A New Activity Assay Method for Diamine Oxidase Based on Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Purification of Pea Seedling Amine Oxidase
4.3. Spectrophotometric Activity and Protein Assays
4.4. MALDI-TOF Mass Spectrometry
4.5. Kinetic Data Processing
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Schober, L.; Dobiašová, H.; Jurkaš, V.; Parmeggiani, F.; Rudroff, F.; Winkler, M. Enzymatic reactions towards aldehydes: An overview. Flavour Fragr. J. 2023, 38, 221–242. [Google Scholar] [CrossRef] [PubMed]
- Buffoni, F.; Ignesti, G. The copper-containing amine oxidases: Biochemical aspects and functional role. Mol. Genet. Metab. 2000, 71, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Cona, A.; Rea, G.; Angelini, R.; Federico, R.; Tavladoraki, P. Functions of amine oxidases in plant development and defense. Trends Plant Sci. 2006, 11, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Klema, V.J.; Wilmot, C.M. The role of protein crystallography in defining the mechanisms of biogenesis and catalysis in copper amine oxidase. Int. J. Mol. Sci. 2012, 13, 5375–5405. [Google Scholar] [CrossRef]
- Janes, S.M.; Mu, D.; Wemmer, D.; Smith, A.J.; Kaur, S.; Maltby, D.; Burlingame, A.L.; Klinman, J.P. A new redox cofactor in eukaryotic enzymes: 6-hydroxydopa at the active site of bovine serum amine oxidase. Science 1990, 248, 981–987. [Google Scholar] [CrossRef] [PubMed]
- Dooley, D.M.; McGuirl, M.; Brown, D.E.; Turowski, P.N.; McIntire, W.S.; Knowles, P.F. A Cu(I)-semiquinone state in substrate-reduced amine oxidases. Nature 1991, 349, 262–264. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.M.; Saysell, C.G.; Wilmot, C.M.; Tambyrajah, W.S.; Jaeger, J.; Knowles, P.F.; Phillips, S.E.V.; McPherson, M.J. The active site base controls cofactor reactivity in Escherichia coli amine oxidase: X-ray crystallographic studies with mutational variants. Biochemistry 1999, 38, 8217–8227. [Google Scholar] [CrossRef]
- Mu, D.; Janes, S.M.; Smith, A.J.; Brown, D.E.; Dooley, D.M.; Klinman, J.P. Tyrosine codon corresponds to topa quinone at the active site of copper amine oxidases. J. Biol. Chem. 1992, 267, 7979–7982. [Google Scholar] [CrossRef]
- Johnson, B.J.; Cohen, J.; Welford, R.W.; Pearson, A.R.; Schulten, K.; Klinman, J.P.; Wilmot, C.M. Exploring molecular oxygen pathways in Hansenula polymorpha copper-containing amine oxidase. J. Biol. Chem. 2007, 282, 17767–17776. [Google Scholar] [CrossRef]
- Kumar, V.; Dooley, D.M.; Freeman, H.C.; Guss, J.M.; Harvey, I.; McGuirl, M.A.; Wilce, M.C.J.; Zubak, V.M. Crystal structure of a eukaryotic (pea seedling) copper-containing amine oxidase at 2.2 Å resolution. Structure 1996, 4, 943–955. [Google Scholar] [CrossRef]
- Turowski, P.N.; McGuirl, M.A.; Dooley, D.M. Intramolecular electron transfer rate between active-site copper and topa quinone in pea seedling amine oxidase. J. Biol. Chem. 1993, 268, 17680–17682. [Google Scholar] [CrossRef] [PubMed]
- Wilmot, C.M.; Murray, J.M.; Alton, G.; Parsons, M.R.; Convery, M.A.; Blakeley, V.; Corner, A.S.; Palcic, M.M.; Knowles, P.F.; McPherson, M.J.; et al. Catalytic mechanism of the quinoenzyme amine oxidase from Escherichia coli: Exploring the reductive half-reaction. Biochemistry 1997, 36, 1608–1620. [Google Scholar] [CrossRef] [PubMed]
