Chemical Profiling and Evaluation of Antioxidant Activity of Artichoke (Cynara cardunculus var. scolymus) Leaf By-Products’ Extracts Obtained with Green Extraction Techniques
Abstract
:1. Introduction
2. Results and Discussion
2.1. Qualitative Determination of Bioactive Compounds in C. cardunculus var. scolymus Leaf Extracts
2.2. Quantitative Determination of Bioactive Compounds in C. cardunculus var. scolymus Leaf Extracts and Influence of Extraction Technique on Selected Compounds Content
2.2.1. Ultrasound-Assisted Extraction (UAE) with Sonotrode
2.2.2. Supercritical CO2 Extraction (SCO2E)
2.2.3. Subcritical Water Extraction (SWE)
2.2.4. Deep Eutectic Solvent Extraction (DESE)
2.3. Antioxidant Activity and Total Phenols in C. cardunculus var. scolymus Leaf Extracts
3. Materials and Methods
3.1. Chemicals
3.2. Plant Material
3.3. Extraction Techniques
3.4. High-Resolution HPLC-ESI-QToF-MS/MS and HPLC-DAD Analyses
3.5. Determination of Total Polyphenol Content (Folin–Ciocalteu’s Assay), Free Radical Scavenging Activity (ABTS•+ and DPPH• Assays), and Total Reducing Power (CUPRAC and FRAP Assays)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sonnante, G.; Pignone, D.; Hammer, K. The domestication of artichoke and cardoon: From roman times to the genomic age. Ann. Bot. 2007, 100, 1095–1100. [Google Scholar] [CrossRef]
- Bianco, V.V. Present situation and future potential of artichoke in the Mediterranean basin. Acta Hortic. 2005, 681, 39–58. [Google Scholar] [CrossRef]
- Olas, B. An overview of the versatility of the parts of the globe artichoke (Cynara scolymus L.), its by-products and dietary supplements. Nutrients 2024, 16, 599. [Google Scholar] [CrossRef]
- Lattanzio, V.; Kroon, P.A.; Linsalata, V.; Cardinali, A. Globe artichoke: A functional food and source of nutraceutical ingredients. J. Funct. Foods 2009, 1, 131–144. [Google Scholar] [CrossRef]
- Martínez Teruel, A.; Sánchez, J.; Megías, M.D.; Barrera, J.A.; Yañez, A.; Ruiperez, F. Using of forages and byproducts in dairy cows farms of Murcia region. Arch. Zootec. 1998, 47, 33–42. Available online: https://dialnet.unirioja.es/descarga/articulo/278652.pdf (accessed on 15 May 2024).
- Frutos, M.J.; Guilabert-Antón, L.; Tomás-Bellido, A.; Hernández-Herrero, J.A. Effect of artichoke (Cynara scolymus L.) fiber on textural and sensory qualities of wheat bread. Food Sci. Technol. Int. 2008, 14, 49–55. [Google Scholar] [CrossRef]
- Le, T.T.; Vo, A.P.; Dang, V.T.N.; Le, V.V.M. Crackers fortified with various ratios of Cynara scolymus L. leaf extract residue: Nutritional, physical and sensory quality. Chem. Eng. Trans. 2023, 106, 859–864. [Google Scholar] [CrossRef]
- Llorente, B.E.; Brutti, C.B.; Caffini, N.O. Purification and characterization of a milk-clotting aspartic proteinase from globe artichoke (Cynara scolymus L.). J. Agric. Food Chem. 2004, 52, 8182–8189. [Google Scholar] [CrossRef]
- Esposito, M.; Di Pierro, P.; Dejonghe, W.; Mariniello, L.; Porta, R. Enzymatic milk clotting activity in artichoke (Cynara scolymus) leaves and alpine thistle (Carduus defloratus) flowers. Immobilization of alpine thistle aspartic protease. Food Chem. 2016, 204, 115–121. [Google Scholar] [CrossRef]
- Ergezer, H.; Serdarğglu, M. Antioxidant potential of artichoke (Cynara scolymus L.) byproducts extracts in raw beef patties during refrigerated storage. J. Food Meas. Charact. 2018, 12, 982–991. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, H.; Lo, R. Phenolic compounds from the leaf extract of artichoke (Cynara scolymus L.) and their antimicrobial activities. J. Agric. Food Chem. 2004, 52, 7272–7278. [Google Scholar] [CrossRef]
