Application of Fabric Phase Sorptive Extraction as a Green Method for the Analysis of 10 Anti-Diabetic Drugs in Environmental Water Samples
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preliminary FPSE Experiments
2.2. Experimental Design and Optimization
2.3. Analytical Performance of the FPSE-HPLC-DAD Method
2.4. Application in Real Water Samples
2.5. Evaluation of Method’s Greenness
2.6. Comparison with Published Methods
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Collection of Environmental Water Samples
3.3. HPLC-DAD Analysis
3.4. Preparation of Sol-Gel Coated FPSE Membrane
3.4.1. Pretreatment of Fabrics
3.4.2. Sol-Gel Coating of the Fabrics
3.4.3. Fabric Phase Sorptive Extraction Procedure
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dowarah, J.; Singh, V.P. Anti-diabetic drugs recent approaches and advancements. Bioorg Med. Chem. 2020, 28, 115263. [Google Scholar] [CrossRef] [PubMed]
- International Diabetes Federation. IDF Diabetes Atlas 2021, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021. [Google Scholar]
- Golovko, O.; Örn, S.; Sörengård, M.; Frieberg, K.; Nassazzi, W.; Lai, F.Y.; Ahrens, L. Occurrence and removal of chemicals of emerging concern in wastewater treatment plants and their impact on receiving water systems. Sci. Total Environ. 2021, 754, 142122. [Google Scholar] [CrossRef] [PubMed]
- Balakrishnan, A.; Sillanpää, M.; Jacob, M.M.; Vo, D.-V.N. Metformin as an emerging concern in wastewater: Occurrence, analysis and treatment methods. Environ. Res. 2022, 213, 113613. [Google Scholar] [CrossRef] [PubMed]
- Samal, K.; Mahapatra, S.; Hibzur Ali, M. Pharmaceutical wastewater as emerging contaminants (ec): Treatment technologies, impact on environment and human health. Energy Nexus 2022, 6, 100076. [Google Scholar] [CrossRef]
- Dahlén, A.D.; Dashi, G.; Maslov, I.; Attwood, M.M.; Jonsson, J.; Trukhan, V.; Schiöth, H.B. Trends in antidiabetic drug discovery: Fda approved drugs, new drugs in clinical trials and global sales. Front. Pharmacol. 2022, 12, 807548. [Google Scholar] [CrossRef]
- Galani, A.; Alygizakis, N.; Aalizadeh, R.; Kastritis, E.; Dimopoulos, M.-A.; Thomaidis, N.S. Patterns of pharmaceuticals use during the first wave of COVID-19 pandemic in athens, greece as revealed by wastewater-based epidemiology. Sci. Total Environ. 2021, 798, 149014. [Google Scholar] [CrossRef]
- Gago-Ferrero, P.; Bletsou, A.A.; Damalas, D.E.; Aalizadeh, R.; Alygizakis, N.A.; Singer, H.P.; Hollender, J.; Thomaidis, N.S. Wide-scope target screening of >2000 emerging contaminants in wastewater samples with uplc-q-tof-hrms/ms and smart evaluation of its performance through the validation of 195 selected representative analytes. J. Hazard. Mater. 2020, 387, 121712. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Zhang, B.; Cui, D.; Dong, B.; Wang, H.; Hu, G. Determination of 145 pharmaceuticals and personal care products in eleven categories in water by ultra-high performance liquid chromatography-triple quadrupole mass spectrometry. Chin. J. Chromatogr. 2024, 42, 24–37. [Google Scholar] [CrossRef]
- Abdelwahab, N.S.; Morsi, A.; Ahmed, Y.M.; Hassan, H.M.; AboulMagd, A.M. Ecological HPLC method for analyzing an antidiabetic drug in real rat plasma samples and studying the effects of concurrently administered fenugreek extract on its pharmacokinetics. RSC Adv. 2021, 11, 4740–4750. [Google Scholar] [CrossRef]