- Wilmot, C.M.; Hajdu, J.; McPherson, M.J.; Knowles, P.F.; Phillips, S.E.V. Visualization of dioxygen bound to copper during enzyme catalysis. Science 1999, 286, 1724–1728. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.J.; Yukl, E.T.; Klema, V.J.; Klinman, J.P.; Wilmot, C.M. Structural snapshots from the oxidative half-reaction of a copper amine oxidase. Implications for O2 activation. J. Biol. Chem. 2013, 288, 28409–28417. [Google Scholar] [CrossRef] [PubMed]
- Shoji, M.; Murakawa, T.; Nakanishi, S.; Boero, M.; Shigeta, Y.; Hayashi, H.; Okajima, T. Molecular mechanism of a large conformational change of the quinone cofactor in the semiquinone intermediate of bacterial copper amine oxidase. Chem. Sci. 2022, 13, 10923–10938. [Google Scholar] [CrossRef]
- Medda, R.; Padiglia, A.; Floris, G. Plant copper-amine oxidase. Phytochemistry 1995, 39, 1–9. [Google Scholar] [CrossRef]
- Vianello, F.; Malek-Mirzayans, A.; Di Paolo, M.L.; Stevanato, R.; Rigo, A. Purification and characterization of amine oxidase from pea seedling. Protein Express. Purif. 1999, 15, 196–201. [Google Scholar] [CrossRef]
- Macholán, L.; Minář, J. The depression of the synthesis of pea diamine oxidase due to light and the verification of its participation in growth processes using competitive inhibitors. Biol. Plant. 1974, 16, 86–93. [Google Scholar] [CrossRef]
- Tavladoraki, P.; Cona, A.; Angelini, R. Copper-containing amine oxidases and FAD-dependent polyamine oxidases are key players in plant tissue differentiation and organ development. Front. Plant Sci. 2016, 7, 824. [Google Scholar] [CrossRef]
- Pietrangeli, P.; Federico, R.; Mondovì, B.; Morpurgo, L. Substrate specificity of copper-containing plant amine oxidases. J. Inorg. Chem. 2007, 101, 997–1004. [Google Scholar] [CrossRef]
- Niculescu, M.; Frébort, I.; Peč, P.; Galuszka, P.; Mattiasson, B.; Csöregi, E. Amine oxidase based amperometric biosensors for histamine detection. Electroanalysis 2000, 12, 369–375. [Google Scholar] [CrossRef]
- Di Fabio, E.; Incocciati, A.; Boffi, A.; Bonamore, A.; Macone, A. Biocatalytic production of aldehydes: Exploring the potential of Lathyrus cicera amine oxidase. Biomolecules 2021, 11, 1540. [Google Scholar] [CrossRef] [PubMed]
- Holmstedt, B.; Larsson, L.; Tham, R. Further studies of a spectrophotometric method for the determination of diamine oxidase activity. Biochim. Biophys. Acta 1961, 48, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.A. Polyamine oxidation by enzymes from Hordeum vulgare and Pisum sativum seedlings. Phytochemistry 1974, 13, 1075–1081. [Google Scholar] [CrossRef]
- Smith, T.A.; Barker, J.H.A. The di- and polyamine oxidase of plants. In Progress in Polyamine Research: Novel Biochemical, Pharmacological, and Clinical Aspects; Advances in Experimental Medicine and Biology; Zappia, V., Pegg, A.E., Eds.; Plenum Press: New York, NY, USA, 1988; Volume 250, pp. 573–587. [Google Scholar] [CrossRef]
- Angelini, R.; Rea, G.; Federico, R.; D’Ovidio, R. Spatial distribution and temporal accumulation of mRNA encoding diamine oxidase during lentil (Lens culinaris Medicus) seedling development. Plant Sci. 1996, 119, 103–113. [Google Scholar] [CrossRef]
- Kounga, P.C.; Neree, A.T.; Pietrangeli, P.; Marcocci, L.; Mateescu, M.A. Faster and sensitive zymographic detection of oxidases generating hydrogen peroxide. The case of diamine oxidase. Anal. Biochem. 2022, 648, 114676. [Google Scholar] [CrossRef]
- Macholán, L.; Haubrová, J. Isolation and some characteristics of diamine oxidase from etiolated pea seedlings. Collect. Czech. Chem. Commun. 1976, 41, 2987–2996. [Google Scholar] [CrossRef]