- Chaturvedi, D. Sesquiterpene lactones: Structural diversity and their biological activities. Opportunity, challenge and scope of natural products in medicinal chemistry. Res. Signpost India 2011, 153, 313–334. [Google Scholar] [CrossRef]
- Cravotto, G.; Nano, G.M.; Binello, A.; Spagliardi, P.; Seu, G. Chemical and biological modification of cynaropicrin and grosheimin: A structure-bitterness relationship study. J. Sci. Food Agric. 2005, 85, 1757–1764. [Google Scholar] [CrossRef]
- Eljounaidi, K.; Cankar, K.; Comino, C.; Moglia, A.; Hehn, A.; Bourgaud, F.; Bouwmeester, H.; Menin, B.; Lanteri, S.; Beekwilder, J. Cytochrome P450s from Cynara cardunculus L. CYP71AV9 and CYP71BL5, catalyze distinct hydroxylations in the sesquiterpene lactone biosynthetic pathway. Plant Sci. 2014, 223, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Takei, K.; Hashimoto-Hachiya, A.; Takahara, M.; Tsuji, G.; Nakahara, T.; Furue, M. Cynaropicrin attenuates UVB-induced oxidative stress via the AhR-Nrf2-Nqo1 pathway. Toxicol. Lett. 2015, 234, 74–80. [Google Scholar] [CrossRef]
- Elsebai, M.F.; Mocan, A.; Atanasov, A.G. Cynaropicrin: A comprehensive research review and therapeutic potential as an anti-hepatitis C virus agent. Front. Pharmacol. 2016, 7, 472. [Google Scholar] [CrossRef]
- Thang, N.Q.; Hoa, V.T.K.; van Tan, L.; Tho, N.T.M.; Hieu, T.Q.; Phuong, N.T.K. Extraction of cynarine and chlorogenic acid from Artichoke leaves (Cynara scolymus L.) and evaluation of antioxidant activity, antibacterial activity of extract. Vietnam. J. Chem. 2022, 60, 571–577. [Google Scholar] [CrossRef]
- Stumpf, B.; Künne, M.; Ma, L.; Xu, M.; Yan, F.; Piepho, H.P.; Honermeier, B. Optimization of the extraction procedure for the determination of phenolic acids and flavonoids in the leaves of globe artichoke (Cynara cardunculus var. scolymus L.). J. Pharm. Biomed. Anal. 2020, 177, 112879. [Google Scholar] [CrossRef]
- Reche, C.; Rosselló, C.; Umaña, M.M.; Eim, V.; Simal, S. Mathematical modelling of ultrasound-assisted extraction kinetics of bioactive compounds from artichoke by-products. Foods 2021, 10, 931. [Google Scholar] [CrossRef]
- Saleh, I.A.; Vinatoru, M.; Mason, T.J.; Abdel-Azim, N.S.; Aboutabl, E.A.; Hammouda, F.M. A possible general mechanism for ultrasound-assisted extraction (UAE) suggested from the results of UAE of chlorogenic acid from Cynara scolymus L. (artichoke) leaves. Ultrason. Sonochem. 2016, 31, 330–336. [Google Scholar] [CrossRef]
- Pagano, I.; Piccinelli, A.L.; Celano, R.; Campone, L.; Gazzerro, P.; Russo, M.; Rastrelli, L. Pressurized hot water extraction of bioactive compounds from artichoke by-products. Electrophoresis 2018, 39, 1899–1907. [Google Scholar] [CrossRef]
- Órbenes, G.; Rodríguez-Seoane, P.; Torres, M.D.; Chamy, R.; Zúñiga, M.E.; Domínguez, H. Valorization of artichoke industrial by-products using green extraction technologies: Formulation of hydrogels in combination with paulownia extracts. Molecules 2021, 26, 4386. [Google Scholar] [CrossRef]
- Ruiz-Aceituno, L.; García-Sarrió, M.J.; Alonso-Rodriguez, B.; Ramos, L.; Sanz, M.L. Extraction of bioactive carbohydrates from artichoke (Cynara scolymus L.) external bracts using microwave assisted extraction and pressurized liquid extraction. Food Chem. 2016, 196, 1156–1162. [Google Scholar] [CrossRef]