- Bahgat, E.A.; Hashem, H.; Saleh, H.; Kamel, E.B.; Eissa, M.S. HPLC-DAD technique for the quantification of a recently approved anti-diabetic triple combination along with two toxic official impurities: Toxicity confirmation aided by molecular docking application. BMC Chem. 2023, 17, 18. [Google Scholar] [CrossRef]
- Al-Wasidi, A.S.; Ahmed, H.A.; Mahgoub, S.M.; Mohamed, M.A.; Nassar, H.F. Sustainable HPLC technique for measurement of antidiabetic drugs: Appraisal of green and white metrics, content uniformity, and in vitro dissolution. Rev. Anal. Chem. 2024, 43, 20230075. [Google Scholar] [CrossRef]
- Arbouche, N.; Raul, J.-S.; Kintz, P. Development of a new LC-MS/MS method for the simultaneous identification and quantification of 13 antidiabetic drugs in human hair. J. Chromatogr. B 2022, 1205, 123335. [Google Scholar] [CrossRef] [PubMed]
- Wattamwar, T.; Mungantiwar, A.; Gujar, S.; Pandita, N. Development of LC-MS/MS method for simultaneous determination of canagliflozin and metformin in human plasma and its pharmacokinetic application in indian population under fast and fed conditions. J. Chromatogr. B 2020, 1154, 122281. [Google Scholar] [CrossRef] [PubMed]
- Fendrych, K.; Górska-Ratusznik, A.; Smajdor, J. Electrochemical assays for the determination of antidiabetic drugs—A review. Micromachines 2023, 15, 10. [Google Scholar] [CrossRef] [PubMed]
- Mowaka, S.; Ashoush, N.; Tadros, M.; El Zahar, N.; Ayoub, B. Enhanced extraction technique of omarigliptin from human plasma—Applied to biological samples from healthy human volunteers. Molecules 2020, 25, 4232. [Google Scholar] [CrossRef]
- Shah, P.A.; Shrivastav, P.S.; George, A. Mixed-mode solid phase extraction combined with LC-MS/MS for determination of empagliflozin and linagliptin in human plasma. Microchem. J. 2019, 145, 523–531. [Google Scholar] [CrossRef]
- Kamal, A.H.; Hammad, M.A.; Kannouma, R.E.; Mansour, F.R. Response surface optimization of a vortex-assisted dispersive liquid–liquid microextraction method for highly sensitive determination of repaglinide in environmental water by HPLC/UV. BMC Chem. 2022, 16, 33. [Google Scholar] [CrossRef]
- KAI, S.; ISHIKAWA, K.; ITO, H.; OGAWA, T.; YAMASHITA, H.; NAGATA, Y.; KANAZAWA, H. Simultaneous analysis of oral antidiabetic drug by LC-MS/MS. Chromatography 2015, 36, 19–24. [Google Scholar] [CrossRef]
- Martín, J.; Buchberger, W.; Santos, J.L.; Alonso, E.; Aparicio, I. High-performance liquid chromatography quadrupole time-of-flight mass spectrometry method for the analysis of antidiabetic drugs in aqueous environmental samples. J. Chromatogr. B 2012, 895–896, 94–101. [Google Scholar] [CrossRef]
- Iancu, V.-I.; Marcela, N.; Puiu, D.; Galaon, T.; Petre, J.; Pascu, L.F. Determination of hypoglycemic agents in surface water samples using SPE-LC-MS/MS method. Rev. de Chim. 2020, 71, 337–346. [Google Scholar] [CrossRef]
- Khodayari, P.; Ebrahimzadeh, H. A green QuEChERS syringe filter based micro-solid phase extraction using hydrophobic natural deep eutectic solvent as immobilized sorbent for simultaneous analysis of five anti-diabetic drugs by HPLC-UV. Anal. Chim. Acta 2023, 1279, 341765. [Google Scholar] [CrossRef] [PubMed]
- Stamou, P.; Parla, A.; Kabir, A.; Furton, K.G.; Gennimata, D.; Samanidou, V.; Panderi, I. Hydrophilic interaction liquid chromatography–electrospray ionization mass spectrometry combined with fabric phase sorptive extraction for therapeutic drug monitoring of pioglitazone, repaglinide, and nateglinide in human plasma. J. Chromatogr. B 2023, 1217, 123628. [Google Scholar] [CrossRef] [PubMed]
