Synthesis and Characterization of Boron Nitride Thin Films Deposited by High-Power Impulse Reactive Magnetron Sputtering
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Taniguchi, T.; Sato, T.; Utsumi, W.; Kikegawa, T.; Shimomura, O. In-situ X-ray Observation of Phase Transformation of Rhombohedral Boron Nitride under Static High Pressure and High Temperature. Diam. Relat. Mater. 1997, 6, 1806–1815. [Google Scholar] [CrossRef]
- Golberg, D.; Bando, Y.; Huang, Y.; Terao, T.; Mitome, M.; Tang, C.; Zhi, C. Boron Nitride Nanotubes and Nanosheets. ACS Nano 2010, 4, 2979–2993. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.; Lee, C.-S.; Lee, M.-H.; Lee, Y.; Ma, K.Y.; Kim, G.; Yoon, S.I.; Ihm, K.; Kim, K.-J.; Shin, T.J.; et al. Ultralow-Dielectric-Constant Amorphous Boron Nitride. Nature 2020, 582, 511–514. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; He, Y.; Tian, H.; Khanaki, A.; Xu, L.; Shi, W.; Liu, J. Study of Direct Tunneling and Dielectric Breakdown in Molecular Beam Epitaxial Hexagonal Boron Nitride Monolayers Using Metal–Insulator–Metal Devices. ACS Appl. Electron. Mater. 2020, 2, 747–755. [Google Scholar] [CrossRef]
- Cai, Q.; Scullion, D.; Gan, W.; Falin, A.; Cizek, P.; Liu, S.; Edgar, J.H.; Liu, R.; Cowie, B.C.C.; Santos, E.J.G.; et al. Outstanding Thermal Conductivity of Single Atomic Layer Isotope-Modified Boron Nitride. Phys. Rev. Lett. 2020, 125, 085902. [Google Scholar] [CrossRef]
- Kostoglou, N.; Polychronopoulou, K.; Rebholz, C. Thermal and Chemical Stability of Hexagonal Boron Nitride (h-BN) Nanoplatelets. Vacuum 2015, 112, 42–45. [Google Scholar] [CrossRef]
- Ares, P.; Cea, T.; Holwill, M.; Wang, Y.B.; Roldán, R.; Guinea, F.; Andreeva, D.V.; Fumagalli, L.; Novoselov, K.S.; Woods, C.R. Piezoelectricity in Monolayer Hexagonal Boron Nitride. Adv. Mater. 2020, 32, 1905504. [Google Scholar] [CrossRef]
- Falin, A.; Cai, Q.; Santos, E.J.G.; Scullion, D.; Qian, D.; Zhang, R.; Yang, Z.; Huang, S.; Watanabe, K.; Taniguchi, T.; et al. Mechanical Properties of Atomically Thin Boron Nitride and The Role of Interlayer Interactions. Nat. Commun. 2017, 8, 15815. [Google Scholar] [CrossRef]
- Weng, Q.; Wang, X.; Wang, X.; Bando, Y.; Golberg, D. Functionalized hexagonal boron nitride nanomaterials: Emerging properties and applications. Chem. Soc. Rev. 2016, 45, 3989–4012. [Google Scholar] [CrossRef]
- Britnell, L.; Gorbachev, R.V.; Jalil, R.; Belle, B.D.; Schedin, F.; Mishchenko, A.; Georgiou, T.; Katsnelson, M.I.; Eaves, L.; Morozov, S.V.; et al. Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures. Science 2012, 335, 947–950. [Google Scholar] [CrossRef]