- Mena-García, A.; Rodríguez-Sánchez, S.; Ruiz-Matute, A.I.; Sanz, M.L. Exploitation of artichoke byproducts to obtain bioactive extracts enriched in inositols and caffeoylquinic acids by Microwave Assisted Extraction. J. Chromatogr. A 2020, 1613, 460703. [Google Scholar] [CrossRef]
- Acosta López, E.R.; Castro Garay, A. Optimization of the antioxidant capacity of bracts of creole artichoke (Cynara scolymus L.) with supercritical CO2. J. Agric.-Food Sci. 2022, 3, 2–9. [Google Scholar] [CrossRef]
- Benito-Román, Ó.; Blanco, B.; Sanz, M.T.; Beltrán, S. Subcritical water extraction of phenolic compounds from onion skin wastes (Allium cepa cv. Horcal): Effect of temperature and solvent properties. Antioxidants 2020, 9, 1233. [Google Scholar] [CrossRef]
- Alexandre, A.M.R.C.; Dias, A.M.A.; Seabra, I.J.; Portugal, A.A.T.G.; de Sousa, H.C.; Braga, M.E.M. Biodiesel obtained from supercritical carbon dioxide oil of Cynara cardunculus L. J. Supercrit. Fluids 2012, 68, 52–63. [Google Scholar] [CrossRef]
- Dai, Q.; Yang, Y.; Chen, K.; Cheng, Z.; Ni, Y.; Li, J. Optimization of supercritical CO2 operative parameters to simultaneously increase the extraction yield of oil and pentacyclic triterpenes from artichoke leaves and stalks by response surface methodology and ridge analysis. Eur. J. Lipid Sci. Technol. 2019, 121, 1800120. [Google Scholar] [CrossRef]
- De Faria, E.L.P.; do Carmo, R.S.; Cláudio, A.F.M.; Freire, C.S.R.; Freire, M.G.; Silvestre, A.J.D. Deep eutectic solvents as efficient media for the extraction and recovery of cynaropicrin from Cynara cardunculus L. leaves. Int. J. Mol. Sci. 2017, 18, 2276. [Google Scholar] [CrossRef]
- Ozkan, G. Valorization of artichoke outer petals by using ultrasound-assisted extraction and natural deep eutectic solvents (NADES) for the recovery of phenolic compounds. J. Sci. Food Agric. 2024, 104, 2744–2749. [Google Scholar] [CrossRef]
- Jokić, S.; Aladić, K.; Šubarić, D. Subcritical water extraction laboratory plant design and application. Annu. Croat. Acad. Eng. 2018, 21, 247–258. Available online: https://api.semanticscholar.org/CorpusID:135061890 (accessed on 12 October 2023).
- Kovač, M.J.; Jokić, S.; Jerković, I.; Molnar, M. Optimization of deep eutectic solvent extraction of phenolic acids and tannins from Alchemilla vulgaris L. Plants 2022, 11, 474. [Google Scholar] [CrossRef]
- Gil, K.A.; Jokić, S.; Cikoš, A.-M.; Banožić, M.; Jakovljević Kovač, M.; Fais, A.; Tuberoso, C.I.G. Comparison of different green extraction techniques used for the extraction of targeted flavonoids from edible feijoa (Acca sellowiana (O.Berg) Burret) flowers. Plants 2023, 12, 1461. [Google Scholar] [CrossRef]
- Masala, V.; Jokić, S.; Aladić, K.; Molnar, M.; Tuberoso, C.I.G. Exploring phenolic compounds extraction from saffron (C. sativus) floral by-products using ultrasound-assisted extraction, deep eutectic solvent extraction, and subcritical water extraction. Molecules 2024, 29, 2600. [Google Scholar] [CrossRef]
- Hoffmann, M.A.; Nothias, L.F.; Ludwig, M.; Fleischauer, M.; Gentry, E.C.; Witting, M.; Dorrestein, P.C.; Dührkop, K.; Böcker, S. High-confidence structural annotation of metabolites absent from spectral libraries. Nat. Biotechnol. 2022, 40, 411–421. [Google Scholar] [CrossRef]
- KNApSAcK Core System. Available online: http://www.knapsackfamily.com/knapsack_core/top.php (accessed on 14 September 2023).
