Ionic-Electronic Conductors Applications. J. Power Sources 2012, 210, 339–344. [Google Scholar] [CrossRef]
- Mizera, A.; Drożdż, E. Properties of Cobalt-Doped SrTiO3 Derived from Two Methods: The Modified Pechini Method and the Citrate Combustion Method. J. Therm. Anal. Calorim. 2023, 148, 9947–9962. [Google Scholar] [CrossRef]
- Rout, S.K.; Panigrahi, S.; Bera, J. Study on Electrical Properties of Ni-Doped SrTiO3 Ceramics Using Impedance Spectroscopy. Bull. Mater. Sci. 2005, 28, 275–279. [Google Scholar] [CrossRef]
- Lacz, A.; Lach, R.; Drozdz, E. Effect of Nickel Addition on the Physicochemical Properties of SrTiO3-Based Materials. Ceram. Int. 2022, 48, 24906–24914. [Google Scholar] [CrossRef]
- Łącz, A.; Łańcucki, Ł.; Lach, R.; Kamecki, B.; Drożdż, E. Structural and Electrical Properties of Cr-Doped SrTiO3 Porous Materials. Int. J. Hydrogen Energy 2018, 43, 8999–9005. [Google Scholar] [CrossRef]
- Muralidharan, M.; Anbarasu, V.; Elaya Perumal, A.; Sivakumar, K. Carrier Mediated Ferromagnetism in Cr Doped SrTiO3 Compounds. J. Mater. Sci. Mater. Electron. 2015, 26, 6352–6365. [Google Scholar] [CrossRef]
- Kharton, V.V.; Kovalevsky, A.V.; Viskup, A.P.; Jurado, J.R.; Figueiredo, F.M.; Naumovich, E.N.; Frade, J.R. Transport Properties and Thermal Expansion of Sr0.97Ti1−xFexO3−δ (x = 0.2–0.8). J. Solid. State Chem. 2001, 156, 437–444. [Google Scholar] [CrossRef]
- Li, Y.; Niu, S.; Hao, Y.; Zhou, W.; Wang, J.; Liu, J. Role of Oxygen Vacancy on Activity of Fe-Doped SrTiO3 Perovskite Bifunctional Catalysts for Biodiesel Production. Renew. Energy 2022, 199, 1258–1271. [Google Scholar] [CrossRef]
- Mastrikov, Y.A.; Merkle, R.; Kotomin, E.A.; Kuklja, M.M.; Maier, J. Formation and Migration of Oxygen Vacancies in La1−xSrxCo1−yFeyO3−δ Perovskites: Insight from Ab Initio Calculations and Comparison with Ba1−xSrxCo1−yFeyO3−δ. Phys. Chem. Chem. Phys. 2013, 15, 911–918. [Google Scholar] [CrossRef]
- He, S.; He, X.; Gan, L. In Situ Exsolved Fe Nanoparticles Enhance the Catalytic Performance of Perovskite Cathode Materials in Solid Oxide Electrolytic Cells. New J. Chem. 2024, 48, 18739–18745. [Google Scholar] [CrossRef]
- Perry, N.H.; Kim, J.J.; Bishop, S.R.; Tuller, H.L. Strongly Coupled Thermal and Chemical Expansion in the Perovskite Oxide System Sr(Ti,Fe)O3−α. J. Mater. Chem. A Mater. 2015, 3, 3602–3611. [Google Scholar] [CrossRef]
- Liu, G.; Cui, H.; Wang, S.; Zhang, L.; Su, C.-Y. A Series of Highly Stable Porphyrinic Metal–Organic Frameworks Based on Iron–Oxo Chain Clusters: Design, Synthesis and Biomimetic Catalysis. J. Mater. Chem. A Mater. 2020, 8, 8376–8382. [Google Scholar] [CrossRef]
- Zhao, J.-W.; Zhang, H.; Li, C.-F.; Zhou, X.; Wu, J.-Q.; Zeng, F.; Zhang, J.; Li, G.-R. Key Roles of Surface Fe Sites and Sr Vacancies in the Perovskite for an Efficient Oxygen Evolution Reaction via Lattice Oxygen Oxidation. Energy Environ. Sci. 2022, 15, 3912–3922. [Google Scholar] [CrossRef]
- Zhang, N.; Chai, Y. Lattice Oxygen Redox Chemistry in Solid-State Electrocatalysts for Water Oxidation. Energy Environ. Sci. 2021, 14, 4647–4671. [Google Scholar] [CrossRef]