- Gao, T.; Song, X.; Du, H.; Nie, Y.; Chen, Y.; Ji, Q.; Sun, J.; Yang, Y.; Zhang, Y.; Liu, Z. Temperature-Triggered Chemical Switching Growth of In-Plane and Vertically Stacked Graphene-Boron Nitride Heterostructures. Nat. Commun. 2015, 6, 6835. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Li, M.; Li, L.; Jiao, F.; Wei, Z.; Geng, D.; Hu, W. When Graphene Meets White Graphene—Recent Advances in the Construction of Graphene and h-BN Heterostructures. Nanoscale 2021, 13, 13174–13194. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-Bandgap Properties and Evidence for Ultraviolet Lasing of Hexagonal Boron Nitride Single Crystal. Nat. Mater. 2004, 3, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Li, L.H.; Cervenka, J.; Watanabe, K.; Taniguchi, T.; Chen, Y. Strong Oxidation Resistance of Atomically Thin Boron Nitride Nanosheets. ACS Nano 2014, 8, 1457–1462. [Google Scholar] [CrossRef]
- Piquemal-Banci, M.; Galceran, R.; Godel, F.; Caneva, S.; Martin, M.-B.; Weatherup, R.S.; Kidambi, P.R.; Bouzehouane, K.; Xavier, S.; Anane, A.; et al. Insulator-to-Metallic Spin-Filtering in 2D-Magnetic Tunnel Junctions Based on Hexagonal Boron Nitride. ACS Nano 2018, 12, 4712–4718. [Google Scholar] [CrossRef]
- Ma, K.Y.; Kim, M.; Shin, H.S. Large-Area Hexagonal Boron Nitride Layers by Chemical Vapor Deposition: Growth and Applications for Substrates, Encapsulation, and Membranes. Acc. Mater. Res. 2022, 3, 748–760. [Google Scholar] [CrossRef]
- Liu, H.; You, C.Y.; Li, J.; Galligan, P.R.; You, J.; Liu, Z.; Cai, Y.; Luo, Z. Synthesis of Hexagonal Boron Nitrides by Chemical Vapor Deposition and Their Use as Single Photon Emitters. Nano Mater. Sci. 2021, 3, 291–312. [Google Scholar] [CrossRef]
- Fukamachi, S.; Solís-Fernández, P.; Kawahara, K.; Tanaka, D.; Otake, T.; Lin, Y.-C.; Suenaga, K.; Ago, H. Large-Area Synthesis and Transfer of Multilayer Hexagonal Boron Nitride for Enhanced Graphene Device Arrays. Nat. Electron. 2023, 6, 126–136. [Google Scholar] [CrossRef]
- Dąbrowska, A.K.; Binder, J.; Prozheev, I.; Tuomisto, F.; Iwański, J.; Tokarczyk, M.; Korona, K.P.; Kowalski, G.; Stępniewski, R.; Wysmołek, A. Defects in Layered Boron Nitride Grown by Metal Organic Vapor Phase Epitaxy: Luminescence and Positron Annihilation Studies. J. Lumin. 2024, 269, 120486. [Google Scholar] [CrossRef]
- Yang, X.; Nitta, S.; Nagamatsu, K.; Bae, S.-Y.; Lee, H.-J.; Liu, Y.; Pristovsek, M.; Honda, Y.; Amano, H. Growth of Hexagonal Boron Nitride on Sapphire Substrate by Pulsed-Mode Metalorganic Vapor Phase Epitaxy. J. Cryst. Growth 2018, 482, 1–8. [Google Scholar] [CrossRef]
- Li, X.; Sundaram, S.; El Gmili, Y.; Ayari, T.; Puybaret, R.; Patriarche, G.; Voss, P.L.; Salvestrini, J.P.; Ougazzaden, A. Large-Area Two-Dimensional Layered Hexagonal Boron Nitride Grown on Sapphire by Metalorganic Vapor Phase Epitaxy. Cryst. Growth Des. 2016, 16, 3409–3415. [Google Scholar] [CrossRef]