- Blaženović, I.; Kind, T.; Ji, J.; Fiehn, O. Software tools and approaches for compound identification of LC-MS/MS Data in metabolomics. Metabolites 2018, 8, 31. [Google Scholar] [CrossRef]
- Cao, D.; Long, H.; Shen, X.; Hu, B.; Xu, S.; Zhang, H.; Zhao, Z.; Han, J. Simultaneous qualitative and quantitative analysis for evaluating constituents of Atractylodis macrocephalae rhizome by UPLC-QTOF-MS. Acta Chromatogr. 2023, 1–11. [Google Scholar] [CrossRef]
- Fritsche, J.; Beindorff, C.M.; Dachtler, M.; Zhang, H.; Lammers, J.G. Isolation, characterization and determination of minor artichoke (Cynara scolymus L.) leaf extract compounds. Eur. Food Res. Technol. 2002, 215, 149–157. [Google Scholar] [CrossRef]
- Luca, S.V.; Kulinowski, Ł.; Ciobanu, C.; Zengin, G.; Czerwińska, M.E.; Granica, S.; Xiao, J.; Skalicka-Woźniak, K.; Trifan, A. Phytochemical and multi-biological characterization of two Cynara scolymus L. varieties: A glance into their potential large scale cultivation and valorization as bio-functional ingredients. Ind. Crops Prod. 2022, 178, 114623. [Google Scholar] [CrossRef]
- Nguyen, A.N.T.; Vu, T.T.T.; Do, H.T.T.; Nguyen, T.H.; Le, H.V.; Pham, H.K.T.; Truong, P.C.H.; Pham, D.P.; Tran, M.H. Identification of phenolic compounds from vietnamese artichoke (Cynara scolymus L.) leaf and their antioxidant activities. Nat. Prod. Sci. 2024, 30, 39–51. [Google Scholar] [CrossRef]
- Abu-Reidah, I.M.; Arraez-Roman, D.; Segura-Carretero, A.; Fernandez-Gutierrez, A. Extensive characterisation of bioactive phenolic constituents from globe artichoke (Cynara scolymus L.) by HPLC-DAD-ESI-QTOF-MS. Food Chem. 2013, 141, 2269–2277. [Google Scholar] [CrossRef]
- El Senousy, A.S.; Farag, M.A.; Al-Mahdy, D.A.; Wessjohann, L.A. Developmental changes in leaf phenolics composition from three artichoke cvs. (Cynara scolymus) as determined via UHPLC-MS and chemometrics. Phytochemistry 2014, 108, 67–76. [Google Scholar] [CrossRef]
- Bas, D.; Boyaci, I.H. Modeling and optimization I: Usability of response surface methodology. J. Food Eng. 2007, 78, 836–845. [Google Scholar] [CrossRef]
- Brás, T.; Paulino, A.F.C.; Neves, L.A.; Crespo, J.G.; Duarte, M.F. Ultrasound assisted extraction of cynaropicrin from Cynara cardunculus leaves: Optimization using the response surface methodology and the effect of pulse mode. Ind. Crops Prod. 2020, 150, 112395. [Google Scholar] [CrossRef]
- Essien, S.O.; Young, B.; Baroutian, S. Recent advances in subcritical water and supercritical carbon dioxide extraction of bioactive compounds from plant materials. Trends Food Sci. Technol. 2020, 97, 156–169. [Google Scholar] [CrossRef]
- Sovová, H.; Opletal, L.; Sajfrtová, M.; Bártlová, M. Supercritical fluid extraction of cynaropicrin and 20-hydroxyecdysone from Leuzea carthamoides DC. J. Sep. Sci. 2008, 31, 1387–1392. [Google Scholar] [CrossRef]
- Tanaka, Y.T.; Tanaka, K.; Kojima, H.; Hamada, T.; Masutani, T.; Tsuboi, M.; Akao, Y. Cynaropicrin from Cynara scolymus L. suppresses photoaging of skin by inhibiting the transcription activity of nuclear factor-kappa B. Bioorganic Med. Chem. Lett. 2013, 23, 518–523. [Google Scholar] [CrossRef]
- Cho, J.Y.; Baik, K.U.; Jung, J.H.; Park, M.H. In vitro anti-inflammatory effects of cynaropicrin, a sesquiterpene lactone, from Saussurea lappa. Eur. J. Pharmacol. 2000, 398, 399–407. [Google Scholar] [CrossRef]
- Zimmermann, S.; Kaiser, M.; Brun, R.; Hamburger, M.; Adams, M. Cynaropicrin: The first plant natural product with in vivo activity against trypanosoma brucei. Planta Med. 2012, 78, 553–556. [Google Scholar] [CrossRef]
- Boulos, J.C.; Omer, E.A.; Rigano, D.; Formisano, C.; Chatterjee, M.; Leich, E.; Klauck, S.M.; Shan, L.T.; Efferth, T. Cynaropicrin disrupts tubulin and c-Myc-related signaling and induces parthanatos-type cell death in multiple myeloma. Acta Pharmacol. Sin. 2023, 44, 2265–2281. [Google Scholar] [CrossRef]
- Özel, M.Z.; Göğüş, F. Subcritical water as a green solvent for plant extraction. In Green Chemistry and Sustainable Technology; Springer: Berlin/Heidelberg, Germany, 2014; pp. 73–89. [Google Scholar] [CrossRef]
- Pérez, M.; Dominguez-López, I.; Lamuela-Raventós, R.M. The chemistry behind the Folin-Ciocalteu method for the estimation of (poly)phenol content in food: Total phenolic intake in a mediterranean dietary pattern. J. Agric. Food Chem. 2023, 71, 17543–17553. [Google Scholar] [CrossRef]
- Peschel, W.; Sánchez-Rabaneda, F.; Diekmann, W.; Plescher, A.; Gartzía, I.; Jiménez, D.; Lamuela-Raventós, R.; Buxaderas, S.; Codina, C. An industrial approach in the search of natural antioxidants from vegetable and fruit wastes. Food Chem. 2006, 97, 137–150. [Google Scholar] [CrossRef]
- Gaafar, A.; Salama, Z. Phenolic compounds from artichoke (Cynara scolymus L.) by-products and their antimicrobial activities. J. Biol. Agric. Healthc. 2013, 3, e6. Available online: https://core.ac.uk/reader/234659070 (accessed on 25 June 2024).