- Batool, R.; Altaf, F.; Ahmad, M.A.; Raza, R.; Gill, R.; Rehman, Z.; Khan, M.A.; Abbas, G. Electrochemical Investigation of Cubic Structured Fe-Doped-SrCoO3 Nano-Structured Cathode for SOFC Synthesized via Sol-Gel Route. Mater. Res. Express 2019, 6, 095531. [Google Scholar] [CrossRef]
- Abdi, M.; Mahdikhah, V.; Sheibani, S. Visible Light Photocatalytic Performance of La-Fe Co-Doped SrTiO3 Perovskite Powder. Opt. Mater. 2020, 102, 109803. [Google Scholar] [CrossRef]
- Xie, T.-H.; Sun, X.; Lin, J. Enhanced Photocatalytic Degradation of RhB Driven by Visible Light-Induced MMCT of Ti(IV)−O−Fe(II) Formed in Fe-Doped SrTiO3. J. Phys. Chem. C 2008, 112, 9753–9759. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Etter, M.; Müller, M.; Hanfland, M.; Dinnebier, R.E. High-Pressure Phase Transitions in the Rare-Earth Orthoferrite LaFeO3. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2014, 70, 452–458. [Google Scholar] [CrossRef]
- Sun, Y.; Li, J.; Zeng, Y.; Amirkhiz, B.S.; Wang, M.; Behnamian, Y.; Luo, J. A-Site Deficient Perovskite: The Parent for in Situ Exsolution of Highly Active, Regenerable Nano-Particles as SOFC Anodes. J. Mater. Chem. A Mater. 2015, 3, 11048–11056. [Google Scholar] [CrossRef]
- Zhu, T.; Troiani, H.; Mogni, L.V.; Santaya, M.; Han, M.; Barnett, S.A. Exsolution and Electrochemistry in Perovskite Solid Oxide Fuel Cell Anodes: Role of Stoichiometry in Sr(Ti,Fe,Ni)O3. J. Power Sources 2019, 439, 227077. [Google Scholar] [CrossRef]
- Neagu, D.; Tsekouras, G.; Miller, D.N.; Ménard, H.; Irvine, J.T.S. In Situ Growth of Nanoparticles through Control of Non-Stoichiometry. Nat. Chem. 2013, 5, 916–923. [Google Scholar] [CrossRef]
- Kovalevsky, A.V.; Yaremchenko, A.A.; Populoh, S.; Weidenkaff, A.; Frade, J.R. Effect of A-Site Cation Deficiency on the Thermoelectric Performance of Donor-Substituted Strontium Titanate. J. Phys. Chem. C 2014, 118, 4596–4606. [Google Scholar] [CrossRef]
- Mather, G.C.; García-Martín, S.; Benne, D.; Ritter, C.; Amador, U. A-Site-Cation Deficiency in the SrCe0.9Yb0.1O3−δ Perovskite: Effects of Charge-Compensation Mechanism on Structure and Proton Conductivity. J. Mater. Chem. 2011, 21, 5764. [Google Scholar] [CrossRef]
- Gwóźdź, P.; Łącz, A.; Drożdż, E. Effect of Calcium Addition on Microstructure, Structure, and Electrical Properties of SrTiO3-Based Materials Synthesized by Citrate and Solid-State Reaction Method. Ceram. Int. 2023, 49, 16332–16340. [Google Scholar] [CrossRef]
- Haas, O.; Vogt, U.F.; Soltmann, C.; Braun, A.; Yoon, W.-S.; Yang, X.Q.; Graule, T. The Fe K-Edge X-Ray Absorption Characteristics of La1−xSrxFeO3−δ Prepared by Solid State Reaction. Mater. Res. Bull. 2009, 44, 1397–1404. [Google Scholar] [CrossRef]
- Gyu Kim, M.; Sang Cho, H.; Hyun Yo, C. Fe K-Edge X-Ray Absorption (XANES/EXAFS) Spectroscopic Study of the Nonstoichiometric SrFe1−xSnxO3−y System. J. Phys. Chem. Solids 1998, 59, 1369–1381. [Google Scholar] [CrossRef]