- Cheng, T.S.; Summerfield, A.; Mellor, C.J.; Khlobystov, A.N.; Eaves, L.; Foxon, C.T.; Beton, P.H.; Novikov, S.V. High-Temperature Molecular Beam Epitaxy of Hexagonal Boron Nitride with High Active Nitrogen Fluxes. Materials 2018, 11, 1119. [Google Scholar] [CrossRef] [PubMed]
- Vuong, T.Q.P.; Cassabois, G.; Valvin, P.; Rousseau, E.; Summerfield, A.; Mellor, C.J.; Cho, Y.; Cheng, T.S.; Albar, J.D.; Eaves, L.; et al. Deep Ultraviolet Emission in Hexagonal Boron Nitride Grown by High-Temperature Molecular Beam Epitaxy. 2D Mater. 2017, 4, 021023. [Google Scholar] [CrossRef]
- Rigato, V.; Spolaore, M.; Della Mea, G. Deposition of Boron Nitride Coatings by Reactive Rf Magnetron Sputtering: Correlation Between Boron and Nitrogen Contents and the Flux of Energetic Ar+ Ions at the Substrate. MRS Proc. 2011, 396, 557. [Google Scholar] [CrossRef]
- Oks, E.; Anders, A.; Nikolaev, A.; Yushkov, Y. Sputtering of Pure Boron Using a Magnetron Without a Radio-Frequency Supply. Rev. Sci. Instrum. 2017, 88, 4. [Google Scholar] [CrossRef]
- Vetter, J.; Shimizu, T.; Kurapov, D.; Sasaki, T.; Mueller, J.; Stangier, D.; Esselbach, M. Industrial Application Potential of High Power Impulse Magnetron Sputtering for Wear and Corrosion Protection Coatings. J. Appl. Phys. 2023, 134, 16. [Google Scholar] [CrossRef]
- Olejníček, J.; Šmíd, J.; Perekrestov, R.; Kšírová, P.; Rathouský, J.; Kohout, M.; Dvořáková, M.; Kment, Š.; Jurek, K.; Čada, M.; et al. Co3O4 Thin Films Prepared by Hollow Cathode Discharge. Surf. Coat. Technol. 2019, 366, 303–310. [Google Scholar] [CrossRef]
- Kipkirui, N.G.; Lin, T.-T.; Kiplangat, R.S.; Lee, J.-W.; Chen, S.-H. HiPIMS and RF magnetron sputtered Al0.5CCrFeNi2Ti0.5 HEA Thin-Film Coatings: Synthesis and Characterization. Surf. Coat. Technol. 2022, 449, 128988. [Google Scholar] [CrossRef]
- Hossain, M.D.; Borman, T.; Mcllwaine, N.S.; Maria, J.-P. Bipolar High-Power Impulse Magnetron Sputtering Synthesis of High-entropy carbides. J. Am. Ceram. Soc. 2022, 105, 3862–3873. [Google Scholar] [CrossRef]
- Loquai, S.; Baloukas, B.; Klemberg-Sapieha, J.E.; Martinu, L. HiPIMS-Deposited Thermochromic VO2 Films with High Environmental Stability. Sol. Energy Mater. Sol. Cells 2017, 160, 217–224. [Google Scholar] [CrossRef]
- Whiteside, M.; Arulkumaran, S.; Chng, S.S.; Shakerzadeh, M.; Teo, H.T.E.; Ng, G.I. On the Recovery of 2DEG Properties in Vertically Ordered h-BN Deposited AlGaN/GaN Heterostructures on Si Substrate. Appl. Phys. Express 2020, 13, 065508. [Google Scholar] [CrossRef]