- Kabir, A.; Furton, K. Fabric Phase Sorptive Extraction (FPSE). U.S. Patent 9,283,544 B2, 18 March 2014. [Google Scholar]
- Kumar, R.; Gaurav; Heena; Malik, A.K.; Kabir, A.; Furton, K.G. Efficient analysis of selected estrogens using fabric phase sorptive extraction and high performance liquid chromatography-fluorescence detection. J. Chromatogr. A 2014, 1359, 16–25. [Google Scholar] [CrossRef]
- Kabir, A.; Mesa, R.; Jurmain, J.; Furton, K. Fabric phase sorptive extraction explained. Separations 2017, 4, 21. [Google Scholar] [CrossRef]
- Kabir, A.; Samanidou, V. Fabric phase sorptive extraction: A paradigm shift approach in analytical and bioanalytical sample preparation. Molecules 2021, 26, 865. [Google Scholar] [CrossRef]
- Fontanals, N.; Borrull, F.; Marcé, R.M. Fabric phase sorptive extraction for environmental samples. Adv. Sample Prep. 2023, 5, 100050. [Google Scholar] [CrossRef]
- Olayanju, B.; Kabir, A.; Furton, K.G. Development of a universal sol–gel sorbent for fabric phase sorptive extraction and its application in tandem with high performance liquid chromatography-ultraviolet detection for the analysis of phthalates in environmental and drinking water samples. Microchem. J. 2024, 196, 109619. [Google Scholar] [CrossRef]
- Castiñeira-Landeira, A.; Vazquez, L.; Carro, A.M.; Celeiro, M.; Kabir, A.; Furton, K.G.; Dagnac, T.; Llompart, M. Fabric phase sorptive extraction as a sustainable sample preparation procedure to determine synthetic musks in water. Microchem. J. 2024, 196, 109542. [Google Scholar] [CrossRef]
- Ferracane, A.; Manousi, N.; Kabir, A.; Furton, K.G.; Mondello, A.; Tranchida, P.Q.; Zachariadis, G.A.; Samanidou, V.F.; Mondello, L.; Rosenberg, E. Dual sorbent coating based magnet-integrated fabric phase sorptive extraction as a front-end to gas chromatography–mass spectrometry for multi-class pesticide determination in water samples. Sci. Total Environ. 2024, 906, 167353. [Google Scholar] [CrossRef]
- Manousi, N.; Alampanos, V.; Ferracane, A.; Efstratiadis, G.; Kabir, A.; Furton, K.G.; Tranchida, P.Q.; Zachariadis, G.A.; Mondello, L.; Rosenberg, E.; et al. Magnet integrated fabric phase sorptive extraction as a stand-alone extraction device for the monitoring of benzoyl urea insecticides in water samples by HPLC-DAD. J. Chromatogr. A 2022, 1672, 463026. [Google Scholar] [CrossRef]
- Jiménez-Holgado, C.; Chrimatopoulos, C.; Stathopoulos, V.; Sakkas, V. Investigating the utility of fabric phase sorptive extraction and HPLC-UV-Vis/DAD to determine antidepressant drugs in environmental aqueous samples. Separations 2020, 7, 39. [Google Scholar] [CrossRef]
- Cho, S.; Lee, J.; Yoo, Y.; Cho, M.; Sohn, S.; Lee, B.-J. Improved manufacturability and in vivo comparative pharmacokinetics of dapagliflozin cocrystals in beagle dogs and human volunteers. Pharmaceutics 2021, 13, 70. [Google Scholar] [CrossRef] [PubMed]
- Samanidou, V.; Kabir, A. Magnet integrated fabric phase sorptive extraction (MI-FPSE): A powerful green(Er) alternative for sample preparation. Analytica 2022, 3, 439–447. [Google Scholar] [CrossRef]
- ISO/IEC 17025:2017; International Organization for Standardization. General Requirements for the Competence of Testing and Calibration Laboratories. International Organization for Standardization: Geneva, Switzerland, 2017.