- Shuvaeva, V.A.; Raevski, I.P.; Polozhentsev, O.E.; Zubavichus, Y.V.; Vlasenko, V.G.; Raevskaya, S.I.; Chen, H. The Fe K-Edge X-Ray Absorption Study of the Local Structure of BaFe0.5Nb0.5O3. Mater. Chem. Phys. 2017, 193, 260–266. [Google Scholar] [CrossRef]
- Istomin, S.Y.; Chernova, V.V.; Antipov, E.V.; Lobanov, M.V.; Bobrikov, I.A.; Yushankhai, V.Y.; Balagurov, A.M.; Hsu, K.Y.; Lin, J.-Y.; Chen, J.M.; et al. Wide-Range Tuning of the Mo Oxidation State in La1–xSrxFe2/3Mo1/3O3 Perovskites. Eur. J. Inorg. Chem. 2016, 18, 2942–2951. [Google Scholar] [CrossRef]
- Arčon, I.; Kolar, J.; Kodre, A.; Hanžel, D.; Strlič, M. XANES Analysis of Fe Valence in Iron Gall Inks. X-Ray Spectrom. 2007, 36, 199–205. [Google Scholar] [CrossRef]
- Yano, J.; Yachandra, V.K. X-Ray Absorption Spectroscopy. Photosynth. Res. 2009, 102, 241–254. [Google Scholar] [CrossRef]
- Chakraborty, T.; Meneghini, C.; Aquilanti, G.; Ray, S. Microscopic Distribution of Metal Dopants and Anion Vacancies in Fe-Doped BaTiO3−δ Single Crystals. J. Condens. Matter Phys. 2013, 25, 236002. [Google Scholar] [CrossRef]
- Yamamoto, T.; Mizoguchi, T.; Tanaka, I. Core-Hole Effect on Dipolar and Quadrupolar Transitions of SrTiO3 and BaTiO3 at Ti K-Edge. Phys. Rev. B 2005, 71, 245113. [Google Scholar] [CrossRef]
- Cabaret, D.; Couzinet, B.; Flank, A.-M.; Itié, J.-P.; Lagarde, P.; Polian, A. Ti K Pre-Edge in SrTiO3 under Pressure: Experiments and Full-Potential First-Principles Calculations. AIP Conf. Proc. 2007, 882, 120–122. [Google Scholar] [CrossRef]
- Suwannaruang, T.; Kidkhunthod, P.; Butburee, T.; Shivaraju, H.P.; Shahmoradi, B.; Wantala, K. Facile Synthesis of Cooperative Mesoporous-Assembled CexSr1−xFexTi1−xO3 Perovskite Catalysts for Enhancement Beta-Lactam Antibiotic Photodegradation under Visible Light Irradiation. Surf. Interfaces 2021, 23, 101013. [Google Scholar] [CrossRef]
- da Silva, L.F.; M’Peko, J.-C.; Andrés, J.; Beltrán, A.; Gracia, L.; Bernardi, M.I.B.; Mesquita, A.; Antonelli, E.; Moreira, M.L.; Mastelaro, V.R. Insight into the Effects of Fe Addition on the Local Structure and Electronic Properties of SrTiO3. J. Phys. Chem. C 2014, 118, 4930–4940. [Google Scholar] [CrossRef]
- Blanchard, P.E.R.; Liu, S.; Kennedy, B.J.; Ling, C.D.; Zhang, Z.; Avdeev, M.; Jang, L.-Y.; Lee, J.-F.; Pao, C.-W.; Chen, J.-L. Studying the Effects of Zr-Doping in (Bi0.5Na0.5)TiO3 via Diffraction and Spectroscopy. Dalton Trans. 2014, 43, 17358–17365. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Liu, Y.; Sani, Z.; Tang, X.; Yi, H.; Zhao, S.; Yu, Q.; Zhou, Y. Advances in Selective Catalytic Oxidation of Ammonia (NH3–SCO) to Dinitrogen in Excess Oxygen: A Review on Typical Catalysts, Catalytic Performances and Reaction Mechanisms. J. Environ. Chem. Eng. 2021, 9, 104575. [Google Scholar] [CrossRef]
- Chmielarz, L.; Jabłońska, M. Advances in Selective Catalytic Oxidation of Ammonia to Dinitrogen: A Review. RSC Adv. 2015, 5, 43408–43431. [Google Scholar] [CrossRef]