- Cometto, O.; Sun, B.; Tsang, S.H.; Huang, X.; Koh, Y.K.; Teo, E.H.T. Vertically Self-Ordered Orientation of Nanocrystalline Hexagonal Boron Nitride Thin Films for Enhanced Thermal Characteristics. Nanoscale 2015, 7, 18984–18991. [Google Scholar] [CrossRef] [PubMed]
- Chng, S.S.; Zhu, M.; Du, Z.; Wang, X.; Whiteside, M.; Ng, Z.K.; Shakerzadeh, M.; Tsang, S.H.; Teo, E.H.T. Dielectric Dispersion and Superior Thermal Characteristics in Isotope-Enriched Hexagonal Boron Nitride Thin Films: Evaluation as Thermally Self-Dissipating Dielectrics for GaN Transistors. J. Mater. Chem. C 2020, 8, 9558–9568. [Google Scholar] [CrossRef]
- Whiteside, M.; Arulkumaran, S.; Ng, G.I. Demonstration of Vertically-Ordered h-BN/AlGaN/GaN Metal-Insulator-Semiconductor High-Electron-Mobility Transistors on Si Substrate. Mater. Sci. Eng. B 2021, 270, 115224. [Google Scholar] [CrossRef]
- Zhang, H.; Ju, X.; Jiang, H.; Yang, D.; Wei, R.; Hu, W.; Lu, X.; Zhu, M. Implementation of High Thermal Conductivity and Synaptic Metaplasticity in Vertically-Aligned Hexagonal Boron Nitride-Based Memristor. Sci. China Mater. 2024, 67, 1907–1914. [Google Scholar] [CrossRef]
- Chng, S.S.; Zhu, M.; Wu, J.; Wang, X.; Ng, Z.K.; Zhang, K.; Liu, C.; Shakerzadeh, M.; Tsang, S.; Teo, E.H.T. Nitrogen-Mediated Aligned Growth of Hexagonal BN Films for Reliable High-Performance InSe Transistors. J. Mater. Chem. C 2020, 8, 4421–4431. [Google Scholar] [CrossRef]
- Hahn, J.; Friedrich, M.; Pintaske, R.; Schaller, M.; Kahl, N.; Zahn, D.R.T.; Richter, F. Cubic Boron Nitride Films by d.c. and r.f. Magnetron Sputtering: Layer Characterization and Process Diagnostics. Diam. Relat. Mater. 1996, 5, 1103–1112. [Google Scholar] [CrossRef]
- Androulidakis, C.; Koukaras, E.N.; Poss, M.; Papagelis, K.; Galiotis, C.; Tawfick, S. Strained Hexagonal Boron Nitride: Phonon shift and Gr\”uneisen parameter. Phys. Rev. B 2018, 97, 241414. [Google Scholar] [CrossRef]
- Li, L.H.; Chen, Y. Atomically Thin Boron Nitride: Unique Properties and Applications. Adv. Funct. Mater. 2016, 26, 2594–2608. [Google Scholar] [CrossRef]
- Chen, X.; Luan, K.; Zhang, W.; Liu, X.; Zhao, J.; Hou, L.; Gao, Y.; Song, J.; Chen, Z. Effect of Employing Chromium as a Buffer Layer on the Crystallinity of Hexagonal Boron Nitride Films Grown by LPCVD. J. Mater. Sci. Mater. Electron. 2021, 32, 13961–13971. [Google Scholar] [CrossRef]
- Nemanich, R.J.; Solin, S.A.; Martin, R.M. Light Scattering Study of Boron Nitride Microcrystals. Phys. Rev. B 1981, 23, 6348–6356. [Google Scholar] [CrossRef]
- Chen, X.; Sun, H.; Zhang, W.; Tan, C.; Liu, X.; Zhao, J.; Hou, L.; Gao, Y.; Song, J.; Chen, Z. The effects of Post-Annealing Technology on Crystalline Quality and Properties of Hexagonal Boron Nitride Films Deposited on Sapphire Substrates. Vacuum 2022, 199, 110935. [Google Scholar] [CrossRef]