- Llorach, R.; Espín, J.C.; Tomás-Barberán, F.A.; Ferreres, F. Artichoke (Cynara scolymus L.) byproducts as a potential source of health-promoting antioxidant phenolics. J. Agric. Food Chem. 2002, 50, 3458–3464. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Chen, D.; Chen, S. Antioxidant activity and mechanism of protocatechuic acid in vitro. Funct. Foods Health Dis. 2011, 1, 232–244. [Google Scholar] [CrossRef]
- Youssef, F.S.; Ashour, M.L.; El-Beshbishy, H.A.; Ahmed Hamza, A.; Singab, A.N.B.; Wink, M. Pinoresinol-4-O-β-D-glucopyranoside: A lignan from prunes (Prunus domestica) attenuates oxidative stress, hyperglycaemia and hepatic toxicity in vitro and in vivo. J. Pharm. Pharmacol. 2020, 72, 1830–1839. [Google Scholar] [CrossRef]
- Tian, C.; Liu, X.; Chang, Y.; Wang, R.; Lv, T.; Cui, C.; Liu, M. Investigation of the anti-inflammatory and antioxidant activities of luteolin, kaempferol, apigenin and quercetin. S. Afr. J. Bot. 2021, 137, 257–264. [Google Scholar] [CrossRef]
- Jokić, S.; Horvat, G.; Aladić, K. Design of SFE system using a holistic approach—Problems and challenges. In Supercritical Fluid Extraction: Technology, Applications and Limitations; Lindy, J., Ed.; Nova Science Publishers: Hauppauge, NY, USA, 2015; pp. 95–122. Available online: https://www.croris.hr/crosbi/publikacija/prilog-knjiga/52007 (accessed on 14 December 2022).
- De Luca, M.; Tuberoso, C.I.G.; Pons, R.; García, M.T.; Morán, M.D.C.; Ferino, G.; Vassallo, A.; Martelli, G.; Caddeo, C. Phenolic fingerprint, bioactivity and nanoformulation of Prunus spinosa L. fruit extract for skin delivery. Pharmaceutics 2023, 15, 1063. [Google Scholar] [CrossRef]
- Dührkop, K.; Fleischauer, M.; Ludwig, M.; Aksenov, A.A.; Melnik, A.V.; Meusel, M.; Dorrestein, P.C.; Rousu, J.; Böcker, S. SIRIUS 4: A rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 2019, 16, 299–302. [Google Scholar] [CrossRef]
- Tuberoso, C.I.G.; Boban, M.; Bifulco, E.; Budimir, D.; Pirisi, F.M. Antioxidant capacity and vasodilatory properties of Mediterranean food: The case of Cannonau wine, myrtle berries liqueur and strawberry-tree honey. Food Chem. 2013, 140, 686–691. [Google Scholar] [CrossRef]
- Bouzabata, A.; Montoro, P.; Gil, K.A.; Piacente, S.; Youssef, F.S.; Al Musayeib, N.M.; Cordell, G.A.; Ashour, M.L.; Tuberoso, C.I.G. HR-LC-ESI-Orbitrap-MS-Based metabolic profiling coupled with chemometrics for the discrimination of different Echinops spinosus organs and evaluation of their antioxidant activity. Antioxidants 2022, 11, 453. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Bektaşoğlu, B.; Çelik, S.E.; Özyürek, M.; Güçlü, K.; Apak, R. Novel hydroxyl radical scavenging antioxidant activity assay for water-soluble antioxidants using a modified CUPRAC method. Biochem. Biophys. Res. Commun. 2006, 345, 1194–1200. [Google Scholar] [CrossRef]