- Kosma, C.I.; Lambropoulou, D.A.; Albanis, T.A. Comprehensive study of the antidiabetic drug metformin and its transformation product guanylurea in greek wastewaters. Water Res. 2015, 70, 436–448. [Google Scholar] [CrossRef] [PubMed]
- Wojnowski, W.; Tobiszewski, M.; Pena-Pereira, F.; Psillakis, E. AGREEprep—Analytical greenness metric for sample preparation. TrAC Trends Anal. Chem. 2022, 149, 116553. [Google Scholar] [CrossRef]
- Pena-Pereira, F.; Wojnowski, W.; Tobiszewski, M. AGREE—Analytical GREEnness metric approach and software. Anal. Chem. 2020, 92, 10076–10082. [Google Scholar] [CrossRef]
ADSORPTION | |||||
---|---|---|---|---|---|
Factor | SS | df | MS | F-ratio | p-Value |
A: sample volume | 1381.15 | 1 | 1381.15 | 25.44 | 0.0040 |
B: extraction time | 259.38 | 1 | 259.38 | 4.78 | 0.0805 |
C: ionic strength | 94.08 | 1 | 94.08 | 1.73 | 0.2451 |
AA | 42.30 | 1 | 42.30 | 0.78 | 0.4178 |
AB | 23.68 | 1 | 23.68 | 0.44 | 0.5381 |
AC | 322.61 | 1 | 322.61 | 5.94 | 0.0588 |
BB | 4.57 | 1 | 4.57 | 0.08 | 0.7832 |
BC | 0.44 | 1 | 0.44 | 0.01 | 0.9318 |
CC | 53.11 | 1 | 53.12 | 0.98 | 0.3680 |
DESORPTION | |||||
Factor | SS | df | MS | F-ratio | p-Value |
A: elution volume | 430.80 | 1 | 430.80 | 44.94 | 0.0011 |
B: elution time | 0.84 | 1 | 0.84 | 0.09 | 0.7791 |
C: elution solvent—%ACN | 141.74 | 1 | 141.74 | 14.79 | 0.0121 |
AA | 8.78 | 1 | 8.78 | 0.92 | 0.3824 |
AB | 3.11 | 1 | 3.11 | 0.32 | 0.5934 |
AC | 35.78 | 1 | 35.78 | 3.73 | 0.1112 |
BB | 2.02 | 1 | 2.02 | 0.21 | 0.6653 |
BC | 2.63 | 1 | 2.63 | 0.28 | 0.6223 |
CC | 79.63 | 1 | 79.63 | 8.31 | 0.0345 |
Sample Volume, mL | Analytes | Extraction Method | Extraction Time, min | Extraction Solvent/Volume, mL | Analytical Technique | Flow Rate (mL· min−1) | Analysis Time, min | LOD/LOD Range (μg·L−1) | Ref. |
---|---|---|---|---|---|---|---|---|---|
10 | REP | VA-DLLME | 6 | 1-octanol and ACN/0.03 and 0.1 | HPLC-UV | 1 | 10 | 0.40 | [18] |
1000 | VIL, ALO, SIT, LIN, PIO, MIT, GLB, GLM | SPE | 50 | MeOH/5 | LC-MS/MS | 0.2 | 16 | 1.0 | [19] |
250 | GLB, MET, PIO, SIT, VIL | SPE | 25 | MeOH/4 | HPLC-Time of Flight-MS | 0.7 | 12 | 0.40–32 (LOQ) | [20] |
500 | MET, GU, GLP, GLC, GLY, GLM | SPE | >20 | MeOH/6 | LC-MS/MS | 0.2 | 9 | 0.0001–0.00245 (LOQ) | [21] |
5 | EMP, MET, SIT, GLC, REP | QuEChERS SF-μSPE | 3 | MeOH:ACN (80:20, v/v)/0.5 | HPLC-UV | 0.8 | 16 | 0.03–0.09 | [22] |
1 | MET, DAP, LIR, PIO, GLC, GLM, GLA, REP | FPSE | 45 | ACN/0.1 | HPLC-DAD | 1.2 | 10 | 2.0–34.6 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Misolas, A.; Sleiman, M.; Sakkas, V. Application of Fabric Phase Sorptive Extraction as a Green Method for the Analysis of 10 Anti-Diabetic Drugs in Environmental Water Samples. Molecules 2024, 29, 4834. https://doi.org/10.3390/molecules29204834
Misolas A, Sleiman M, Sakkas V. Application of Fabric Phase Sorptive Extraction as a Green Method for the Analysis of 10 Anti-Diabetic Drugs in Environmental Water Samples. Molecules. 2024; 29(20):4834. https://doi.org/10.3390/molecules29204834
Chicago/Turabian StyleMisolas, Augosto, Mohamad Sleiman, and Vasilios Sakkas. 2024. "Application of Fabric Phase Sorptive Extraction as a Green Method for the Analysis of 10 Anti-Diabetic Drugs in Environmental Water Samples" Molecules 29, no. 20: 4834. https://doi.org/10.3390/molecules29204834
APA StyleMisolas, A., Sleiman, M., & Sakkas, V. (2024). Application of Fabric Phase Sorptive Extraction as a Green Method for the Analysis of 10 Anti-Diabetic Drugs in Environmental Water Samples. Molecules, 29(20), 4834. https://doi.org/10.3390/molecules29204834