- Chen, X.; Tan, C.; Liu, X.; Luan, K.; Guan, Y.; Liu, X.; Zhao, J.; Hou, L.; Gao, Y.; Chen, Z. Growth of Hexagonal Boron Nitride Films on Silicon Substrates by Low-Pressure Chemical Vapor Deposition. J. Mater. Sci. Mater. Electron. 2021, 32, 3713–3719. [Google Scholar] [CrossRef]
- Zhou, H.; Zhu, J.; Liu, Z.; Yan, Z.; Fan, X.; Lin, J.; Wang, G.; Yan, Q.; Yu, T.; Ajayan, P.; et al. High Thermal Conductivity of Suspended Few-Layer Hexagonal Boron nitride Sheets. Nano Res. 2014, 7, 1–9. [Google Scholar] [CrossRef]
- Wang, W.; Li, Z.; Marsden, A.J.; Bissett, M.A.; Young, R.J. Interlayer and Interfacial Stress Transfer in hBN Nanosheets. 2D Mater. 2021, 8, 035058. [Google Scholar] [CrossRef]
- Becton, M.; Wang, X. Grain-Size Dependence of Mechanical Properties in Polycrystalline Boron-Nitride: A Computational Study. Phys. Chem. Chem. Phys. 2015, 17, 21894–21901. [Google Scholar] [CrossRef]
- Paul, R.; Tasnim, T.; Dhar, R.; Mojumder, S.; Saha, S.; Motalab, M.A. Study of Uniaxial Tensile Properties of Hexagonal Boron Nitride Nanoribbons. In Proceedings of the TENCON 2017–2017 IEEE Region 10 Conference, Penang, Malaysia, 5–8 November 2017; pp. 2783–2788. [Google Scholar]
- Bera, K.; Chugh, D.; Patra, A.; Tan, H.H.; Jagadish, C.; Roy, A. Strain Distribution in Wrinkled hBN Films. Solid State Commun. 2020, 310, 113847. [Google Scholar] [CrossRef]
- Duan, X.; Yang, Z.; Chen, L.; Tian, Z.; Cai, D.; Wang, Y.; Jia, D.; Zhou, Y. Review on the Properties of Hexagonal Boron Nitride Matrix Composite Ceramics. J. Eur. Ceram. Soc. 2016, 36, 3725–3737. [Google Scholar] [CrossRef]
- Zhang, X.; Yue, J.; Chen, G.; Yan, H. Study on Stress and Strain of Cubic Boron Nitride Thin Films. Thin Solid Films 1998, 315, 202–206. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, Q.; Fang, C.; Shen, Z.; Lu, Y.; Liu, T.; Tan, S.; Zhang, J. Influence of Sapphire Substrate with Miscut Angles on Hexagonal Boron Nitride Films Grown by Halide Vapor Phase Epitaxy. CrystEngComm 2023, 25, 4604–4610. [Google Scholar] [CrossRef]
- Sharma, K.P.; Sharma, S.; Khaniya Sharma, A.; Paudel Jaisi, B.; Kalita, G.; Tanemura, M. Edge Controlled Growth of Hexagonal Boron Nitride Crystals on Copper Foil by Atmospheric Pressure Chemical Vapor Deposition. CrystEngComm 2018, 20, 550–555. [Google Scholar] [CrossRef]
- Naumkin, A.V.; Kraut-Vass, A.; Powell, C.J.; Gaarenstroom, S.W.; National Institute of Standards and Technology. NIST X-ray Photoelectron Spectroscopy Database, Version 4.1.; Measurement Services Division of the National Institute of Standards and Technology (NIST) Technology Services: Gaithersburg, MD, USA, 2012.