Sample Code * | Extraction Parameters | ||
---|---|---|---|
Amplitude (%) | Impulse (%) | Solvent | |
1UAE | 100 | 60 | 100% H2O |
2UAE | 60 | 20 | |
3UAE | 60 | 100 | |
4UAE | 20 | 60 | |
5UAE | 100 | 100 | EtOH:H2O (50:50, v/v) |
6UAE | 100 | 20 | |
7UAE | 60 | 60 | |
8UAE | 60 | 60 | |
9UAE | 60 | 60 | |
10UAE | 60 | 60 | |
11UAE | 60 | 60 | |
12UAE | 20 | 100 | |
13UAE | 20 | 20 | |
14UAE | 100 | 60 | 96% EtOH |
15UAE | 60 | 20 | |
16UAE | 60 | 100 | |
17UAE | 20 | 60 | |
Temperature (°C) | Solvent | ||
1SWE | 125 | 100% H2O | |
2SWE | 150 | ||
3SWE | 175 | ||
4SWE | 200 | ||
5SWE | 225 | ||
6SWE | 250 | ||
7SWE | 125 | EtOH:H2O (50:50, v/v) | |
8SWE | 150 | ||
9SWE | 175 | ||
10SWE | 200 | ||
11SWE | 125 | 96% EtOH | |
12SWE | 150 | ||
13SWE | 175 | ||
14SWE | 200 | ||
Extraction Solvent | |||
1DES | Choline chloride:urea 1:2-H2O (80:20, v/v) | ||
2DES | Choline chloride:N-methyl urea 1:3-H2O (80:20, v/v) | ||
3DES | Choline chloride:thiourea 1:2-H2O (80:20, v/v) | ||
4DES | Choline chloride:xylitol 1:1-H2O (80:20, v/v) | ||
5DES | Choline chloride:sorbitol 1:1-H2O (80:20, v/v) | ||
6DES | Choline chloride:acetamide 1:2-H2O (80:20, v/v) | ||
7DES | Choline chloride:butane-1,4-diol 1:2-H2O (80:20, v/v) | ||
8DES | Choline chloride:ethane-1,2-diol 1:2-H2O (80:20, v/v) | ||
9DES | Choline chloride:glycerol 1:2-H2O (80:20, v/v) | ||
10DES | Choline chloride:oxalic acid 1:1-H2O (80:20, v/v) | ||
11DES | Choline chloride:1,3-dimethylurea 1:2-H2O (80:20, v/v) | ||
12DES | Choline chloride:maleic acid 1:1-H2O (80:20, v/v) | ||
13DES | Choline chloride:malic acid 1:1-H2O (80:20, v/v) | ||
14DES | Choline chloride:malonic acid 1:1-H2O (80:20, v/v) | ||
15DES | Choline chloride:lactic acid 1:2-H2O (80:20, v/v) | ||
16DES | Choline chloride:levulinic acid 1:2-H2O (80:20, v/v) | ||
Pressure (bar) | |||
SCO2 | 300 |
Sample Code | TP A | CUPRAC B | FRAP B | DPPH• C | ABTS•+ C |
---|---|---|---|---|---|
(mg GAE/g dp) | (mmol Fe2+/g dp) | (mmol TEAC/g dp) | |||
1UAE | 247.62 ± 17.53 ac | 4.35 ± 0.49 a | 2.18 ± 0.13 a | 0.24 ± 0.05 a | 0.86 ± 0.06 ade |
2UAE | 177.30 ± 14.88 bf | 5.44 ± 0.29 b | 2.02 ± 0.18 a | 0.41 ± 0.10 beh | 1.23 ± 0.10 b |
3UAE | 171.62 ± 12.81 bf | 4.02 ± 0.62 ad | 1.44 ± 0.14 b | 0.09 ± 0.02 c | 0.80 ± 0.02 aef |
4UAE | 289.33 ± 60.78 a | 7.03 ± 1.10 c | 3.07 ± 0.42 c | 0.90 ± 0.07 d | 1.19 ± 0.05 b |
5UAE | 215.08 ± 20.81 cf | 3.79 ± 0.29 a | 2.35 ± 0.32 a | 0.52 ± 0.09 bf | 1.20 ± 0.10 b |