- Schwelberger, H.G.; Feurle, J. Luminometric determination of amine oxidase activity. Inflamm. Res. 2007, 56, S53–S54. [Google Scholar] [CrossRef]
- Pietta, P.; Calatroni, A.; Colombo, R. Determination of diamine oxidase activity by high-performance liquid chromatograph. J. Chromatogr. A 1982, 243, 123–129. [Google Scholar] [CrossRef]
- Šebela, M. The use of matrix-assisted laser desorption/ionization mass spectrometry in enzyme activity assays and its position in the context of other available methods. Mass Spectrom. Rev. 2023, 42, 1008–1031. [Google Scholar] [CrossRef]
- Ling, L.; Xiao, C.; Wang, S.; Guo, L.; Guo, X. A pyrene linked peptide probe for quantitative analysis of protease activity via MALDI TOF-MS. Talanta 2019, 200, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.L.; Su, K.Y.; Goodman, S.D.; Yen, R.S.; Cheng, W.C.; Yang, Y.C.; Lin, L.I.; Chang, S.Y.; Fang, W. Measurement of uracil-DNA glycosylase activity by matrix assisted laser desorption/ionization time-of-flight mass spectrometry technique. DNA Repair 2021, 97, 103028. [Google Scholar] [CrossRef] [PubMed]
- Bungert, D.; Heinzle, E.; Tholey, A. Quantitative matrix-assisted laser desorption/ionization mass spectrometry for the determination of enzyme activities. Anal. Biochem. 2004, 326, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S.E.; Fahey, N.S.; Park, J.; O’Kane, P.T.; Mirkin, C.A.; Mrksich, M. A high-throughput SAMDI-mass spectrometry assay for isocitrate dehydrogenase 1. Analyst 2020, 145, 3899–3908. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Zhang, Q.; Zou, H.; Guo, B.; Ni, J. A method for the analysis of low-mass molecules by MALDI-TOF mass spectrometry. Anal. Chem. 2002, 74, 1637–1641. [Google Scholar] [CrossRef] [PubMed]
- Šebela, M.; Luhová, L.; Frébort, I.; Hirota, S.; Faulhammer, H.G.; Stužka, V.; Peč, P. Confirmation of the presence of a Cu(II)/topa quinone active site in the amine oxidase from fenugreek seedlings. J. Exp. Bot. 1997, 48, 1897–1907. [Google Scholar] [CrossRef]
- Šebela, M.; Luhová, L.; Frébort, I.; Faulhammer, H.G.; Hirota, S.; Zajoncová, L.; Stužka, V.; Peč, P. Analysis of the active sites of copper/topa quinone-containing amine oxidases from Lathyrus odoratus and L. sativus seedlings. Phytochem. Anal. 1998, 9, 211–222. [Google Scholar] [CrossRef]
- Macholán, L.; Rozprimová, L.; Sedláčková, E. Oxidative deamination of 2-hydroxy derivatives of putrescine and cadaverine by pea-seedling and pig-kidney diamine oxidase. Biochim. Biophys. Acta 1967, 136, 258–264. [Google Scholar] [CrossRef]
- Medda, R.; Bellelli, A.; Peč, P.; Federico, R.; Cona, A.; Floris, G. Copper amine oxidases from plants. In Copper Amine Oxidases: Structures, Catalytic Mechanisms and Role in Pathophysiology; Floris, G., Mondovì, B., Eds.; CRC Press: Boca Raton, FL, USA, 2009; pp. 39–50. [Google Scholar] [CrossRef]
- Mantle, T.J.; Harris, D.A. Chapter 7 Spectrophotometric assays. In Spectrophotometry and Spectrofluorimetry: A Practical Approach; Gore, M.G., Ed.; Oxford University Press: Oxford, UK, 2000; pp. 183–208. [Google Scholar] [CrossRef]
- Nicu, L.; Leïchlé, T. Biosensors and tools for surface functionalization from the macro- to the nanoscale: The way forward. J. Appl. Phys. 2008, 104, 111101. [Google Scholar] [CrossRef]
- Masopustová, M.; Goga, A.; Soural, M.; Kopečná, M.; Šebela, M. N-carboxyacyl and N-α-aminoacyl derivatives of aminoaldehydes as shared substrates of plant aldehyde dehydrogenases 10 and 7. Amino Acids 2024, 56, 52. [Google Scholar] [CrossRef]