- Deng, J.; Wang, B.; Tan, L.; Yan, H.; Chen, G. The Growth of Cubic Boron Nitride Films by RF Reactive Sputter. Thin Solid Films 2000, 368, 312–314. [Google Scholar] [CrossRef]
- Singh, M.; Vasudev, H.; Kumar, R. Microstructural Characterization of BN Thin Films Using RF Magnetron Sputtering Method. Mater. Today Proc. 2020, 26, 2277–2282. [Google Scholar] [CrossRef]
- Mieno, M.; Yoshida, T. Preparation of Cubic Boron Nitride Films by RF Sputtering. Jpn. J. Appl. Phys. 1990, 29, L1175. [Google Scholar] [CrossRef]
- Schütze, A.; Bewilogua, K.; Lüthje, H.; Kouptsidis, S.; Gaertner, M. Improvement of the Adhesion of Sputtered Cubic Boron Nitride Films. Surf. Coat. Technol. 1997, 97, 33–38. [Google Scholar] [CrossRef]
- Liu, D.; Chen, X.; Yan, Y.; Zhang, Z.; Jin, Z.; Yi, K.; Zhang, C.; Zheng, Y.; Wang, Y.; Yang, J.; et al. Conformal Hexagonal-Boron Nitride Dielectric Interface for Tungsten Diselenide Devices with Improved Mobility and Thermal Dissipation. Nat. Commun. 2019, 10, 1188. [Google Scholar] [CrossRef]
- Wei, D.; Peng, L.; Li, M.; Mao, H.; Niu, T.; Han, C.; Chen, W.; Wee, A.T.S. Low Temperature Critical Growth of High Quality Nitrogen Doped Graphene on Dielectrics by Plasma-Enhanced Chemical Vapor Deposition. ACS Nano 2015, 9, 164–171. [Google Scholar] [CrossRef]
- Wei, D.; Lu, Y.; Han, C.; Niu, T.; Chen, W.; Wee, A.T.S. Critical Crystal Growth of Graphene on Dielectric Substrates at Low Temperature for Electronic Devices. Angew. Chem. 2013, 125, 14371. [Google Scholar] [CrossRef]
- Yi, K.; Jin, Z.; Bu, S.; Wang, D.; Liu, D.; Huang, Y.; Dong, Y.; Yuan, Q.; Liu, Y.; Wee, A.T.S.; et al. Catalyst-Free Growth of Two-Dimensional BCxN Materials on Dielectrics by Temperature-Dependent Plasma-Enhanced Chemical Vapor Deposition. ACS Appl. Mater. Interfaces 2020, 12, 33113–33120. [Google Scholar] [CrossRef]
- Snure, M.; Paduano, Q.; Hamilton, M.; Shoaf, J.; Mann, J.M. Optical Characterization of Nanocrystalline Boron Nitride Thin Films Grown by Atomic Layer Deposition. Thin Solid Films 2014, 571, 51–55. [Google Scholar] [CrossRef]
- Ahmed, K.; Dahal, R.; Weltz, A.; Lu, J.-Q.; Danon, Y.; Bhat, I.B. Growth of Hexagonal Boron Nitride on (111) Si for Deep UV Photonics and Thermal Neutron Detection. Appl. Phys. Lett. 2016, 109, 113501. [Google Scholar] [CrossRef]
- Singhal, R.; Echeverria, E.; McIlroy, D.N.; Singh, R.N. Synthesis of Hexagonal Boron Nitride Films on Silicon and Sapphire Substrates by Low-Pressure Chemical Vapor Deposition. Thin Solid Films 2021, 733, 138812. [Google Scholar] [CrossRef]
- Quan, H.; Wang, X.; Zhang, L.; Liu, N.; Feng, S.; Chen, Z.; Hou, L.; Wang, Q.; Liu, X.; Zhao, J.; et al. Stability to Moisture of Hexagonal Boron Nitride Films Deposited on Silicon by RF Magnetron Sputtering. Thin Solid Films 2017, 642, 90–95. [Google Scholar] [CrossRef]
- Hirata, Y.; Yoshii, K.; Yoshizato, M.; Akasaka, H.; Ohtake, N. Developing a Synthesis Process for Large-Scale h-BN Nanosheets Using Magnetron Sputtering and Heat Annealing. Adv. Eng. Mater. 2023, 25, 2300933. [Google Scholar] [CrossRef]