6UAE | 124.02 ± 4.83 de | 2.92 ± 0.52 ed | 1.67 ± 0.06 d | 0.38 ± 0.03 e | 0.76 ± 0.02 c |
7UAE | 143.67 ± 23.39 bg | 3.15 ± 0.61 de | 2.11 ± 0.27 a | 0.55 ± 0.03 b | 0.87 ± 0.04 ad |
8UAE | 152.84 ± 12.78 bg | 2.63 ± 0.13 e | 1.78 ± 0.02 e | 0.50 ± 0.09 bf | 0.95 ± 0.04 d |
9UAE | 146.73 ± 39.54 befg | 2.13 ± 0.18 f | 1.56 ± 0.04 b | 0.36 ± 0.05 eh | 0.76 ± 0.07 ac |
10UAE | 192.37 ± 13.35 f | 2.53 ± 0.30 eg | 1.76 ± 0.08 de | 0.35 ± 0.03 ah | 0.74 ± 0.07 ce |
11UAE | 168.56 ± 47.42 fg | 2.31 ± 0.07 f | 2.43 ± 0.42 a | 0.39 ± 0.09 afh | 0.79 ± 0.02 ef |
12UAE | 143.23 ± 16.01 dg | 2.18 ± 0.25 f | 2.44 ± 0.36 a | 0.41 ± 0.06 ef | 0.74 ± 0.04 cf |
13UAE | 170.53 ± 59.47 dfg | 2.72 ± 0.51 ef | 1.79 ± 0.08 de | 0.79 ± 0.10 d | 0.95 ± 0.03 d |
14UAE | 81.00 ± 20.05 h | 0.70 ± 0.09 g | 0.76 ± 0.12 f | 0.28 ± 0.07 ae | 0.39 ± 0.05 g |
15UAE | 61.12 ± 3.23 h | 0.32 ± 0.22 h | 0.70 ± 0.12 f | 0.17 ± 0.04 ag | 0.29 ± 0.03 h |
16UAE | 105.45 ± 62.36 g | 0.40 ± 0.27 gh | 0.66 ± 0.10 f | 0.26 ± 0.06 ah | 0.33 ± 0.05 eh |
17UAE | 27.23 ± 1.62 i | 0.05 ± 0.03 i | 0.31 ± 0.02 g | 0.09 ± 0.02 c | 0.17 ± 0.02 i |
SCO2 | 109.21 ± 7.57 | 5.88 ± 0.44 | 0.93 ± 0.07 | 0.10 ± 0.02 | 0.29 ± 0.01 |
1SWE | 399.63 ± 46.67 a | 9.24 ± 1.01 a | 4.87 ± 0.55 a | 1.10 ± 0.01 a | 1.04 ± 0.08 a |
2SWE | 689.46 ± 31.80 b | 16.05 ± 1.04 b | 7.47 ± 0.63 b | 2.31 ± 0.04 b | 2.73 ± 0.35 b |
3SWE | 879.58 ± 21.68 c | 34.14 ± 0.67 c | 17.11 ± 0.73 c | 4.89 ± 0.10 c | 6.18 ± 0.24 c |
4SWE | 1058.76 ± 42.62 d | 32.57 ± 0.39 d | 20.69 ± 1.07 dg | 5.22 ± 0.26 cm | 7.15 ± 0.43 d |
5SWE | 955.01 ± 38.87 e | 22.87 ± 1.90 e | 16.19 ± 0.72 c | 4.92 ± 0.14 c | 5.83 ± 0.11 c |
6SWE | 1346.68 ± 45.33 f | 33.05 ± 1.34 cd | 20.12 ± 0.15 d | 6.37 ± 0.31 d | 8.34 ± 0.24 e |
7SWE | 384.16 ± 29.80 a | 10.72 ± 0.68 a | 6.28 ± 0.19 e | 1.84 ± 0.10 e | 1.93 ± 0.19 f |
8SWE | 639.01 ± 41.39 b | 14.29 ± 0.23 f | 9.57 ± 0.16 f | 3.02 ± 0.15 f | 3.48 ± 0.08 g |
9SWE | 1088.27 ± 45.80 dl | 33.40 ±0.84 cd | 22.12 ± 1.01 g | 5.61 ± 0.07 gm | 6.81 ± 0.06 h |
10SWE | 1433.06 ± 119.52 f | 37.47 ± 2.20 g | 31.12 ± 0.30 h | 8.82 ± 0.56 h | 10.19 ± 0.31 i |
11SWE | 198.32 ± 5.54 g | 5.78 ± 0.35 h | 3.37 ± 0.21 i | 0.84 ± 0.03 i | 1.07 ± 0.22 a |
12SWE | 331.58 ± 11.79 h | 8.01 ± 0.21 i | 5.98 ± 0.36 e | 1.17 ± 0.02 l | 1.67 ± 0.09 l |
13SWE | 591.66 ± 2.97 i | 16.34 ± 1.73 b | 11.43 ± 0.39 l | 2.32 ± 0.04 b | 3.33 ± 0.16 g |
14SWE | 1198.44 ± 93.60 l | 30.13 ± 3.07 cd | 24.36 ± 0.44 m | 5.55 ± 0.19 gm | 7.86 ± 0.46 de |
1DES | 115.57 ± 12.95 a | 1.82 ± 0.23 a | 1.86 ± 0.11 ah | 0.02 ± 0.02 a | 1.33 ± 0.11 a |
2DES | 45.88 ± 5.07 b | 1.67 ± 0.03 b | 2.16 ± 0.14 b | 0.26 ± 0.01 b | 0.51 ± 0.08 b |