- Duncan, M.W.; Roder, H.; Hunsucker, S.W. Quantitative matrix-assisted laser desorption/ionization mass spectrometry. Brief Funct. Genom. Proteomic 2008, 7, 355–370. [Google Scholar] [CrossRef] [PubMed]
- Luhová, L.; Šebela, M.; Frébort, I.; Zajoncová, L.; Faulhammer, H.G.; Peč, P. Screening of the occurrence of copper amine oxidases in Fabaceae plants. Biol. Plant. 1998, 41, 241–254. [Google Scholar] [CrossRef]
- Kruger, N.J. Errors and artifacts in coupled spectrophotometric assays of enzyme activity. Phytochemistry 1995, 38, 1065–1071. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, A.J.; Huang, S.L.; Swern, D. Oxidation of long-chain and related alcohols to carbonyls by dimethyl sulfoxide “activated” by oxalyl chloride. J. Org. Chem. 1978, 43, 2480–2482. [Google Scholar] [CrossRef]
- Šebela, M.; Kopečný, D.; Lamplot, Z.; Havliš, J.; Thomas, H.; Shevchenko, A. Thermostable β-cyclodextrin-conjugates of two similar plant amine oxidases and their properties. Biotechnol. Appl. Biochem. 2005, 41, 77–84. [Google Scholar] [CrossRef]
- Frébort, I.; Haviger, A.; Peč, P. Employment of guaiacol for the determination of activities of enzymes generating hydrogen peroxide and for the determination of glucose in blood and urine. Biológia 1989, 44, 729–737. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
Substrate | Km [μmol·L−1] | V [nmol·s−1 per mg] | kcat [s−1] | kcat/Km [mol−1·L·s−1] | kcat/Km [Relative] |
---|---|---|---|---|---|
PUT | 289 ± 15 | 644 ± 12 | 47.4 | 1.64 × 105 | 1.000 |
CAD 1 | 148 ± 8 | 827 ± 13 | 60.9 | 4.11 × 105 | 2.506 |
DAH 1 | 95 ± 7 | 176 ± 6 | 13.0 | 1.37 × 105 | 0.835 |
HPUT | 589 ± 33 | 67 ± 2 | 4.9 | 8.32 × 103 | 0.051 |
AGM | 446 ± 23 | 114 ± 3 | 8.4 | 1.88 × 104 | 0.115 |
4AMP | 618 ± 24 | 57 ± 1 | 4.2 | 6.80 × 103 | 0.041 |
Substrate | Km [μmol·L−1] | V [nmol·s−1 per mg] | kcat [s−1] | kcat/Km [mol−1·L·s−1] | kcat/Km [Relative] |
---|---|---|---|---|---|
PUT | 214 ± 32 | 859 ± 54 | 63.2 | 2.95 × 105 | 1.000 |
CAD | 289 ± 23 | 1401 ± 51 | 103.0 | 3.56 × 105 | 1.207 |
DAH 1 | 56 ± 18 | 175 ± 21 | 12.9 | 2.30 × 105 | 0.780 |
HPUT | 379 ± 38 | 77 ± 5 | 5.7 | 1.50 × 104 | 0.051 |
AGM | 576 ± 44 | 261 ± 11 | 19.2 | 3.33 × 104 | 0.113 |
4AMP | 286 ± 21 | 153 ± 5 | 11.3 | 3.95 × 104 | 0.134 |
Substrate | Published kcat Values [s−1] | Published Km Values [µmol·L−1] |
---|---|---|
PUT | 5–280 | 65–430 |
CAD | 5–500 | 60–400 |
DAH | 20–40 | 90–160 |
HPUT | 1–20 | 250–740 |
AGM | 1–45 | 150–560 |
4AMP 1 | n.a. | n.a. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strnad, J.; Soural, M.; Šebela, M. A New Activity Assay Method for Diamine Oxidase Based on Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Molecules 2024, 29, 4878. https://doi.org/10.3390/molecules29204878
Strnad J, Soural M, Šebela M. A New Activity Assay Method for Diamine Oxidase Based on Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Molecules. 2024; 29(20):4878. https://doi.org/10.3390/molecules29204878
Chicago/Turabian StyleStrnad, Jan, Miroslav Soural, and Marek Šebela. 2024. "A New Activity Assay Method for Diamine Oxidase Based on Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry" Molecules 29, no. 20: 4878. https://doi.org/10.3390/molecules29204878
APA StyleStrnad, J., Soural, M., & Šebela, M. (2024). A New Activity Assay Method for Diamine Oxidase Based on Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Molecules, 29(20), 4878. https://doi.org/10.3390/molecules29204878