- Kang, Y.; Chen, L.; Liu, C.; Tang, X.; Zhu, X.; Gao, W.; Yin, H. Enhancement of n-type Conductivity of Hexagonal Boron Nitride Films by In-Situ Co-Doping of Silicon and Oxygen. J. Phys. Condens. Matter 2022, 34, 384002. [Google Scholar] [CrossRef]
- Chen, R.; Li, Q.; Zhang, Q.; Wang, M.; Fang, W.; Zhang, Z.; Yun, F.; Wang, T.; Hao, Y. Electronic Properties of Vertically Stacked h-BN/B1–xAlxN Heterojunction on Si(100). ACS Appl. Mater. Interfaces 2023, 15, 16211–16220. [Google Scholar] [CrossRef]
- BenMoussa, B.; D’Haen, J.; Borschel, C.; Barjon, J.; Soltani, A.; Mortet, V.; Ronning, C.; D’Olieslaeger, M.; Boyen, H.G.; Haenen, K. Hexagonal Boron Nitride Nanowalls: Physical Vapour Deposition, 2D/3D Morphology and Spectroscopic Analysis. J. Phys. D Appl. Phys. 2012, 45, 135302. [Google Scholar] [CrossRef]
- Rye, R.R.; Tallant, D.R.; Borek, T.T.; Lindquist, D.A.; Paine, R.T. Mechanistic Studies of the Conversion of Borazine Polymers to Boron Nitride. Chem. Mater. 1991, 3, 286–293. [Google Scholar] [CrossRef]
- Venturi, G.; Chiodini, S.; Melchioni, N.; Janzen, E.; Edgar, J.H.; Ronning, C.; Ambrosio, A. Selective Generation of Luminescent Defects in Hexagonal Boron Nitride. Laser Photonics Rev. 2024, 18, 2300973. [Google Scholar] [CrossRef]
- Gago, R.; Jiménez, I.; Agulló-Rueda, F.; Albella, J.M.; Czigány, Z.; Hultman, L. Transition from Amorphous Boron Carbide to Hexagonal Boron Carbon Nitride Thin Films Induced by Nitrogen Ion Assistance. J. Appl. Phys. 2002, 92, 5177–5182. [Google Scholar] [CrossRef]
- Kupenko, I.; Dubrovinsky, L.; Dmitriev, V.; Dubrovinskaia, N. In Situ Raman Spectroscopic Study of the Pressure Induced Structural Changes in Ammonia Borane. J. Chem. Phys. 2012, 137, 074506. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.C.; Robertson, J.; Ferrari, A.C.; Robertson, J. Raman Spectroscopy of Amorphous, Nanostructured, Diamond–Like Carbon, and Nanodiamond. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2004, 362, 2477–2512. [Google Scholar] [CrossRef]
- Tabata, H.; Fujii, M.; Hayashi, S.; Doi, T.; Wakabayashi, T. Raman and Surface-Enhanced Raman Scattering of a Series of Size-Separated Polyynes. Carbon 2006, 44, 3168–3176. [Google Scholar] [CrossRef]
- Casiraghi, C.; Piazza, F.; Ferrari, A.C.; Grambole, D.; Robertson, J. Bonding in Hydrogenated Diamond-Like Carbon by Raman Spectroscopy. Diam. Relat. Mater. 2005, 14, 1098–1102. [Google Scholar] [CrossRef]
- Casiraghi, C.; Ferrari, A.C.; Robertson, J. Raman Spectroscopy of Hydrogenated Amorphous Carbons. Phys. Rev. B 2005, 72, 085401. [Google Scholar] [CrossRef]
- Hoang, D.-Q.; Pobedinskas, P.; Nicley, S.S.; Turner, S.; Janssens, S.D.; Van Bael, M.K.; D’Haen, J.; Haenen, K. Elucidation of the Growth Mechanism of Sputtered 2D Hexagonal Boron Nitride Nanowalls. Cryst. Growth Des. 2016, 16, 3699–3708. [Google Scholar] [CrossRef]
- Akkerman, Z.L.; Kosinova, M.L.; Fainer, N.I.; Rumjantsev, Y.M.; Sysoeva, N.P. Chemical Stability of Hydrogen-Containing Boron Nitride Films Obtained by Plasma Enhanced Chemical Vapour Deposition. Thin Solid Films 1995, 260, 156–160. [Google Scholar] [CrossRef]