3DES | nm | nm | nm | nm | nm |
4DES | 24.67 ± 1.98 d | 1.57 ± 0.23 d | 1.31 ± 0.30 d | 0.16 ± 0.01 d | 0.55 ± 0.06 b |
5DES | 50.54 ± 6.37b i | 0.37 ± 0.06 e | 0.59 ± 0.04 e | 0.02 ± 0.00 a | 0.19 ± 0.03 d |
6DES | 31.31 ± 0.49 e | 0.99 ± 0.13 f | 1.51 ± 0.17 d | 0.14 ± 0.02 d | 0.57 ± 0.10 bf |
7DES | 41.45 ± 4.94 b | 0.52 ± 0.00 g | 0.91 ± 0.04 f | 0.19 ± 0.10 bd | 0.39 ± 0.01 e |
8DES | 134.45 ± 3.96 f | 2.11 ± 0.03 h | 1.53 ± 0.19 d | 0.02 ± 0.00 a | 0.62 ± 0.03 bf |
9DES | 21.52 ± 1.48 d | 1.19 ± 0.09 f | 1.45 ± 0.19 d | 0.15 ± 0.01 d | 0.39 ± 0.00 e |
10DES | 93.54 ± 1.48 g | 1.14 ± 0.09 f | 4.25 ± 0.40 g | 2.45 ± 0.05 e | 0.42 ± 0.05 e |
11DES | 63.13 ± 5.88 h | 2.27 ± 0.13 h | 1.70 ± 0.14 ad | 0.28 ± 0.03 b | 0.60 ± 0.05 bf |
12DES | 107.53 ± 4.45 a | 1.67 ± 0.10 bd | 2.00 ± 0.15 bh | 2.83 ± 0.01 f | 0.71 ± 0.06 l |
13DES | 55.10 ± 3.59 hi | 2.20 ± 0.06 h | 0.33 ± 0.05 i | 0.41 ± 0.11 g | 0.38 ± 0.02 e |
14DES | 62.19 ± 6.79 h | 0.96 ± 0.14 f | 0.18 ± 0.08 l | 1.16 ± 0.02 h | 0.67 ± 0.05 f |
15DES | 16.63 ± 1.48 l | 2.36 ± 0.31 h | 2.55 ± 0.20 m | 0.61 ± 0.06 i | 0.44 ± 0.09 eg |
16DES | 123.03 ± 4.66 a | 1.96 ± 0.24 ah | 2.17 ± 0.09 b | 0.38 ± 0.05 g | 0.75 ± 0.09 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masala, V.; Jokić, S.; Aladić, K.; Molnar, M.; Casula, M.; Tuberoso, C.I.G. Chemical Profiling and Evaluation of Antioxidant Activity of Artichoke (Cynara cardunculus var. scolymus) Leaf By-Products’ Extracts Obtained with Green Extraction Techniques. Molecules 2024, 29, 4816. https://doi.org/10.3390/molecules29204816
Masala V, Jokić S, Aladić K, Molnar M, Casula M, Tuberoso CIG. Chemical Profiling and Evaluation of Antioxidant Activity of Artichoke (Cynara cardunculus var. scolymus) Leaf By-Products’ Extracts Obtained with Green Extraction Techniques. Molecules. 2024; 29(20):4816. https://doi.org/10.3390/molecules29204816
Chicago/Turabian StyleMasala, Valentina, Stela Jokić, Krunoslav Aladić, Maja Molnar, Mattia Casula, and Carlo Ignazio Giovanni Tuberoso. 2024. "Chemical Profiling and Evaluation of Antioxidant Activity of Artichoke (Cynara cardunculus var. scolymus) Leaf By-Products’ Extracts Obtained with Green Extraction Techniques" Molecules 29, no. 20: 4816. https://doi.org/10.3390/molecules29204816
APA StyleMasala, V., Jokić, S., Aladić, K., Molnar, M., Casula, M., & Tuberoso, C. I. G. (2024). Chemical Profiling and Evaluation of Antioxidant Activity of Artichoke (Cynara cardunculus var. scolymus) Leaf By-Products’ Extracts Obtained with Green Extraction Techniques. Molecules, 29(20), 4816. https://doi.org/10.3390/molecules29204816