- Liu, W.; Long, Y.; Zhou, Y.; Liu, S.; Tong, X.; Yin, Y.; Li, X.; Hu, K.; Hu, J. Excellent Low Temperature NH3-SCR and NH3-SCO Performance over Ag-Mn/Ce-Ti Catalyst: Evaluation and Characterization. Mol. Catal. 2022, 528, 112510. [Google Scholar] [CrossRef]
- Liu, W.; Long, Y.; Liu, S.; Zhou, Y.; Tong, X.; Yin, Y.; Li, X.; Hu, K.; Hu, J. Promotional Effect of Ce in NH3-SCO and NH3-SCR Reactions over Cu-Ce/SCR Catalysts. J. Ind. Eng. Chem. 2022, 107, 197–206. [Google Scholar] [CrossRef]
- Ma, S.; Tan, H.; Li, Y.; Wang, P.; Zhao, C.; Niu, X.; Zhu, Y. Excellent Low-Temperature NH3-SCR NO Removal Performance and Enhanced H2O Resistance by Ce Addition over the Cu0.02Fe0.2CeyTi1−YOx (y = 0.1, 0.2, 0.3) Catalysts. Chemosphere 2020, 243, 125309. [Google Scholar] [CrossRef]
- Liu, W.; Long, Y.; Tong, X.; Yin, Y.; Li, X.; Hu, J. Transition Metals Modified Commercial SCR Catalysts as Efficient Catalysts in NH3-SCO and NH3-SCR Reactions. Mol. Catal. 2021, 515, 111888. [Google Scholar] [CrossRef]
Ca-Rich Materials | ||||
sample | Sr0.2Ca0.8Ti0.99Fe0.01O3 | Sr0.2Ca0.8Ti0.98Fe0.02O3 | Sr0.2Ca0.8Ti0.95Fe0.05O3 | (Sr0.2Ca0.8)0.95Ti0.95Fe0.05O3 |
label | Ca_0.8_s_1Fe | Ca_0.8_s_2Fe | Ca_0.8_s_5Fe | Ca_0.8_n_5Fe |
Sr-Rich Materials | ||||
sample | Sr0.8Ca0.2Ti0.99Fe0.01O3 | Sr0.8Ca0.2Ti0.98Fe0.02O3 | Sr0.8Ca0.2Ti0.95Fe0.05O3 | (Sr0.8Ca0.2)0.95Ti0.95Fe0.05O3 |
label | Sr_0.8_s_1Fe | Sr_0.8_s_2Fe | Sr_0.8_s_5Fe | Sr_0.8_n_5Fe |
Sample | Phase Composition/Mass.% | |||
---|---|---|---|---|
SrTiO3 | t-Sr(Ca)TiO3 | o-CaTiO3 | TiO2 | |
Ca-rich materilas | ||||
Ca_0.8_s_1Fe | 0 | 0 | 98.6 | 1.4 |
Ca_0.8_s_2Fe | 0 | 0 | 98.9 | 1.1 |
Ca_0.8_s_5Fe | 0 | 0 | 100 | 0 |
Ca_0.8_n_5Fe | 0 | 0 | 100 | 0 |
Sr-rich materilas | ||||
Sr_0.8_s_1Fe | 24.1 | 72.0 | 0 | 3.9 |
Sr_0.8_s_2Fe | 26.1 | 69.9 | 0 | 4.0 |
Sr_0.8_s_5Fe | 35.7 | 64.3 | 0 | 0 |
Sr_0.8_n_5Fe | 37.9 | 62.1 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gwóźdź, P.; Łącz, A.; Górecka, S.; Pacultová, K.; Górecki, K.; Obalová, L.; Drożdż, E. Aspects of Fe-Incorporation into CaTiO3-SrTiO3 Perovskites and Their Catalytic Application for Ammonia SCO/SCR. Molecules 2024, 29, 5603. https://doi.org/10.3390/molecules29235603
Gwóźdź P, Łącz A, Górecka S, Pacultová K, Górecki K, Obalová L, Drożdż E. Aspects of Fe-Incorporation into CaTiO3-SrTiO3 Perovskites and Their Catalytic Application for Ammonia SCO/SCR. Molecules. 2024; 29(23):5603. https://doi.org/10.3390/molecules29235603
Chicago/Turabian StyleGwóźdź, Paulina, Agnieszka Łącz, Sylwia Górecka, Kateřina Pacultová, Kamil Górecki, Lucie Obalová, and Ewa Drożdż. 2024. "Aspects of Fe-Incorporation into CaTiO3-SrTiO3 Perovskites and Their Catalytic Application for Ammonia SCO/SCR" Molecules 29, no. 23: 5603. https://doi.org/10.3390/molecules29235603
APA StyleGwóźdź, P., Łącz, A., Górecka, S., Pacultová, K., Górecki, K., Obalová, L., & Drożdż, E. (2024). Aspects of Fe-Incorporation into CaTiO3-SrTiO3 Perovskites and Their Catalytic Application for Ammonia SCO/SCR. Molecules, 29(23), 5603. https://doi.org/10.3390/molecules29235603