- Bounouh, Y.; Thèye, M.L.; Dehbi-Alaoui, A.; Matthews, A.; Stoquert, J.P. Influence of Annealing on the Hydrogen Bonding and the Microstructure of Diamondlike and Polymerlike Hydrogenated Amorphous Carbon Films. Phys. Rev. B 1995, 51, 9597–9605. [Google Scholar] [CrossRef]
- Bounouh, Y.; Zellama, K.; Zeinert, A.; Benlahsen, M.; Clin, M.; Thèye, M.L. Modes of Hydrogen Incorporation in Hydrogenated Amorphous Carbon (a–C:H), Modifications with Annealing Temperature. J. Phys. III Fr. 1997, 7, 2159–2164. [Google Scholar] [CrossRef]
- Wang, W.J.; Wang, T.M.; Chen, B.L. Hydrogen Release from Diamondlike Carbon Films Due to Thermal Annealing in Vacuum. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1996, 117, 140–144. [Google Scholar] [CrossRef]
Sample | O 1s | N 1s | C 1s | B 1s |
---|---|---|---|---|
T331D180 | 18.7 | 26.4 | 16.9 | 38.0 |
T820D180 | 7.9 | 32.1 | 21.7 | 38.3 |
T820D30 | 6.1 | 39.0 | 15.9 | 38.9 |
T820D60 | 4.3 | 37.1 | 15.3 | 43.4 |
T480D60 | 5.4 | 40.9 | 15.1 | 38.6 |
T820D60N | 5.85 | 43.65 | 3.29 | 47.2 |
Sample | N2 Gas Flow, sccm | Working Pressure, mmBar | Deposition Temperature, °C | Deposition Time, min | Thickness, nm |
---|---|---|---|---|---|
T330D180 | 152 | 9.3 × 10−3 | 330 | 180 | 255 ± 15 |
T820D180 | 152 | 9.3 × 10−3 | 820 | 180 | 210 ± 40 |
T820D30 | 152 | 9.4 × 10−3 | 820 | 30 | 60 ± 10 |
T820D90 | 152 | 9.4 × 10−3 | 820 | 90 | 190 ± 20 |
T1000D60 | 152 | 9.3 × 10−3 | 1000 | 60 | 75 ± 5 |
T1070D60 | 152 | 9.4 × 10−3 | 1070 | 60 | 80 ± 20 |
T950D60 | 152 | 9.3 × 10−3 | 950 | 60 | 77 ± 7 |
T820D60 | 152 | 9.3 × 10−3 | 820 | 60 | 117 ± 3 |
T690D60 | 152 | 9.2 × 10−3 | 690 | 60 | 150 ± 10 |
T580D60 | 152 | 9.2 × 10−3 | 580 | 60 | 165 ± 15 |
T480D60 | 152 | 9.4 × 10−3 | 480 | 60 | 152 ± 12 |
T820D60N | 197 | 1.8 × 10−2 | 820 | 60 | 107 ± 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stankus, V.; Vasiliauskas, A.; Guobienė, A.; Andrulevičius, M.; Meškinis, Š. Synthesis and Characterization of Boron Nitride Thin Films Deposited by High-Power Impulse Reactive Magnetron Sputtering. Molecules 2024, 29, 5247. https://doi.org/10.3390/molecules29225247
Stankus V, Vasiliauskas A, Guobienė A, Andrulevičius M, Meškinis Š. Synthesis and Characterization of Boron Nitride Thin Films Deposited by High-Power Impulse Reactive Magnetron Sputtering. Molecules. 2024; 29(22):5247. https://doi.org/10.3390/molecules29225247
Chicago/Turabian StyleStankus, Vytautas, Andrius Vasiliauskas, Asta Guobienė, Mindaugas Andrulevičius, and Šarūnas Meškinis. 2024. "Synthesis and Characterization of Boron Nitride Thin Films Deposited by High-Power Impulse Reactive Magnetron Sputtering" Molecules 29, no. 22: 5247. https://doi.org/10.3390/molecules29225247
APA StyleStankus, V., Vasiliauskas, A., Guobienė, A., Andrulevičius, M., & Meškinis, Š. (2024). Synthesis and Characterization of Boron Nitride Thin Films Deposited by High-Power Impulse Reactive Magnetron Sputtering. Molecules, 29(22), 5247. https://doi.org/10.3390/molecules29225247